diff --git a/docs/src/interfaces/Ensembles.md b/docs/src/interfaces/Ensembles.md index a5cb88071..5227d1889 100644 --- a/docs/src/interfaces/Ensembles.md +++ b/docs/src/interfaces/Ensembles.md @@ -108,7 +108,7 @@ SciMLBase.EnsembleAnalysis.componentwise_vectors_timepoint The available functions for time steps are: -```docs +```@docs SciMLBase.EnsembleAnalysis.timestep_mean SciMLBase.EnsembleAnalysis.timestep_median SciMLBase.EnsembleAnalysis.timestep_quantile @@ -151,7 +151,7 @@ timeseries_steps_weighted_meancov The available functions for the time points are: -```docs +```@docs SciMLBase.EnsembleAnalysis.timeseries_point_mean SciMLBase.EnsembleAnalysis.timeseries_point_median SciMLBase.EnsembleAnalysis.timeseries_point_quantile @@ -159,6 +159,7 @@ SciMLBase.EnsembleAnalysis.timeseries_point_meanvar SciMLBase.EnsembleAnalysis.timeseries_point_meancov SciMLBase.EnsembleAnalysis.timeseries_point_meancor SciMLBase.EnsembleAnalysis.timeseries_point_weighted_meancov +``` ### EnsembleSummary @@ -197,6 +198,12 @@ prob = ODEProblem((u, p, t) -> 1.01u, 0.5, (0.0, 1.0)) For our ensemble simulation, we would like to change the initial condition around. This is done through the `prob_func`. This function takes in the base problem and modifies it to create the new problem that the trajectory actually solves. +The `prob_func` has the signature `prob_func(prob, i, repeat)` where: + +- `prob` is the base problem to be modified +- `i` is the unique trajectory index (`1` to `trajectories`) +- `repeat` is the repeat iteration number (starts at `1`, increments if `output_func` returned `rerun=true`) + Here, we will take the base problem, multiply the initial condition by a `rand()`, and use that for calculating the trajectory: