Skip to content

Commit c8b6074

Browse files
Merge pull request #828 from abhro/patch-1
Minor docstring fixes
2 parents 05d0013 + 5107a82 commit c8b6074

File tree

1 file changed

+31
-25
lines changed

1 file changed

+31
-25
lines changed

src/scimlfunctions.jl

Lines changed: 31 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -478,8 +478,8 @@ the usage of the `SplitFunction`. These include:
478478
solution of the ODE. Generally only used for testing and development of the solvers.
479479
- `tgrad(dT,u,p,t)` or dT=tgrad(u,p,t): returns ``\frac{\partial f_1(u,p,t)}{\partial t}``
480480
- `jac(J,u,p,t)` or `J=jac(u,p,t)`: returns ``\frac{df_1}{du}``
481-
- `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\frac{df_1}{du} v``
482-
- `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\frac{df_1}{du}^\ast v``
481+
- `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\frac{df_1}{du} v``
482+
- `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\frac{df_1}{du}^\ast v``
483483
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
484484
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
485485
as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -563,8 +563,10 @@ M \frac{du}{dt} = f(u,p,t)
563563
as a partitioned ODE:
564564
565565
```math
566-
M_1 \frac{du}{dt} = f_1(u,p,t)
566+
\begin{align}
567+
M_1 \frac{du}{dt} = f_1(u,p,t) \\
567568
M_2 \frac{du}{dt} = f_2(u,p,t)
569+
\end{align}
568570
```
569571
570572
and all of its related functions, such as the Jacobian of `f`, its gradient
@@ -598,16 +600,16 @@ the usage of `f`. These include:
598600
- `mass_matrix`: the mass matrix `M_i` represented in the ODE function. Can be used
599601
to determine that the equation is actually a differential-algebraic equation (DAE)
600602
if `M` is singular. Note that in this case special solvers are required, see the
601-
DAE solver page for more details: https://docs.sciml.ai/DiffEqDocs/stable/solvers/dae_solve/.
603+
DAE solver page for more details: <https://docs.sciml.ai/DiffEqDocs/stable/solvers/dae_solve/>.
602604
Must be an AbstractArray or an AbstractSciMLOperator. Should be given as a tuple
603605
of mass matrices, i.e. `(M_1, M_2)` for the mass matrices of equations 1 and 2
604606
respectively.
605607
- `analytic(u0,p,t)`: used to pass an analytical solution function for the analytical
606608
solution of the ODE. Generally only used for testing and development of the solvers.
607609
- `tgrad(dT,u,p,t)` or dT=tgrad(u,p,t): returns ``\frac{\partial f(u,p,t)}{\partial t}``
608610
- `jac(J,u,p,t)` or `J=jac(u,p,t)`: returns ``\frac{df}{du}``
609-
- `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\frac{df}{du} v``
610-
- `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\frac{df}{du}^\ast v``
611+
- `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\frac{df}{du} v``
612+
- `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\frac{df}{du}^\ast v``
611613
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
612614
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
613615
as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -707,8 +709,8 @@ the usage of `f`. These include:
707709
solution of the ODE. Generally only used for testing and development of the solvers.
708710
- `tgrad(dT,u,h,p,t)` or dT=tgrad(u,p,t): returns ``\frac{\partial f(u,p,t)}{\partial t}``
709711
- `jac(J,u,h,p,t)` or `J=jac(u,p,t)`: returns ``\frac{df}{du}``
710-
- `jvp(Jv,v,h,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\frac{df}{du} v``
711-
- `vjp(Jv,v,h,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\frac{df}{du}^\ast v``
712+
- `jvp(Jv,v,h,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\frac{df}{du} v``
713+
- `vjp(Jv,v,h,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\frac{df}{du}^\ast v``
712714
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
713715
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
714716
as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -767,8 +769,10 @@ M \frac{du}{dt} = f(u,h,p,t)
767769
as a partitioned ODE:
768770
769771
```math
770-
M_1 \frac{du}{dt} = f_1(u,h,p,t)
772+
\begin{align}
773+
M_1 \frac{du}{dt} = f_1(u,h,p,t) \\
771774
M_2 \frac{du}{dt} = f_2(u,h,p,t)
775+
\end{align}
772776
```
773777
774778
and all of its related functions, such as the Jacobian of `f`, its gradient
@@ -812,8 +816,8 @@ the usage of `f`. These include:
812816
solution of the ODE. Generally only used for testing and development of the solvers.
813817
- `tgrad(dT,u,h,p,t)` or dT=tgrad(u,h,p,t): returns ``\frac{\partial f(u,p,t)}{\partial t}``
814818
- `jac(J,u,h,p,t)` or `J=jac(u,h,p,t)`: returns ``\frac{df}{du}``
815-
- `jvp(Jv,v,u,h,p,t)` or `Jv=jvp(v,u,h,p,t)`: returns the directional derivative``\frac{df}{du} v``
816-
- `vjp(Jv,v,u,h,p,t)` or `Jv=vjp(v,u,h,p,t)`: returns the adjoint derivative``\frac{df}{du}^\ast v``
819+
- `jvp(Jv,v,u,h,p,t)` or `Jv=jvp(v,u,h,p,t)`: returns the directional derivative ``\frac{df}{du} v``
820+
- `vjp(Jv,v,u,h,p,t)` or `Jv=vjp(v,u,h,p,t)`: returns the adjoint derivative ``\frac{df}{du}^\ast v``
817821
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
818822
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
819823
as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -1022,8 +1026,8 @@ the usage of `f`. These include:
10221026
solution of the ODE. Generally only used for testing and development of the solvers.
10231027
- `tgrad(dT,u,p,t)` or dT=tgrad(u,p,t): returns ``\frac{\partial f(u,p,t)}{\partial t}``
10241028
- `jac(J,u,p,t)` or `J=jac(u,p,t)`: returns ``\frac{df}{du}``
1025-
- `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\frac{df}{du} v``
1026-
- `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\frac{df}{du}^\ast v``
1029+
- `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\frac{df}{du} v``
1030+
- `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\frac{df}{du}^\ast v``
10271031
- `ggprime(J,u,p,t)` or `J = ggprime(u,p,t)`: returns the Milstein derivative
10281032
``\frac{dg(u,p,t)}{du} g(u,p,t)``
10291033
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
@@ -1193,8 +1197,10 @@ M du = f(u,p,t) dt + g(u,p,t) dW_t
11931197
as a partitioned ODE:
11941198
11951199
```math
1196-
M_1 du = f_1(u,p,t) dt + g(u,p,t) dW_t
1200+
\begin{align}
1201+
M_1 du = f_1(u,p,t) dt + g(u,p,t) dW_t \\
11971202
M_2 du = f_2(u,p,t) dt + g(u,p,t) dW_t
1203+
\end{align}
11981204
```
11991205
12001206
and all of its related functions, such as the Jacobian of `f`, its gradient
@@ -1349,8 +1355,8 @@ the usage of `f`. These include:
13491355
with the corresponding expected solution at `sol.W.t` or `sol.t`.
13501356
- `tgrad(dT,u,p,t,W)` or dT=tgrad(u,p,t,W): returns ``\frac{\partial f(u,p,t,W)}{\partial t}``
13511357
- `jac(J,u,p,t,W)` or `J=jac(u,p,t,W)`: returns ``\frac{df}{du}``
1352-
- `jvp(Jv,v,u,p,t,W)` or `Jv=jvp(v,u,p,t,W)`: returns the directional derivative``\frac{df}{du} v``
1353-
- `vjp(Jv,v,u,p,t,W)` or `Jv=vjp(v,u,p,t,W)`: returns the adjoint derivative``\frac{df}{du}^\ast v``
1358+
- `jvp(Jv,v,u,p,t,W)` or `Jv=jvp(v,u,p,t,W)`: returns the directional derivative ``\frac{df}{du} v``
1359+
- `vjp(Jv,v,u,p,t,W)` or `Jv=vjp(v,u,p,t,W)`: returns the adjoint derivative ``\frac{df}{du}^\ast v``
13541360
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
13551361
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
13561362
as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -1592,8 +1598,8 @@ the usage of `f`. These include:
