@@ -58,9 +58,14 @@ function run_benchmarks(problems, optimizers)
5858 optz = length(optimizers)
5959 n = length(problems)
6060
61+ @info "here 1"
62+
6163 broadcast(c -> sizehint!(c, optz * n), [problem, n_vars, secs, solver, retcode])
6264
65+ @info "here 2"
66+
6367 for prob_name in problems
68+ @info prob_name
6469 nlp_prob = CUTEstModel(prob_name)
6570 prob = OptimizationNLPModels.OptimizationProblem(nlp_prob, Optimization.AutoForwardDiff())
6671 for optimizer in optimizers
@@ -93,27 +98,34 @@ The following figure shows the results of the same benchmarks previously describ
9398problems on this section.
9499
95100```julia
101+ @info "before"
96102eq_bou_problems = CUTEst.select(min_con=1, only_equ_con=true, only_free_var=false)
103+ @info "after1"
97104
98105# Analysis
99106eq_bou_results = run_benchmarks(eq_bou_problems, optimizers)
107+ @info "after2"
100108
101109@df eq_bou_results scatter(:n_vars, :secs,
102110 group = :solver,
103111 xlabel = "n. variables",
104112 ylabel = "secs.",
105113 title = "Time to solution by optimizer and number of vars",
106114 )
115+ @info "after3"
107116```
108117
109118Next, we examine the same relationship for problems with inequality-constrained problems,
110119of which there are 244.
111120
112121```julia
122+ @info "after4"
113123neq_bou_problems = CUTEst.select(min_con=1, only_ineq_con=true, only_free_var=false)
124+ @info "after5"
114125
115126# Analysis
116127neq_bou_results = run_benchmarks(neq_bou_problems, optimizers)
128+ @info "after6"
117129
118130@df neq_bou_results scatter(:n_vars, :secs,
119131 group = :solver,
@@ -126,4 +138,4 @@ neq_bou_results = run_benchmarks(neq_bou_problems, optimizers)
126138```julia, echo = false
127139using SciMLBenchmarks
128140SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file])
129- ```
141+ ```
0 commit comments