Skip to content

Commit 813a3c5

Browse files
Updates
1 parent 99b6c8c commit 813a3c5

File tree

3 files changed

+3
-3
lines changed

3 files changed

+3
-3
lines changed

benchmarks/BayesianInference/DiffEqBayesFitzHughNagumo.jmd

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -64,7 +64,7 @@ priors = [truncated(Normal(1.0,0.5),0,1.5), truncated(Normal(1.0,0.5),0,1.5), tr
6464
#### Stan.jl backend
6565

6666
```julia
67-
@time bayesian_result_stan = stan_inference(prob_ode_fitzhughnagumo, :rk45, t, data, priors, nothing, Normal, vars=(DiffEqBayes.StanODEData(), InverseGamma(2, 3)), sample_u0=false, solve_kwargs=Dict(), diffeq_string=nothing, sample_kwargs=Dict(), output_format=:mcmcchains, print_summary=false, tmpdir=mktempdir())
67+
@time bayesian_result_stan = stan_inference(prob_ode_fitzhughnagumo, :rk45, t, data, priors, nothing, Normal, vars=(DiffEqBayes.StanODEData(), InverseGamma(2, 3)), sample_u0=false, diffeq_string=nothing, output_format=:mcmcchains, print_summary=false, tmpdir=mktempdir())
6868
```
6969

7070
### Direct Turing.jl

benchmarks/BayesianInference/DiffEqBayesLorenz.jmd

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -95,7 +95,7 @@ priors = [truncated(Normal(10,2),1,15),truncated(Normal(30,5),1,45),truncated(No
9595
Lorenz equation is a chaotic system hence requires very low tolerance to be estimated in a reasonable way, we use 1e-8 obtained from the uncertainty plots. Use of truncated priors is necessary to prevent Stan from stepping into negative and other improbable areas.
9696

9797
```julia
98-
@time bayesian_result_stan = stan_inference(prob, :rk45, t, data, priors, nothing, Normal, vars=(DiffEqBayes.StanODEData(), InverseGamma(2, 3)), sample_u0=false, solve_kwargs=Dict(), diffeq_string=nothing, sample_kwargs=Dict(), output_format=:mcmcchains, print_summary=false, tmpdir=mktempdir())
98+
@time bayesian_result_stan = stan_inference(prob, :rk45, t, data, priors, nothing, Normal, vars=(DiffEqBayes.StanODEData(), InverseGamma(2, 3)), sample_u0=false, diffeq_string=nothing, output_format=:mcmcchains, print_summary=false, tmpdir=mktempdir())
9999
```
100100

101101
### Direct Turing.jl

benchmarks/BayesianInference/DiffEqBayesLotkaVolterra.jmd

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -71,7 +71,7 @@ priors = [truncated(Normal(1.5,0.5),0.5,2.5),truncated(Normal(1.2,0.5),0,2),trun
7171
The solution converges for tolerance values lower than 1e-3, lower tolerance leads to better accuracy in result but is accompanied by longer warmup and sampling time, truncated normal priors are used for preventing Stan from stepping into negative values.
7272

7373
```julia
74-
@btime bayesian_result_stan = stan_inference(prob,:rk45, t, data, priors, nothing, Normal, vars=(DiffEqBayes.StanODEData(), InverseGamma(2, 3)), sample_u0=false, solve_kwargs=Dict(), diffeq_string=nothing, sample_kwargs=Dict(), output_format=:mcmcchains, print_summary=false, tmpdir=mktempdir())
74+
@btime bayesian_result_stan = stan_inference(prob,:rk45, t, data, priors, nothing, Normal, vars=(DiffEqBayes.StanODEData(), InverseGamma(2, 3)), sample_u0=false, diffeq_string=nothing, output_format=:mcmcchains, print_summary=false, tmpdir=mktempdir())
7575
```
7676

7777
### Direct Turing.jl

0 commit comments

Comments
 (0)