15921598
solution of the ODE. Generally only used for testing and development of the solvers.
15931599
- `tgrad(dT,u,h,p,t)` or dT=tgrad(u,p,t): returns ``\frac{\partial f(u,p,t)}{\partial t}``
15941600
- `jac(J,u,h,p,t)` or `J=jac(u,p,t)`: returns ``\frac{df}{du}``
1595-
- `jvp(Jv,v,h,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\frac{df}{du} v``
1596-
- `vjp(Jv,v,h,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\frac{df}{du}^\ast v``
1601+
- `jvp(Jv,v,h,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\frac{df}{du} v``
1602+
- `vjp(Jv,v,h,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\frac{df}{du}^\ast v``
15971603
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
15981604
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
15991605
as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -1684,8 +1690,8 @@ the usage of `f`. These include:
16841690
- `analytic(u0,p)`: used to pass an analytical solution function for the analytical
16851691
solution of the ODE. Generally only used for testing and development of the solvers.
16861692
- `jac(J,u,p)` or `J=jac(u,p)`: returns ``\frac{df}{du}``
1687-
- `jvp(Jv,v,u,p)` or `Jv=jvp(v,u,p)`: returns the directional derivative``\frac{df}{du} v``
1688-
- `vjp(Jv,v,u,p)` or `Jv=vjp(v,u,p)`: returns the adjoint derivative``\frac{df}{du}^\ast v``
1693+
- `jvp(Jv,v,u,p)` or `Jv=jvp(v,u,p)`: returns the directional derivative ``\frac{df}{du} v``
1694+
- `vjp(Jv,v,u,p)` or `Jv=vjp(v,u,p)`: returns the adjoint derivative ``\frac{df}{du}^\ast v``
16891695
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
16901696
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
16911697
as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -2036,11 +2042,11 @@ the usage of `f` and `bc`. These include:
20362042
solution of the BVP. Generally only used for testing and development of the solvers.
20372043
- `tgrad(dT,u,h,p,t)` or dT=tgrad(u,p,t): returns ``\frac{\partial f(u,p,t)}{\partial t}``
20382044
- `jac(J,du,u,p,gamma,t)` or `J=jac(du,u,p,gamma,t)`: returns ``\frac{df}{du}``
2039-
- `bcjac(J,du,u,p,gamma,t)` or `J=jac(du,u,p,gamma,t)`: erturns ``\frac{dbc}{du}``
2045+
- `bcjac(J,du,u,p,gamma,t)` or `J=jac(du,u,p,gamma,t)`: returns ``\frac{dbc}{du}``
20402046
- `jvp(Jv,v,du,u,p,gamma,t)` or `Jv=jvp(v,du,u,p,gamma,t)`: returns the directional
2041-
derivative``\frac{df}{du} v``
2047+
derivative ``\frac{df}{du} v``
20422048
- `vjp(Jv,v,du,u,p,gamma,t)` or `Jv=vjp(v,du,u,p,gamma,t)`: returns the adjoint
2043-
derivative``\frac{df}{du}^\ast v``
2049+
derivative ``\frac{df}{du}^\ast v``
20442050
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
20452051
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
20462052
as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -2162,8 +2168,8 @@ the usage of `f`. These include:
21622168
solution of the ODE. Generally only used for testing and development of the solvers.
21632169
- `tgrad(dT,du,u,p,t)` or dT=tgrad(du,u,p,t): returns ``\frac{\partial f(du,u,p,t)}{\partial t}``
21642170
- `jac(J,du,u,p,t)` or `J=jac(du,u,p,t)`: returns ``\frac{df}{du}``
2165-
- `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\frac{df}{du} v``
2166-
- `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\frac{df}{du}^\ast v``
2171+
- `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\frac{df}{du} v``
2172+
- `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\frac{df}{du}^\ast v``
21672173
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
21682174
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
21692175
as the prototype and integrators will specialize on this structure where possible. Non-structured

0 commit comments

Comments
 (0)