@@ -478,8 +478,8 @@ the usage of the `SplitFunction`. These include:
478
478
solution of the ODE. Generally only used for testing and development of the solvers.
479
479
- `tgrad(dT,u,p,t)` or dT=tgrad(u,p,t): returns ``\f rac{\p artial f_1(u,p,t)}{\p artial t}``
480
480
- `jac(J,u,p,t)` or `J=jac(u,p,t)`: returns ``\f rac{df_1}{du}``
481
- - `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\f rac{df_1}{du} v``
482
- - `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\f rac{df_1}{du}^\a st v``
481
+ - `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\f rac{df_1}{du} v``
482
+ - `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\f rac{df_1}{du}^\a st v``
483
483
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
484
484
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
485
485
as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -563,8 +563,10 @@ M \frac{du}{dt} = f(u,p,t)
563
563
as a partitioned ODE:
564
564
565
565
```math
566
- M_1 \f rac{du}{dt} = f_1(u,p,t)
566
+ \b egin{align}
567
+ M_1 \f rac{du}{dt} = f_1(u,p,t) \\
567
568
M_2 \f rac{du}{dt} = f_2(u,p,t)
569
+ \e nd{align}
568
570
```
569
571
570
572
and all of its related functions, such as the Jacobian of `f`, its gradient
@@ -598,16 +600,16 @@ the usage of `f`. These include:
598
600
- `mass_matrix`: the mass matrix `M_i` represented in the ODE function. Can be used
599
601
to determine that the equation is actually a differential-algebraic equation (DAE)
600
602
if `M` is singular. Note that in this case special solvers are required, see the
601
- DAE solver page for more details: https://docs.sciml.ai/DiffEqDocs/stable/solvers/dae_solve/.
603
+ DAE solver page for more details: < https://docs.sciml.ai/DiffEqDocs/stable/solvers/dae_solve/> .
602
604
Must be an AbstractArray or an AbstractSciMLOperator. Should be given as a tuple
603
605
of mass matrices, i.e. `(M_1, M_2)` for the mass matrices of equations 1 and 2
604
606
respectively.
605
607
- `analytic(u0,p,t)`: used to pass an analytical solution function for the analytical
606
608
solution of the ODE. Generally only used for testing and development of the solvers.
607
609
- `tgrad(dT,u,p,t)` or dT=tgrad(u,p,t): returns ``\f rac{\p artial f(u,p,t)}{\p artial t}``
608
610
- `jac(J,u,p,t)` or `J=jac(u,p,t)`: returns ``\f rac{df}{du}``
609
- - `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\f rac{df}{du} v``
610
- - `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\f rac{df}{du}^\a st v``
611
+ - `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\f rac{df}{du} v``
612
+ - `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\f rac{df}{du}^\a st v``
611
613
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
612
614
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
613
615
as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -707,8 +709,8 @@ the usage of `f`. These include:
707
709
solution of the ODE. Generally only used for testing and development of the solvers.
708
710
- `tgrad(dT,u,h,p,t)` or dT=tgrad(u,p,t): returns ``\f rac{\p artial f(u,p,t)}{\p artial t}``
709
711
- `jac(J,u,h,p,t)` or `J=jac(u,p,t)`: returns ``\f rac{df}{du}``
710
- - `jvp(Jv,v,h,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\f rac{df}{du} v``
711
- - `vjp(Jv,v,h,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\f rac{df}{du}^\a st v``
712
+ - `jvp(Jv,v,h,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\f rac{df}{du} v``
713
+ - `vjp(Jv,v,h,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\f rac{df}{du}^\a st v``
712
714
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
713
715
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
714
716
as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -767,8 +769,10 @@ M \frac{du}{dt} = f(u,h,p,t)
767
769
as a partitioned ODE:
768
770
769
771
```math
770
- M_1 \f rac{du}{dt} = f_1(u,h,p,t)
772
+ \b egin{align}
773
+ M_1 \f rac{du}{dt} = f_1(u,h,p,t) \\
771
774
M_2 \f rac{du}{dt} = f_2(u,h,p,t)
775
+ \e nd{align}
772
776
```
773
777
774
778
and all of its related functions, such as the Jacobian of `f`, its gradient
@@ -812,8 +816,8 @@ the usage of `f`. These include:
812
816
solution of the ODE. Generally only used for testing and development of the solvers.
