Skip to content

Commit 0be2ba4

Browse files
Merge pull request #252 from SciML/ap/fix_docs
ci: get docs to build again
2 parents cb0160e + 524ff12 commit 0be2ba4

25 files changed

+537
-521
lines changed

README.md

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,4 +4,3 @@
44
[![Documentation and Deployment](https://badge.buildkite.com/b4720f5f3a8d2d1ac8bbaebf5e0e38aaae28b6c8fb436ba05e.svg)](https://buildkite.com/julialang/scimldocs?branch=main)
55

66
Attempts at a single documentation for the full SciML interface.
7-

docs/make.jl

Lines changed: 67 additions & 69 deletions
Original file line numberDiff line numberDiff line change
@@ -8,76 +8,74 @@ ENV["GKSwstype"] = "100"
88
using Plots
99

1010
mathengine = MathJax3(Dict(:loader => Dict("load" => ["[tex]/require", "[tex]/mathtools"]),
11-
:tex => Dict("inlineMath" => [["\$", "\$"], ["\\(", "\\)"]],
12-
"packages" => [
13-
"base",
14-
"ams",
15-
"autoload",
16-
"mathtools",
17-
"require",
18-
])))
11+
:tex => Dict("inlineMath" => [["\$", "\$"], ["\\(", "\\)"]],
12+
"packages" => [
13+
"base",
14+
"ams",
15+
"autoload",
16+
"mathtools",
17+
"require"
18+
])))
1919

