@@ -108,7 +108,7 @@ SciMLBase.EnsembleAnalysis.componentwise_vectors_timepoint
108108
109109The available functions for time steps are:
110110
111- ``` docs 
111+ ``` @ docs
112112SciMLBase.EnsembleAnalysis.timestep_mean 
113113SciMLBase.EnsembleAnalysis.timestep_median 
114114SciMLBase.EnsembleAnalysis.timestep_quantile 
@@ -151,14 +151,15 @@ timeseries_steps_weighted_meancov
151151
152152The available functions for the time points are:
153153
154- ``` docs 
154+ ``` @ docs
155155SciMLBase.EnsembleAnalysis.timeseries_point_mean 
156156SciMLBase.EnsembleAnalysis.timeseries_point_median 
157157SciMLBase.EnsembleAnalysis.timeseries_point_quantile 
158158SciMLBase.EnsembleAnalysis.timeseries_point_meanvar 
159159SciMLBase.EnsembleAnalysis.timeseries_point_meancov 
160160SciMLBase.EnsembleAnalysis.timeseries_point_meancor 
161161SciMLBase.EnsembleAnalysis.timeseries_point_weighted_meancov 
162+ ``` 
162163
163164### EnsembleSummary  
164165
@@ -197,6 +198,12 @@ prob = ODEProblem((u, p, t) -> 1.01u, 0.5, (0.0, 1.0))
197198For our ensemble simulation, we would like to change the initial condition around.
198199This is done through the ` prob_func ` . This function takes in the base problem
199200and modifies it to create the new problem that the trajectory actually solves.
201+ The ` prob_func `  has the signature ` prob_func(prob, i, repeat) `  where:
202+ 
203+ -  ` prob `  is the base problem to be modified
204+ -  ` i `  is the unique trajectory index (` 1 `  to ` trajectories ` )  
205+ -  ` repeat `  is the repeat iteration number (starts at ` 1 ` , increments if ` output_func `  returned ` rerun=true ` )
206+ 
200207Here, we will take the base problem, multiply the initial condition by a ` rand() ` ,
201208and use that for calculating the trajectory:
202209
0 commit comments