Skip to content

Commit e569e97

Browse files
authored
fix some typos in the docs (#202)
1 parent bafb7d4 commit e569e97

File tree

6 files changed

+11
-11
lines changed

6 files changed

+11
-11
lines changed

docs/src/tutorials/ARK_order_conditions.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
Consider an ordinary differential equation (ODE) of the form
44
```math
5-
u'(t) = \sum_\nu^N f^\nu(t, u(t)).
5+
u'(t) = \sum_{\nu=1}^N f^\nu(t, u(t)).
66
```
77

88
An additive Runge-Kutta (ARK) method with ``s`` stages is given by its
@@ -21,8 +21,8 @@ is assumed, which reduces all analysis to autonomous problems.
2121
The step from ``u^{n}`` to ``u^{n+1}`` is given by
2222
```math
2323
\begin{aligned}
24-
y^i &= u^n + \Delta t \sum_\nu \sum_j a^\nu_{i,j} f^\nu(y^i), \\
25-
u^{n+1} &= u^n + \Delta t \sum_\nu \sum_i b^\nu_{i} f^\nu(y^i),
24+
y^i &= u^n + \Delta t \sum_\nu \sum_j a^\nu_{i,j} f^\nu(t^n + c_j \Delta t, y^j), \\
25+
u^{n+1} &= u^n + \Delta t \sum_\nu \sum_i b^\nu_{i} f^\nu(t^n + c_i \Delta t, y^i),
2626
\end{aligned}
2727
```
2828
where ``y^i`` are the stage values.
@@ -34,7 +34,7 @@ ARK methods are represented as
3434

3535
## Order conditions
3636

37-
The order conditions of RK methods can be derived using colored rooted trees.
37+
The order conditions of ARK methods can be derived using colored rooted trees.
3838
In [RootedTrees.jl](https://github.com/SciML/RootedTrees.jl), this
3939
functionality is implemented in [`residual_order_condition`](@ref).
4040
Thus, an [`AdditiveRungeKuttaMethod`](@ref) is of order ``p`` if the

docs/src/tutorials/RK_order_conditions.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ is assumed, which reduces all analysis to autonomous problems.
2929
The step from ``u^{n}`` to ``u^{n+1}`` is given by
3030
```math
3131
\begin{aligned}
32-
y^i &= u^n + \Delta t \sum_j a_{i,j} f(t^n + c_i \Delta t, y^i), \\
32+
y^i &= u^n + \Delta t \sum_j a_{i,j} f(t^n + c_j \Delta t, y^j), \\
3333
u^{n+1} &= u^n + \Delta t \sum_i b_{i} f(t^n + c_i \Delta t, y^i),
3434
\end{aligned}
3535
```

docs/src/tutorials/Rosenbrock_order_conditions.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ is assumed, which reduces all analysis to autonomous problems.
2222
The step from ``u^{n}`` to ``u^{n+1}`` is given by
2323
```math
2424
\begin{aligned}
25-
k^i &= \Delta t f\bigl(u^n + \sum_j a_{i,j} k^j \bigr) + \Delta t J \sum_j \gamma_{ij} k_j, \\
25+
k^i &= \Delta t f\bigl(u^n + \sum_j a_{i,j} k^j \bigr) + \Delta t J \sum_j \gamma_{ij} k^j, \\
2626
u^{n+1} &= u^n + \sum_i b_{i} k^i.
2727
\end{aligned}
2828
```

docs/src/tutorials/basics.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ end
1616

1717
Depending on your background, you may be more familiar with the classical
1818
notation used in the books of Butcher or Hairer & Wanner. You can get these
19-
representation via [`butcher_representation`](@ref).
19+
representations via [`butcher_representation`](@ref).
2020

2121
```@example basics
2222
for t in RootedTreeIterator(4)
@@ -92,7 +92,7 @@ for t in RootedTreeIterator(4)
9292
end
9393
```
9494

95-
![latex elemenary weights](https://private-user-images.githubusercontent.com/125130707/298310491-8a035faf-fd1a-4fc0-92be-c3387eb53177.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MDYxNjY1ODAsIm5iZiI6MTcwNjE2NjI4MCwicGF0aCI6Ii8xMjUxMzA3MDcvMjk4MzEwNDkxLThhMDM1ZmFmLWZkMWEtNGZjMC05MmJlLWMzMzg3ZWI1MzE3Ny5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjQwMTI1JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI0MDEyNVQwNzA0NDBaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT1kYzQyYjM0MWY0MDU5YWZlYzBmODA4MjFiZGIxN2E3YjhkYTdmZDNkYTU5NmI5OTEwNWFiZjg0OGZjNDg1MzZhJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCZhY3Rvcl9pZD0wJmtleV9pZD0wJnJlcG9faWQ9MCJ9.GB-PigOlQqenzgruzWg19qslzM6RXeX4xWwCNreOvNY)
95+
![latex elementary weights](https://private-user-images.githubusercontent.com/125130707/298310491-8a035faf-fd1a-4fc0-92be-c3387eb53177.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MDYxNjY1ODAsIm5iZiI6MTcwNjE2NjI4MCwicGF0aCI6Ii8xMjUxMzA3MDcvMjk4MzEwNDkxLThhMDM1ZmFmLWZkMWEtNGZjMC05MmJlLWMzMzg3ZWI1MzE3Ny5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjQwMTI1JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI0MDEyNVQwNzA0NDBaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT1kYzQyYjM0MWY0MDU5YWZlYzBmODA4MjFiZGIxN2E3YjhkYTdmZDNkYTU5NmI5OTEwNWFiZjg0OGZjNDg1MzZhJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCZhY3Rvcl9pZD0wJmtleV9pZD0wJnJlcG9faWQ9MCJ9.GB-PigOlQqenzgruzWg19qslzM6RXeX4xWwCNreOvNY)
9696

9797

9898
## Number of trees

src/colored_trees.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -393,7 +393,7 @@ end
393393
"""
394394
BicoloredRootedTreeIterator(order::Integer)
395395
396-
Iterator over all bi-colored rooted trees of given `order`. The returned trees
396+
Iterator over all bicolored rooted trees of given `order`. The returned trees
397397
are views to an internal tree modified during the iteration. If the returned
398398
trees shall be stored or modified during the iteration, a `copy` has to be made.
399399
"""

src/time_integration_methods.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -148,8 +148,8 @@ An additive Runge-Kutta method applied to the ODE problem
148148
has the form
149149
```math
150150
\\begin{aligned}
151-
y^i &= u^n + \\Delta t \\sum_\\nu \\sum_j a^\\nu_{i,j} f^\\nu(y^i), \\\\
152-
u^{n+1} &= u^n + \\Delta t \\sum_\\nu \\sum_i b^\\nu_{i} f^\\nu(y^i).
151+
y^i &= u^n + \\Delta t \\sum_\\nu \\sum_j a^\\nu_{i,j} f^\\nu(t^n + c_j \\Delta t, y^j), \\\\
152+
u^{n+1} &= u^n + \\Delta t \\sum_\\nu \\sum_i b^\\nu_{i} f^\\nu(t^n + c_i \\Delta t, y^i).
153153
\\end{aligned}
154154
```
155155

0 commit comments

Comments
 (0)