2020
makedocs(sitename = "Overview of Julia's SciML",
21-
authors = "Chris Rackauckas",
22-
modules = Module[],
23-
clean = true, doctest = false, linkcheck = true,
24-
linkcheck_ignore = ["https://twitter.com/ChrisRackauckas/status/1477274812460449793",
25-
"https://epubs.siam.org/doi/10.1137/0903023",
26-
"https://bkamins.github.io/julialang/2020/12/24/minilanguage.html",
27-
"https://arxiv.org/abs/2109.06786",
28-
"https://arxiv.org/abs/2001.04385",
29-
30-
],
31-
format = Documenter.HTML(assets = ["assets/favicon.ico"],
32-
canonical = "https://docs.sciml.ai/stable/",
33-
mathengine = mathengine),
34-
pages = [
35-
"SciML: Open Source Software for Scientific Machine Learning with Julia" => "index.md",
36-
"Getting Started" => [
37-
"getting_started/getting_started.md",
38-
"New User Tutorials" => [
39-
"getting_started/installation.md",
40-
"getting_started/first_simulation.md",
41-
"getting_started/first_optimization.md",
42-
"getting_started/fit_simulation.md",
43-
"getting_started/find_root.md",
44-
],
45-
"Comparison With Other Tools" => [
46-
"comparisons/python.md",
47-
"comparisons/matlab.md",
48-
"comparisons/r.md",
49-
"comparisons/cppfortran.md",
50-
],
51-
],
52-
"Showcase of Cool Examples" => Any["showcase/showcase.md",
53-
"Automated Model Discovery" => Any["showcase/missing_physics.md",
54-
"showcase/bayesian_neural_ode.md",
55-
"showcase/blackhole.md"],
56-
"Solving Difficult Equations Efficiently" => Any["showcase/brusselator.md",
57-
"showcase/pinngpu.md",
58-
"showcase/massively_parallel_gpu.md",
59-
"showcase/gpu_spde.md"],
60-
"Useful Cool Wonky Things" => Any["showcase/ode_types.md",
61-
"showcase/symbolic_analysis.md",
62-
"showcase/optimization_under_uncertainty.md"]],
63-
"What is SciML?" => ["overview.md",
64-
"Solvers" => ["highlevels/equation_solvers.md",
65-
"highlevels/inverse_problems.md",
66-
"highlevels/partial_differential_equation_solvers.md"],
67-
"Modeling Tools" => ["highlevels/modeling_languages.md",
68-
"highlevels/model_libraries_and_importers.md",
69-
"highlevels/symbolic_tools.md",
70-
"highlevels/array_libraries.md"],
71-
"Simulation Analysis" => ["highlevels/parameter_analysis.md",
72-
"highlevels/uncertainty_quantification.md",
73-
"highlevels/plots_visualization.md"],
74-
"Machine Learning" => ["highlevels/function_approximation.md",
75-
"highlevels/implicit_layers.md",
76-
"highlevels/symbolic_learning.md"],
77-
"Developer Tools" => ["highlevels/numerical_utilities.md",
78-
"highlevels/interfaces.md",
79-
"highlevels/developer_documentation.md"],
80-
"Extra Learning Resources" => ["highlevels/learning_resources.md"],
81-
]])
21+
authors = "Chris Rackauckas",
22+
modules = Module[],
23+
clean = true, doctest = false, linkcheck = true,
24+
linkcheck_ignore = ["https://twitter.com/ChrisRackauckas/status/1477274812460449793",
25+
"https://epubs.siam.org/doi/10.1137/0903023",
26+
"https://bkamins.github.io/julialang/2020/12/24/minilanguage.html",
27+
"https://arxiv.org/abs/2109.06786",
28+
"https://arxiv.org/abs/2001.04385"],
29+
format = Documenter.HTML(assets = ["assets/favicon.ico"],
30+
canonical = "https://docs.sciml.ai/stable/",
31+
mathengine = mathengine),
32+
pages = [
33+
"SciML: Open Source Software for Scientific Machine Learning with Julia" => "index.md",
34+
"Getting Started" => [
35+
"getting_started/getting_started.md",
36+
"New User Tutorials" => [
37+
"getting_started/installation.md",
38+
"getting_started/first_simulation.md",
39+
"getting_started/first_optimization.md",
40+
"getting_started/fit_simulation.md",
41+
"getting_started/find_root.md"
42+
],
43+
"Comparison With Other Tools" => [
44+
"comparisons/python.md",
45+
"comparisons/matlab.md",
46+
"comparisons/r.md",
47+
"comparisons/cppfortran.md"
48+
]
49+
],
50+
"Showcase of Cool Examples" => Any["showcase/showcase.md",
51+
"Automated Model Discovery" => Any["showcase/missing_physics.md",
52+
"showcase/bayesian_neural_ode.md",
53+
"showcase/blackhole.md"],
54+
"Solving Difficult Equations Efficiently" => Any["showcase/brusselator.md",
55+
"showcase/pinngpu.md",
56+
"showcase/massively_parallel_gpu.md",
57+
"showcase/gpu_spde.md"],
58+
"Useful Cool Wonky Things" => Any["showcase/ode_types.md",
59+
"showcase/symbolic_analysis.md",
60+
"showcase/optimization_under_uncertainty.md"]],
61+
"What is SciML?" => ["overview.md",
62+
"Solvers" => ["highlevels/equation_solvers.md",
63+
"highlevels/inverse_problems.md",
64+
"highlevels/partial_differential_equation_solvers.md"],
65+
"Modeling Tools" => ["highlevels/modeling_languages.md",
66+
"highlevels/model_libraries_and_importers.md",
67+
"highlevels/symbolic_tools.md",
68+
"highlevels/array_libraries.md"],
69+
"Simulation Analysis" => ["highlevels/parameter_analysis.md",
70+
"highlevels/uncertainty_quantification.md",
71+
"highlevels/plots_visualization.md"],
72+
"Machine Learning" => ["highlevels/function_approximation.md",
73+
"highlevels/implicit_layers.md",
74+
"highlevels/symbolic_learning.md"],
75+
"Developer Tools" => ["highlevels/numerical_utilities.md",
76+
"highlevels/interfaces.md",
77+
"highlevels/developer_documentation.md"],
78+
"Extra Learning Resources" => ["highlevels/learning_resources.md"]
79+
]])
8280

