@@ -35,7 +35,7 @@ julia> integrate(3x^3 + 2x - 5)
3535julia> integrate ((5 + 2 x)^- 1 )
3636((1 // 2 )* log ((5 // 2 ) + x), 0 , 0.0 )
3737
38- # detailed simplifies the output to just the resulting integral
38+ # ` detailed = false` simplifies the output to just the resulting integral
3939
4040julia> integrate (x^ 2 / (16 + x^ 2 ); detailed = false )
4141x + 4 atan ((- 1 // 4 )* x)
4848
4949# Here, a is a symbolic constant; therefore, we need to explicitly
5050# define the independent variable (say, x). Also, we set
51- # `symbolic= true` to force using the symbolic solver
51+ # `symbolic = true` to force using the symbolic solver
5252
5353julia> integrate (sin (a * x), x; detailed = false , symbolic = true )
5454(- cos (a* x)) / a
@@ -63,6 +63,12 @@ julia> integrate(cosh(a * x) * exp(b * x), x; detailed = false, symbolic = true)
6363
6464julia> integrate (log (log (a * x)) / x, x; detailed = false , symbolic = true )
6565log (a* x)* log (log (a* x)) - log (a* x)
66+
67+ # definite integration, passing a tuple of (x, lower bound, higher bound) in the
68+ # second argument
69+
70+ julia> integrate (x * sin (a * x), (x, 0 , 1 ); symbolic = true , detailed = false )
71+ (sin (a) - a* cos (a)) / (a^ 2 )
6672```
6773
6874SymbolicNumericIntegration.jl exports some special integral functions (defined over Complex numbers) and uses them in solving integrals:
0 commit comments