@@ -478,8 +478,8 @@ the usage of the `SplitFunction`. These include:
478478 solution of the ODE. Generally only used for testing and development of the solvers.
479479- `tgrad(dT,u,p,t)` or dT=tgrad(u,p,t): returns ``\f rac{\p artial f_1(u,p,t)}{\p artial t}``
480480- `jac(J,u,p,t)` or `J=jac(u,p,t)`: returns ``\f rac{df_1}{du}``
481- - `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\f rac{df_1}{du} v``
482- - `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\f rac{df_1}{du}^\a st v``
481+ - `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\f rac{df_1}{du} v``
482+ - `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\f rac{df_1}{du}^\a st v``
483483- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
484484 if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
485485 as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -563,8 +563,10 @@ M \frac{du}{dt} = f(u,p,t)
563563as a partitioned ODE:
564564
565565```math
566- M_1 \f rac{du}{dt} = f_1(u,p,t)
566+ \b egin{align}
567+ M_1 \f rac{du}{dt} = f_1(u,p,t) \\
567568M_2 \f rac{du}{dt} = f_2(u,p,t)
569+ \e nd{align}
568570```
569571
570572and all of its related functions, such as the Jacobian of `f`, its gradient
@@ -598,16 +600,16 @@ the usage of `f`. These include:
598600- `mass_matrix`: the mass matrix `M_i` represented in the ODE function. Can be used
599601 to determine that the equation is actually a differential-algebraic equation (DAE)
600602 if `M` is singular. Note that in this case special solvers are required, see the
601- DAE solver page for more details: https://docs.sciml.ai/DiffEqDocs/stable/solvers/dae_solve/.
603+ DAE solver page for more details: < https://docs.sciml.ai/DiffEqDocs/stable/solvers/dae_solve/> .
602604 Must be an AbstractArray or an AbstractSciMLOperator. Should be given as a tuple
603605 of mass matrices, i.e. `(M_1, M_2)` for the mass matrices of equations 1 and 2
604606 respectively.
605607- `analytic(u0,p,t)`: used to pass an analytical solution function for the analytical
606608 solution of the ODE. Generally only used for testing and development of the solvers.
607609- `tgrad(dT,u,p,t)` or dT=tgrad(u,p,t): returns ``\f rac{\p artial f(u,p,t)}{\p artial t}``
608610- `jac(J,u,p,t)` or `J=jac(u,p,t)`: returns ``\f rac{df}{du}``
609- - `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\f rac{df}{du} v``
610- - `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\f rac{df}{du}^\a st v``
611+ - `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\f rac{df}{du} v``
612+ - `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\f rac{df}{du}^\a st v``
611613- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
612614 if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
613615 as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -707,8 +709,8 @@ the usage of `f`. These include:
707709 solution of the ODE. Generally only used for testing and development of the solvers.
708710- `tgrad(dT,u,h,p,t)` or dT=tgrad(u,p,t): returns ``\f rac{\p artial f(u,p,t)}{\p artial t}``
709711- `jac(J,u,h,p,t)` or `J=jac(u,p,t)`: returns ``\f rac{df}{du}``
710- - `jvp(Jv,v,h,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\f rac{df}{du} v``
711- - `vjp(Jv,v,h,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\f rac{df}{du}^\a st v``
712+ - `jvp(Jv,v,h,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\f rac{df}{du} v``
713+ - `vjp(Jv,v,h,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\f rac{df}{du}^\a st v``
712714- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
713715 if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
714716 as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -767,8 +769,10 @@ M \frac{du}{dt} = f(u,h,p,t)
767769as a partitioned ODE:
768770
769771```math
770- M_1 \f rac{du}{dt} = f_1(u,h,p,t)
772+ \b egin{align}
773+ M_1 \f rac{du}{dt} = f_1(u,h,p,t) \\
771774M_2 \f rac{du}{dt} = f_2(u,h,p,t)
775+ \e nd{align}
772776```
773777
774778and all of its related functions, such as the Jacobian of `f`, its gradient
@@ -812,8 +816,8 @@ the usage of `f`. These include:
812816 solution of the ODE. Generally only used for testing and development of the solvers.
