Skip to content

Commit 964ba63

Browse files
committed
Fix spelling errors and add typos configuration
- Fix tranforms -> transforms in sparse.jl - Fix convers -> converts in sparse.jl and symbolic.jl - Fix repetative -> repetitive in symbolic.jl - Fix numerial -> numerical in symbolic.jl - Fix synbolic -> symbolic in test files (2 instances) - Add .typos.toml to allow legitimate 'numer' function name Total: 7 spelling fixes across multiple files
1 parent 642d197 commit 964ba63

File tree

4 files changed

+10
-7
lines changed

4 files changed

+10
-7
lines changed

.typos.toml

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -71,3 +71,6 @@ MTK = "MTK"
7171
ODE = "ODE"
7272
PDE = "PDE"
7373
SDE = "SDE"
74+
75+
# SymbolicNumericIntegration specific terms
76+
numer = "numer" # Numerator function name (mathematical term)

src/sparse.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,7 @@ function prune_basis(eq, x, basis; plan = default_plan())
5252
return basis[l]
5353
end
5454

55-
# init_basis_matrix tranforms the integration problem into a linear system
55+
# init_basis_matrix transforms the integration problem into a linear system
5656
#
5757
# It returns A, X, V, where
5858
#
@@ -224,7 +224,7 @@ function hints(eq, x, basis; plan = default_plan())
224224
end
225225

226226
# best_hints works is the link between numerical and symbolic integration.
227-
# It convers a symbolic integrad eq into a univariate expression, performs
227+
# It converts a symbolic integrad eq into a univariate expression, performs
228228
# symbolic-numeric integration, and the returns a list of symbolic ansatzes
229229
# corresponding to the solution
230230
function best_hints(eq, x, basis; plan = default_plan(), num_trials = 10)

src/symbolic.jl

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
########################### Utility functions #########################
22

3-
# beautify convers floats to integers/rational numbers with small
3+
# beautify converts floats to integers/rational numbers with small
44
# denominators if possible
55
function beautify(eq)
66
if is_add(eq)
@@ -90,7 +90,7 @@ function is_holonomic(y, x)
9090
return false
9191
end
9292

93-
# blender generates a list of ansatzes based on repetative
93+
# blender generates a list of ansatzes based on repetitive
9494
# differentiation. It works for holonomic functions, which
9595
# are closed under differentiation.
9696
function blender(y, x; n = 3)
@@ -226,7 +226,7 @@ struct Problem
226226
x::Expression # independent variable
227227
coef::Expression # coefficient of the integrand
228228
ker::Array{Expression} # the pruned list of the basis expressions (kernel)
229-
plan::NumericalPlan # the numerial plan, containing various parameters
229+
plan::NumericalPlan # the numerical plan, containing various parameters
230230
end
231231

232232
# Constructor to create a Problem for integrand eq

test/AxiomSyntaxTestFiles/4 Trig functions/4.3 Tangent/4.3.2.1 (a+b tan)^m (c+d tan)^n.input

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -355,7 +355,7 @@ lst: '[
355355
[cot(c+d*x)^2/(a+%i*a*tan(c+d*x))^(4/3),x,14,1/8*x/(2^(1/3)*a^(4/3))-1/8*%i*log(cos(c+d*x))/(2^(1/3)*a^(4/3)*d)+2/3*%i*log(tan(c+d*x))/(a^(4/3)*d)-2*%i*log(a^(1/3)-(a+%i*a*tan(c+d*x))^(1/3))/(a^(4/3)*d)-3/8*%i*log(2^(1/3)*a^(1/3)-(a+%i*a*tan(c+d*x))^(1/3))/(2^(1/3)*a^(4/3)*d)-4*%i*atan((a^(1/3)+2*(a+%i*a*tan(c+d*x))^(1/3))/(a^(1/3)*sqrt(3)))/(a^(4/3)*d*sqrt(3))-1/4*%i*atan((a^(1/3)+2^(2/3)*(a+%i*a*tan(c+d*x))^(1/3))/(a^(1/3)*sqrt(3)))*sqrt(3)/(2^(1/3)*a^(4/3)*d)+(-11/8*%i)/(d*(a+%i*a*tan(c+d*x))^(4/3))-cot(c+d*x)/(d*(a+%i*a*tan(c+d*x))^(4/3))+(-19/4*%i)/(a*d*(a+%i*a*tan(c+d*x))^(1/3))],
356356
[1/(a+%i*a*tan(c+d*x))^(5/3),x,7,-1/8*x/(2^(2/3)*a^(5/3))+1/8*%i*log(cos(c+d*x))/(2^(2/3)*a^(5/3)*d)+3/8*%i*log(2^(1/3)*a^(1/3)-(a+%i*a*tan(c+d*x))^(1/3))/(2^(2/3)*a^(5/3)*d)-1/4*%i*atan((a^(1/3)+2^(2/3)*(a+%i*a*tan(c+d*x))^(1/3))/(a^(1/3)*sqrt(3)))*sqrt(3)/(2^(2/3)*a^(5/3)*d)+3/10*%i/(d*(a+%i*a*tan(c+d*x))^(5/3))+3/8*%i/(a*d*(a+%i*a*tan(c+d*x))^(2/3))],
357357

