@@ -279,17 +279,17 @@ function init_basis_matrix!(T, A, X, x, eq, Δbasis, radius, complex_plane; abst
279279 n = size (A, 1 )
280280 k = 1
281281 i = 1
282-
283- eq_fun = build_function (eq, x; expression= false )
284- Δbasis_fun = build_function .(Δbasis, x; expression= false )
282+
283+ eq_fun = build_function (eq, x; expression = false )
284+ Δbasis_fun = build_function .(Δbasis, x; expression = false )
285285
286286 while k <= n
287- try
287+ try
288288 X[k] = test_point (complex_plane, radius)
289289 b₀ = eq_fun (X[k])
290-
290+
291291 if is_proper (b₀)
292- for j in 1 : n
292+ for j in 1 : n
293293 A[k, j] = Δbasis_fun[j](X[k]) / b₀
294294 end
295295 if all (is_proper, A[k, :])
@@ -305,11 +305,11 @@ end
305305function modify_basis_matrix! (T, A, X, x, eq, ∂eq, Δbasis, radius; abstol = 1e-6 )
306306 n = size (A, 1 )
307307 k = 1
308-
309- eq_fun = build_function (eq, x; expression= false )
310- ∂eq_fun = build_function (∂eq, x; expression= false )
311- Δbasis_fun = build_function .(Δbasis, x; expression= false )
312-
308+
309+ eq_fun = build_function (eq, x; expression = false )
310+ ∂eq_fun = build_function (∂eq, x; expression = false )
311+ Δbasis_fun = build_function .(Δbasis, x; expression = false )
312+
313313 for k in 1 : n
314314 # One Newton iteration toward the poles
315315 # note the + sign instead of the usual - in Newton-Raphson's method. This is
0 commit comments