8381
deploydocs(repo = "github.com/SciML/SciMLDocs")

docs/make_aggregate.jl

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -28,8 +28,9 @@ docsmodules = [
2828
=#
2929
],
3030
"Solvers" => [
31-
"Equation Solvers" => ["LinearSolve", "NonlinearSolve", "DiffEqDocs", "Integrals", "DifferenceEquations",
32-
"Optimization", "JumpProcesses"],
31+
"Equation Solvers" => [
32+
"LinearSolve", "NonlinearSolve", "DiffEqDocs", "Integrals",
33+
"DifferenceEquations", "Optimization", "JumpProcesses", "LineSearch"],
3334
#=
3435
"Third-Party Equation Solvers" => [
3536
"LowRankIntegrators",

docs/src/comparisons/matlab.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -74,10 +74,10 @@ The following chart will help you get quickly acquainted with Julia's SciML Tool
7474
|:------------------- |:------------------------------------------------------------------------------------- |
7575
| `plot` | [Plots](https://docs.juliaplots.org/stable/), [Makie](https://docs.makie.org/stable/) |
7676
| `sparse` | [SparseArrays](https://docs.julialang.org/en/v1/stdlib/SparseArrays/#Sparse-Arrays) |
77-
| `interp1` | [DataInterpolations](https://docs.sciml.ai/DataInterpolations/) |
78-
| `\`, `gmres`, `cg` | [LinearSolve](http://linearsolve.sciml.ai/dev/) |
77+
| `interp1` | [DataInterpolations](https://docs.sciml.ai/DataInterpolations/) |
78+
| `\`, `gmres`, `cg` | [LinearSolve](https://linearsolve.sciml.ai/dev/) |
7979
| `fsolve` | [NonlinearSolve](https://nonlinearsolve.sciml.ai/) |
80-
| `quad` | [Integrals](https://docs.sciml.ai/Integrals/stable/) |
80+
| `quad` | [Integrals](https://docs.sciml.ai/Integrals/stable/) |
8181
| `fmincon` | [Optimization](https://optimization.sciml.ai/) |
8282
| `odeXX` | [DifferentialEquations](https://diffeq.sciml.ai/latest/) |
8383
| `ode45` | `Tsit5` |

docs/src/comparisons/python.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -61,7 +61,7 @@ The following chart will help you get quickly acquainted with Julia's SciML Tool
6161
|:---------------------------- |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
6262
| Matplotlib | [Plots](https://docs.juliaplots.org/stable/), [Makie](https://docs.makie.org/stable/) |
6363
| `scipy.special` | [SpecialFunctions](https://github.com/JuliaMath/SpecialFunctions.jl) |
64-
| `scipy.linalg.solve` | [LinearSolve](http://linearsolve.sciml.ai/dev/) |
64+
| `scipy.linalg.solve` | [LinearSolve](https://linearsolve.sciml.ai/dev/) |
6565
| `scipy.integrate` | [Integrals](https://docs.sciml.ai/Integrals/stable/) |
6666
| `scipy.optimize` | [Optimization](https://optimization.sciml.ai/) |
6767
| `scipy.optimize.fsolve` | [NonlinearSolve](https://nonlinearsolve.sciml.ai/) |
@@ -71,7 +71,7 @@ The following chart will help you get quickly acquainted with Julia's SciML Tool
7171
| `scipy.sparse` | [SparseArrays](https://docs.julialang.org/en/v1/stdlib/SparseArrays/#Sparse-Arrays), [ARPACK](https://github.com/JuliaLinearAlgebra/Arpack.jl) |
7272
| `odeint`/`solve_ivp` | [DifferentialEquations](https://diffeq.sciml.ai/latest/) |
7373
| `scipy.integrate.solve_bvp` | [Boundary-value problem](https://diffeq.sciml.ai/latest/tutorials/bvp_example/#Boundary-Value-Problems) |
74-
| PyTorch | [Flux](https://fluxml.ai/), [Lux](http://lux.csail.mit.edu/stable/) |
74+
| PyTorch | [Flux](https://fluxml.ai/), [Lux](https://lux.csail.mit.edu/stable/) |
7575
| gillespy2 | [Catalyst](https://catalyst.sciml.ai/dev/), [JumpProcesses](https://github.com/SciML/JumpProcesses.jl) |
7676
| scipy.optimize.approx_fprime | [FiniteDiff](https://github.com/JuliaDiff/FiniteDiff.jl) |
7777
| autograd | [ForwardDiff\*](https://github.com/JuliaDiff/ForwardDiff.jl), [Enzyme\*](https://github.com/EnzymeAD/Enzyme.jl), [DiffEqSensitivity](https://sensitivity.sciml.ai/dev/) |