813
817
- `tgrad(dT,u,h,p,t)` or dT=tgrad(u,h,p,t): returns ``\f rac{\p artial f(u,p,t)}{\p artial t}``
814
818
- `jac(J,u,h,p,t)` or `J=jac(u,h,p,t)`: returns ``\f rac{df}{du}``
815
- - `jvp(Jv,v,u,h,p,t)` or `Jv=jvp(v,u,h,p,t)`: returns the directional derivative``\f rac{df}{du} v``
816
- - `vjp(Jv,v,u,h,p,t)` or `Jv=vjp(v,u,h,p,t)`: returns the adjoint derivative``\f rac{df}{du}^\a st v``
819
+ - `jvp(Jv,v,u,h,p,t)` or `Jv=jvp(v,u,h,p,t)`: returns the directional derivative ``\f rac{df}{du} v``
820
+ - `vjp(Jv,v,u,h,p,t)` or `Jv=vjp(v,u,h,p,t)`: returns the adjoint derivative ``\f rac{df}{du}^\a st v``
817
821
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
818
822
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
819
823
as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -1022,8 +1026,8 @@ the usage of `f`. These include:
1022
1026
solution of the ODE. Generally only used for testing and development of the solvers.
1023
1027
- `tgrad(dT,u,p,t)` or dT=tgrad(u,p,t): returns ``\f rac{\p artial f(u,p,t)}{\p artial t}``
1024
1028
- `jac(J,u,p,t)` or `J=jac(u,p,t)`: returns ``\f rac{df}{du}``
1025
- - `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\f rac{df}{du} v``
1026
- - `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\f rac{df}{du}^\a st v``
1029
+ - `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\f rac{df}{du} v``
1030
+ - `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\f rac{df}{du}^\a st v``
1027
1031
- `ggprime(J,u,p,t)` or `J = ggprime(u,p,t)`: returns the Milstein derivative
1028
1032
``\f rac{dg(u,p,t)}{du} g(u,p,t)``
1029
1033
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
@@ -1193,8 +1197,10 @@ M du = f(u,p,t) dt + g(u,p,t) dW_t
1193
1197
as a partitioned ODE:
1194
1198
1195
1199
```math
1196
- M_1 du = f_1(u,p,t) dt + g(u,p,t) dW_t
1200
+ \b egin{align}
1201
+ M_1 du = f_1(u,p,t) dt + g(u,p,t) dW_t \\
1197
1202
M_2 du = f_2(u,p,t) dt + g(u,p,t) dW_t
1203
+ \e nd{align}
1198
1204
```
1199
1205
1200
1206
and all of its related functions, such as the Jacobian of `f`, its gradient
@@ -1349,8 +1355,8 @@ the usage of `f`. These include:
1349
1355
with the corresponding expected solution at `sol.W.t` or `sol.t`.
1350
1356
- `tgrad(dT,u,p,t,W)` or dT=tgrad(u,p,t,W): returns ``\f rac{\p artial f(u,p,t,W)}{\p artial t}``
1351
1357
- `jac(J,u,p,t,W)` or `J=jac(u,p,t,W)`: returns ``\f rac{df}{du}``
1352
- - `jvp(Jv,v,u,p,t,W)` or `Jv=jvp(v,u,p,t,W)`: returns the directional derivative``\f rac{df}{du} v``
1353
- - `vjp(Jv,v,u,p,t,W)` or `Jv=vjp(v,u,p,t,W)`: returns the adjoint derivative``\f rac{df}{du}^\a st v``
1358
+ - `jvp(Jv,v,u,p,t,W)` or `Jv=jvp(v,u,p,t,W)`: returns the directional derivative ``\f rac{df}{du} v``
1359
+ - `vjp(Jv,v,u,p,t,W)` or `Jv=vjp(v,u,p,t,W)`: returns the adjoint derivative ``\f rac{df}{du}^\a st v``
1354
1360
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
1355
1361
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
1356
1362
as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -1592,8 +1598,8 @@ the usage of `f`. These include:
1592
1598
solution of the ODE. Generally only used for testing and development of the solvers.