358-
-- Integrands of the form (a+I a Tan[e+f x])^m (d Tan[e+f x])^n with n synbolic
358+
-- Integrands of the form (a+I a Tan[e+f x])^m (d Tan[e+f x])^n with n symbolic
359359
[(e*tan(c+d*x))^m*(a+%i*a*tan(c+d*x)),x,2,a*hypergeometric(1,1+m,2+m,%i*tan(c+d*x))*(e*tan(c+d*x))^(1+m)/(d*e*(1+m))],
360360
[(e*tan(c+d*x))^m*(a-%i*a*tan(c+d*x)),x,2,a*hypergeometric(1,1+m,2+m,-%i*tan(c+d*x))*(e*tan(c+d*x))^(1+m)/(d*e*(1+m))],
361361
[(d*tan(e+f*x))^n*(a+%i*a*tan(e+f*x))^4,x,6,-2*a^4*(16+11*n+2*n^2)*(d*tan(e+f*x))^(1+n)/(d*f*(3+n)*(2+3*n+n^2))+8*a^4*hypergeometric(1,1+n,2+n,%i*tan(e+f*x))*(d*tan(e+f*x))^(1+n)/(d*f*(1+n))-(d*tan(e+f*x))^(1+n)*(a^2+%i*a^2*tan(e+f*x))^2/(d*f*(3+n))-2*(4+n)*(d*tan(e+f*x))^(1+n)*(a^4+%i*a^4*tan(e+f*x))/(d*f*(2+n)*(3+n))],
@@ -373,7 +373,7 @@ lst: '[
373373
[(d*tan(e+f*x))^n/(a+%i*a*tan(e+f*x))^(1/2),x,3,AppellF1(1+n,3/2,1,2+n,-%i*tan(e+f*x),%i*tan(e+f*x))*sqrt(1+%i*tan(e+f*x))*(d*tan(e+f*x))^(1+n)/(d*f*(1+n)*sqrt(a+%i*a*tan(e+f*x)))],
374374
[(d*tan(e+f*x))^n/(a+%i*a*tan(e+f*x))^(3/2),x,3,AppellF1(1+n,5/2,1,2+n,-%i*tan(e+f*x),%i*tan(e+f*x))*sqrt(1+%i*tan(e+f*x))*(d*tan(e+f*x))^(1+n)/(a*d*f*(1+n)*sqrt(a+%i*a*tan(e+f*x)))],
375375

376-
-- Integrands of the form (a+I a Tan[e+f x])^m (d Tan[e+f x])^n with m synbolic
376+
-- Integrands of the form (a+I a Tan[e+f x])^m (d Tan[e+f x])^n with m symbolic
377377
[(d*tan(e+f*x))^n*(a+%i*a*tan(e+f*x))^m,x,3,AppellF1(1+n,1-m,1,2+n,-%i*tan(e+f*x),%i*tan(e+f*x))*(d*tan(e+f*x))^(1+n)*(a+%i*a*tan(e+f*x))^m/(d*f*(1+n)*(1+%i*tan(e+f*x))^m)],
378378
[tan(c+d*x)^4*(a+%i*a*tan(c+d*x))^m,x,6,2*%i*(a+%i*a*tan(c+d*x))^m/(d*(6+5*m+m^2))-1/2*%i*hypergeometric(1,m,1+m,1/2*(1+%i*tan(c+d*x)))*(a+%i*a*tan(c+d*x))^m/(d*m)-%i*m*tan(c+d*x)^2*(a+%i*a*tan(c+d*x))^m/(d*(6+5*m+m^2))+tan(c+d*x)^3*(a+%i*a*tan(c+d*x))^m/(d*(3+m))+%i*(6+3*m+m^2)*(a+%i*a*tan(c+d*x))^(1+m)/(a*d*(3+m)*(2+3*m+m^2))],
379379
[tan(c+d*x)^3*(a+%i*a*tan(c+d*x))^m,x,5,-2*(a+%i*a*tan(c+d*x))^m/(d*m*(2+m))+1/2*hypergeometric(1,m,1+m,1/2*(1+%i*tan(c+d*x)))*(a+%i*a*tan(c+d*x))^m/(d*m)+tan(c+d*x)^2*(a+%i*a*tan(c+d*x))^m/(d*(2+m))-m*(a+%i*a*tan(c+d*x))^(1+m)/(a*d*(2+3*m+m^2))],

0 commit comments

Comments
 (0)