docs/src/getting_started/find_root.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -56,7 +56,7 @@ prob = NonlinearProblem(ns, [])
5656
sol = solve(prob, NewtonRaphson())
5757
5858
# Analyze the solution
59-
@show sol[[x,y,z]], sol.resid
59+
@show sol[[x, y, z]], sol.resid
6060
```
6161

6262
## Step-by-Step Solution
@@ -178,5 +178,5 @@ We can check it as follows:
178178

179179
```@example first_rootfind
180180
# Analyze the solution
181-
@show sol[[x,y,z]], sol.resid
181+
@show sol[[x, y, z]], sol.resid
182182
```

docs/src/getting_started/first_optimization.md

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -15,11 +15,11 @@ Let's solve our first optimization problem!
1515

1616
The following parts of the SciML Ecosystem will be used in this tutorial:
1717

18-
| Module | Description |
19-
|:---------------------------------------------------------------------------------------------- |:---------------------------------- |
20-
| [Optimization.jl](https://docs.sciml.ai/Optimization/stable/) | The numerical optimization package |
21-
| [OptimizationNLopt.jl](https://docs.sciml.ai/Optimization/stable/optimization_packages/nlopt/) | The NLopt optimizers we will use |
22-
| [ForwardDiff.jl](https://docs.sciml.ai/Optimization/stable/API/optimization_function/#Optimization.AutoForwardDiff) | The automatic differentiation library for gradients |
18+
| Module | Description |
19+
|:------------------------------------------------------------------------------------------------------------------- |:--------------------------------------------------- |
20+
| [Optimization.jl](https://docs.sciml.ai/Optimization/stable/) | The numerical optimization package |
21+
| [OptimizationNLopt.jl](https://docs.sciml.ai/Optimization/stable/optimization_packages/nlopt/) | The NLopt optimizers we will use |
22+
| [ForwardDiff.jl](https://docs.sciml.ai/Optimization/stable/API/optimization_function/#Optimization.AutoForwardDiff) | The automatic differentiation library for gradients |
2323

2424
## Problem Setup
2525

@@ -68,9 +68,9 @@ To do this tutorial, we will need a few components:
6868

6969
- [Optimization.jl](https://docs.sciml.ai/Optimization/stable/), the optimization interface.
7070
- [OptimizationNLopt.jl](https://docs.sciml.ai/Optimization/stable/optimization_packages/nlopt/), the optimizers we will use.
71-
- [ForwardDiff.jl](https://docs.sciml.ai/Optimization/stable/API/optimization_function/#Optimization.AutoForwardDiff),
71+
- [ForwardDiff.jl](https://docs.sciml.ai/Optimization/stable/API/optimization_function/#Optimization.AutoForwardDiff),
7272
the automatic differentiation library for gradients
73-
73+
7474
Note that Optimization.jl is an interface for optimizers, and thus we always have to choose
7575
which optimizer we want to use. Here we choose to demonstrate `OptimizationNLopt` because
7676
of its efficiency and versatility. But there are many other possible choices. Check out
@@ -102,6 +102,7 @@ parameters, and write out the loss function on a vector-defined state as follows
102102
# Define the problem to optimize
103103
L(u, p) = (p[1] - u[1])^2 + p[2] * (u[2] - u[1]^2)^2
104104
```
105+
105106
Next we need to create an `OptimizationFunction` where we tell Optimization.jl to use the ForwardDiff.jl
106107
package for creating the gradient and other derivatives required by the optimizer.
107108

docs/src/getting_started/first_simulation.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -173,9 +173,9 @@ to represent an `ODESystem` with the following:
173173
@mtkbuild sys = ODESystem(eqs, t)
174174
```
175175

176-
Notice that in our equations we have an algebraic equation `z ~ x + y`. This is not a
177-
differential equation but an algebraic equation, and thus we call this set of equations a
178-
Differential-Algebraic Equation (DAE). The symbolic system of ModelingToolkit can eliminate
176+
Notice that in our equations we have an algebraic equation `z ~ x + y`. This is not a
177+
differential equation but an algebraic equation, and thus we call this set of equations a
178+
Differential-Algebraic Equation (DAE). The symbolic system of ModelingToolkit can eliminate
179179
such equations to return simpler forms to numerically approximate.
180180

181181
Notice that what is returned is an `ODESystem`, but now with the simplified set of

0 commit comments

Comments
 (0)