813817- `tgrad(dT,u,h,p,t)` or dT=tgrad(u,h,p,t): returns ``\f rac{\p artial f(u,p,t)}{\p artial t}``
814818- `jac(J,u,h,p,t)` or `J=jac(u,h,p,t)`: returns ``\f rac{df}{du}``
815- - `jvp(Jv,v,u,h,p,t)` or `Jv=jvp(v,u,h,p,t)`: returns the directional derivative``\f rac{df}{du} v``
816- - `vjp(Jv,v,u,h,p,t)` or `Jv=vjp(v,u,h,p,t)`: returns the adjoint derivative``\f rac{df}{du}^\a st v``
819+ - `jvp(Jv,v,u,h,p,t)` or `Jv=jvp(v,u,h,p,t)`: returns the directional derivative ``\f rac{df}{du} v``
820+ - `vjp(Jv,v,u,h,p,t)` or `Jv=vjp(v,u,h,p,t)`: returns the adjoint derivative ``\f rac{df}{du}^\a st v``
817821- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
818822 if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
819823 as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -1022,8 +1026,8 @@ the usage of `f`. These include:
10221026 solution of the ODE. Generally only used for testing and development of the solvers.
10231027- `tgrad(dT,u,p,t)` or dT=tgrad(u,p,t): returns ``\f rac{\p artial f(u,p,t)}{\p artial t}``
10241028- `jac(J,u,p,t)` or `J=jac(u,p,t)`: returns ``\f rac{df}{du}``
1025- - `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\f rac{df}{du} v``
1026- - `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\f rac{df}{du}^\a st v``
1029+ - `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\f rac{df}{du} v``
1030+ - `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\f rac{df}{du}^\a st v``
10271031- `ggprime(J,u,p,t)` or `J = ggprime(u,p,t)`: returns the Milstein derivative
10281032 ``\f rac{dg(u,p,t)}{du} g(u,p,t)``
10291033- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
@@ -1193,8 +1197,10 @@ M du = f(u,p,t) dt + g(u,p,t) dW_t
11931197as a partitioned ODE:
11941198
11951199```math
1196- M_1 du = f_1(u,p,t) dt + g(u,p,t) dW_t
1200+ \b egin{align}
1201+ M_1 du = f_1(u,p,t) dt + g(u,p,t) dW_t \\
11971202M_2 du = f_2(u,p,t) dt + g(u,p,t) dW_t
1203+ \e nd{align}
11981204```
11991205
12001206and all of its related functions, such as the Jacobian of `f`, its gradient
@@ -1349,8 +1355,8 @@ the usage of `f`. These include:
13491355 with the corresponding expected solution at `sol.W.t` or `sol.t`.
13501356- `tgrad(dT,u,p,t,W)` or dT=tgrad(u,p,t,W): returns ``\f rac{\p artial f(u,p,t,W)}{\p artial t}``
13511357- `jac(J,u,p,t,W)` or `J=jac(u,p,t,W)`: returns ``\f rac{df}{du}``
1352- - `jvp(Jv,v,u,p,t,W)` or `Jv=jvp(v,u,p,t,W)`: returns the directional derivative``\f rac{df}{du} v``
1353- - `vjp(Jv,v,u,p,t,W)` or `Jv=vjp(v,u,p,t,W)`: returns the adjoint derivative``\f rac{df}{du}^\a st v``
1358+ - `jvp(Jv,v,u,p,t,W)` or `Jv=jvp(v,u,p,t,W)`: returns the directional derivative ``\f rac{df}{du} v``
1359+ - `vjp(Jv,v,u,p,t,W)` or `Jv=vjp(v,u,p,t,W)`: returns the adjoint derivative ``\f rac{df}{du}^\a st v``
13541360- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
13551361 if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
13561362 as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -1592,8 +1598,8 @@ the usage of `f`. These include:
15921598 solution of the ODE. Generally only used for testing and development of the solvers.
