@@ -179,11 +179,11 @@ achieved with
179179
180180``` julia
181181using Distributed
182- using DifferentialEquations
182+ using OrdinaryDiffEq
183183using Plots
184184
185185addprocs ()
186- @everywhere using DifferentialEquations
186+ @everywhere using OrdinaryDiffEq
187187```
188188
189189Now let's define the linear ODE, which is our base problem:
@@ -235,7 +235,7 @@ Because the memory is shared across the different threads, it is not necessary t
235235use the ` @everywhere ` macro. Instead, the same problem can be implemented simply as:
236236
237237``` @example ensemble1_2
238- using DifferentialEquations
238+ using OrdinaryDiffEq
239239prob = ODEProblem((u, p, t) -> 1.01u, 0.5, (0.0, 1.0))
240240function prob_func(prob, i, repeat)
241241 remake(prob, u0 = rand() * prob.u0)
293293Now we build the SDE with these functions:
294294
295295``` @example ensemble2
296- using DifferentialEquations
296+ using StochasticDiffEq
297297p = [1.5, 1.0, 0.1, 0.1]
298298prob = SDEProblem(f, g, [1.0, 1.0], (0.0, 10.0), p)
299299```
356356Our ` prob_func ` will simply randomize the initial condition:
357357
358358``` @example ensemble3
359- using DifferentialEquations
359+ using OrdinaryDiffEq
360360# Linear ODE which starts at 0.5 and solves from t=0.0 to t=1.0
361361prob = ODEProblem((u, p, t) -> 1.01u, 0.5, (0.0, 1.0))
362362
@@ -427,7 +427,7 @@ function σ(du, u, p, t)
427427 du[i] = 0.87 * u[i]
428428 end
429429end
430- using DifferentialEquations
430+ using StochasticDiffEq
431431prob = SDEProblem(f, σ, ones(4, 2) / 2, (0.0, 1.0)) #prob_sde_2Dlinear
432432```
433433
0 commit comments