1593
1599
- `tgrad(dT,u,h,p,t)` or dT=tgrad(u,p,t): returns ``\f rac{\p artial f(u,p,t)}{\p artial t}``
1594
1600
- `jac(J,u,h,p,t)` or `J=jac(u,p,t)`: returns ``\f rac{df}{du}``
1595
- - `jvp(Jv,v,h,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\f rac{df}{du} v``
1596
- - `vjp(Jv,v,h,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\f rac{df}{du}^\a st v``
1601
+ - `jvp(Jv,v,h,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\f rac{df}{du} v``
1602
+ - `vjp(Jv,v,h,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\f rac{df}{du}^\a st v``
1597
1603
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
1598
1604
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
1599
1605
as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -1684,8 +1690,8 @@ the usage of `f`. These include:
1684
1690
- `analytic(u0,p)`: used to pass an analytical solution function for the analytical
1685
1691
solution of the ODE. Generally only used for testing and development of the solvers.
1686
1692
- `jac(J,u,p)` or `J=jac(u,p)`: returns ``\f rac{df}{du}``
1687
- - `jvp(Jv,v,u,p)` or `Jv=jvp(v,u,p)`: returns the directional derivative``\f rac{df}{du} v``
1688
- - `vjp(Jv,v,u,p)` or `Jv=vjp(v,u,p)`: returns the adjoint derivative``\f rac{df}{du}^\a st v``
1693
+ - `jvp(Jv,v,u,p)` or `Jv=jvp(v,u,p)`: returns the directional derivative ``\f rac{df}{du} v``
1694
+ - `vjp(Jv,v,u,p)` or `Jv=vjp(v,u,p)`: returns the adjoint derivative ``\f rac{df}{du}^\a st v``
1689
1695
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
1690
1696
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
1691
1697
as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -2036,11 +2042,11 @@ the usage of `f` and `bc`. These include:
2036
2042
solution of the BVP. Generally only used for testing and development of the solvers.
2037
2043
- `tgrad(dT,u,h,p,t)` or dT=tgrad(u,p,t): returns ``\f rac{\p artial f(u,p,t)}{\p artial t}``
2038
2044
- `jac(J,du,u,p,gamma,t)` or `J=jac(du,u,p,gamma,t)`: returns ``\f rac{df}{du}``
2039
- - `bcjac(J,du,u,p,gamma,t)` or `J=jac(du,u,p,gamma,t)`: erturns ``\f rac{dbc}{du}``
2045
+ - `bcjac(J,du,u,p,gamma,t)` or `J=jac(du,u,p,gamma,t)`: returns ``\f rac{dbc}{du}``
2040
2046
- `jvp(Jv,v,du,u,p,gamma,t)` or `Jv=jvp(v,du,u,p,gamma,t)`: returns the directional
2041
- derivative``\f rac{df}{du} v``
2047
+ derivative ``\f rac{df}{du} v``
2042
2048
- `vjp(Jv,v,du,u,p,gamma,t)` or `Jv=vjp(v,du,u,p,gamma,t)`: returns the adjoint
2043
- derivative``\f rac{df}{du}^\a st v``
2049
+ derivative ``\f rac{df}{du}^\a st v``
2044
2050
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
2045
2051
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
2046
2052
as the prototype and integrators will specialize on this structure where possible. Non-structured
@@ -2162,8 +2168,8 @@ the usage of `f`. These include:
2162
2168
solution of the ODE. Generally only used for testing and development of the solvers.
2163
2169
- `tgrad(dT,du,u,p,t)` or dT=tgrad(du,u,p,t): returns ``\f rac{\p artial f(du,u,p,t)}{\p artial t}``
2164
2170
- `jac(J,du,u,p,t)` or `J=jac(du,u,p,t)`: returns ``\f rac{df}{du}``
2165
- - `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative``\f rac{df}{du} v``
2166
- - `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative``\f rac{df}{du}^\a st v``
2171
+ - `jvp(Jv,v,u,p,t)` or `Jv=jvp(v,u,p,t)`: returns the directional derivative ``\f rac{df}{du} v``
2172
+ - `vjp(Jv,v,u,p,t)` or `Jv=vjp(v,u,p,t)`: returns the adjoint derivative ``\f rac{df}{du}^\a st v``
2167
2173
- `jac_prototype`: a prototype matrix matching the type that matches the Jacobian. For example,
2168
2174
if the Jacobian is tridiagonal, then an appropriately sized `Tridiagonal` matrix can be used
2169
2175
as the prototype and integrators will specialize on this structure where possible. Non-structured
0 commit comments