15931599- `tgrad(dT,u,h,p,t)` or dT=tgrad(u,p,t): returns ``\f rac{\p artial f(u,p,t)}{\p artial t}``
15941600- `jac(J,u,h,p,t)` or `J=jac(u,p,t)`: returns ``\f rac{df}{du}``
1595- - `jvp(Jv,v,h,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\f rac{df}{du} v``
1596- - `vjp(Jv,v,h,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\f rac{df}{du}^\a st v``
1601+ - `jvp(Jv,v,h,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\f rac{df}{du} v``
1602+ - `vjp(Jv,v,h,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\f rac{df}{du}^\a st v``
15971603- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
15981604 if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
15991605 as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -1684,8 +1690,8 @@ the usage of `f`. These include:
16841690- `analytic(u0,p)`: used to pass an analytical solution function for the analytical
16851691 solution of the ODE. Generally only used for testing and development of the solvers.
16861692- `jac(J,u,p)` or `J=jac(u,p)`: returns ``\f rac{df}{du}``
1687- - `jvp(Jv,v,u,p)` or `Jv=jvp(v,u,p)`: returns the directional derivative``\f rac{df}{du} v``
1688- - `vjp(Jv,v,u,p)` or `Jv=vjp(v,u,p)`: returns the adjoint derivative``\f rac{df}{du}^\a st v``
1693+ - `jvp(Jv,v,u,p)` or `Jv=jvp(v,u,p)`: returns the directional derivative ``\f rac{df}{du} v``
1694+ - `vjp(Jv,v,u,p)` or `Jv=vjp(v,u,p)`: returns the adjoint derivative ``\f rac{df}{du}^\a st v``
16891695- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
16901696 if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
16911697 as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -2036,11 +2042,11 @@ the usage of `f` and `bc`. These include:
20362042 solution of the BVP. Generally only used for testing and development of the solvers.
20372043- `tgrad(dT,u,h,p,t)` or dT=tgrad(u,p,t): returns ``\f rac{\p artial f(u,p,t)}{\p artial t}``
20382044- `jac(J,du,u,p,gamma,t)` or `J=jac(du,u,p,gamma,t)`: returns ``\f rac{df}{du}``
2039- - `bcjac(J,du,u,p,gamma,t)` or `J=jac(du,u,p,gamma,t)`: erturns ``\f rac{dbc}{du}``
2045+ - `bcjac(J,du,u,p,gamma,t)` or `J=jac(du,u,p,gamma,t)`: returns ``\f rac{dbc}{du}``
20402046- `jvp(Jv,v,du,u,p,gamma,t)` or `Jv=jvp(v,du,u,p,gamma,t)`: returns the directional
2041- derivative``\f rac{df}{du} v``
2047+ derivative ``\f rac{df}{du} v``
20422048- `vjp(Jv,v,du,u,p,gamma,t)` or `Jv=vjp(v,du,u,p,gamma,t)`: returns the adjoint
2043- derivative``\f rac{df}{du}^\a st v``
2049+ derivative ``\f rac{df}{du}^\a st v``
20442050- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
20452051 if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
20462052 as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -2162,8 +2168,8 @@ the usage of `f`. These include:
21622168 solution of the ODE. Generally only used for testing and development of the solvers.
21632169- `tgrad(dT,du,u,p,t)` or dT=tgrad(du,u,p,t): returns ``\f rac{\p artial f(du,u,p,t)}{\p artial t}``
21642170- `jac(J,du,u,p,t)` or `J=jac(du,u,p,t)`: returns ``\f rac{df}{du}``
2165- - `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\f rac{df}{du} v``
2166- - `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\f rac{df}{du}^\a st v``
2171+ - `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\f rac{df}{du} v``
2172+ - `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\f rac{df}{du}^\a st v``
21672173- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
21682174 if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
21692175 as the prototype and integrators will specialize on this structure where possible. Non-structured
0 commit comments