diff --git a/content/ar/404.md b/content/ar/404.md
new file mode 100644
index 00000000..feb21395
--- /dev/null
+++ b/content/ar/404.md
@@ -0,0 +1,8 @@
+---
+title: 404
+sidebar: false
+---
+
+عفواً! لقد وصلت إلى طريق مسدود.
+
+إذا كنت تعتقد أنه يجب أن يكون هناك شيء ما هنا ، فيمكنك [فتح مشكلة](https://github.com/numpy/numpy.org/issues) على GitHub.
diff --git a/content/ar/_index.md b/content/ar/_index.md
new file mode 100644
index 00000000..43b25e39
--- /dev/null
+++ b/content/ar/_index.md
@@ -0,0 +1,49 @@
+---
+title: NumPy
+---
+
+{{< grid columns="1 2 2 3" >}}
+
+[[item]]
+type = 'card'
+title = 'Powerful N-dimensional arrays'
+body = '''
+Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today.
+'''
+
+[[item]]
+type = 'card'
+title = 'Numerical computing tools'
+body = '''
+NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.
+'''
+
+[[item]]
+type = 'card'
+title = 'Open source'
+body = '''
+Distributed under a liberal [BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt), NumPy is developed and maintained [publicly on GitHub](https://github.com/numpy/numpy) by a vibrant, responsive, and diverse [community](/community).
+'''
+
+[[item]]
+type = 'card'
+title = 'Interoperable'
+body = '''
+NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.
+'''
+
+[[item]]
+type = 'card'
+title = 'Performant'
+body = '''
+The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code.
+'''
+
+[[item]]
+type = 'card'
+title = 'Easy to use'
+body = '''
+NumPy's high level syntax makes it accessible and productive for programmers from any background or experience level.
+'''
+
+{{< /grid>}}
diff --git a/content/ar/about.md b/content/ar/about.md
new file mode 100644
index 00000000..2e93a8f4
--- /dev/null
+++ b/content/ar/about.md
@@ -0,0 +1,90 @@
+---
+title: About Us
+sidebar: false
+---
+
+NumPy is an open source project that enables numerical computing with Python. It was created in 2005 building on the early work of the Numeric and Numarray libraries. NumPy will always be 100% open source software and free for all to use. It is released under the liberal terms of the [modified BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt).
+
+وقد تم تطوير نمباي في العلن على GitHub ومن خلال توافق آراء مجتمع نمباي ونطاق أوسع لمجتمع بايثون العلمي. لمزيد من المعلومات حول نهج الإدارة، يرجى الاطلاع على [الوثيقة الإدارية](https://www.numpy.org/devdocs/dev/governance/index.html) الخاصة بنا.
+
+## المجلس التوجيهي
+
+The NumPy Steering Council is the project's governing body. Its role is to ensure, through working with and serving the broader NumPy community, the long-term sustainability of the project, both as a software package and community. The NumPy Steering Council currently consists of the following members (in alphabetical order, by last name):
+
+- سيباستيان بيرج
+- رالف غومرس
+- تشارلز هاريس
+- إينيسا باوسون
+- ماتى بيكاس
+- ستيفان فان دير والت(Stefan van der Walt)
+- ميليسا فيبر ميندونسا (Melissa Weber Mendonça)
+- Marten van Kerkwijk
+- إريك وايزر
+
+الأعضاء الفخريون:
+
+- ألكس غريفينغ (2015-2017)
+- آلان هالدين (2015-2021)
+- ترافيس أوليفانت (مؤسس المشروع، 2005-2012)
+- ناثانييل سميث (2012-2021)
+- جوليان تايلور (2013-2021)
+- جايمي فرنانديز ديل ريو(2014-2021)
+- باولي فيرتانين (2008-2021)
+- Eric Wieser (2017-2025)
+- Stephan Hoyer (2017-2025)
+
+To contact the NumPy Steering Council, please email numpy-team@googlegroups.com.
+
+## الأقسام
+
+The NumPy project leadership is actively working on diversifying contribution pathways to the project.
+NumPy currently has the following teams:
+
+- development
+- الوثائق
+- الفرز
+- المواقع الالكترونية
+- استطلاع
+- translations
+- sprint mentors
+- optimization
+- التمويل والمنح
+
+See the [Team](/teams) page for more info.
+
+## اللجنة الفرعية ل NumFOCUS
+
+- تشارلز هاريس
+- رالف غومرس
+- إينيسا باوسون
+- سيباستيان بيرج
+- عضو خارجي: توماس كاسويل
+
+## الرعاة
+
+{{< sponsors >}}
+
+## الشركاء المؤسيسون
+
+الشركاء المؤسسيون هم المنظمات التي تدعم المشروع وذلك بتوظيف الأشخاص الذين يساهمون في "نمباي" كجزء من عملهم. ويشمل الشركاء المؤسسيون الحاليون ما يلي:
+
+- UC Berkeley (Stéfan van der Walt)
+- Quansight (Nathan Goldbaum, Ralf Gommers, Matti Picus, Melissa Weber Mendonça, Mateusz Sokol, Rohit Goswami)
+- NVIDIA (Sebastian Berg)
+
+{{< partners >}}
+
+## التبرع
+
+يرجى النظر في التبرع للمشروع بما يتناسب مع مواردك إذا كنت وجدته مفيد في عملك أو بحثك أو شركتك. ،أي مبلغ قد يساعد،
+وستستخدم جميع التبرعات بشكل صارم لتطوير برمجيات المشروع مفتوحة المصدر، ووثائقه، ومجتمعه.
+
+نمباي هو مشروع ممول برعاية شركةNumFOCUS, 501(c)(3) وهي مؤسسة خيرية غير ربحية في الولايات المتحدة. فهى تدعم مشروع نمباي ماليا وقانونيا وإداريا للمساعدة في ضمان
+ازدهاره واستدامته. قم بزيارة [numfocus.org](https://numfocus.org) لمزيد من المعلومات.
+
+يمكنك التبرع من خلال: [](https://numfocus.org). وبخصوص المتبرعين في الولايات المتحدة، فإن هديتكم تخصم من الضرائب بالقدر الذي ينص عليه القانون. كما هو الحال في أي تبرع، وعلى هذا فيتوجب عليك التشاور مع مستشارك الضريبى.
+
+وسيتخذ المجلس التوجيهي لنمباى القرارات المتعلقة بكيفية استخدام أي أموال يتلقاها على أفضل وجه. وتوثق الأولويات التقنية وأولويات البنية التحتية على [](https://www.numpy.org/neps/index.html#roadmap).
+
+{{
+
+**Array computing** is based on **arrays** data structures. _Arrays_ are used
+to organize vast amounts of data such that a related set of values can be easily
+sorted, searched, mathematically manipulated, and transformed easily and quickly.
+
+Array computing is _unique_ as it involves operating on the data array _at
+once_. What this means is that any array operation applies to an entire set of
+values in one shot. This vectorized approach provides speed and simplicity by
+enabling programmers to code and operate on aggregates of data, without having
+to use loops of individual scalar operations.
diff --git a/content/ar/case-studies/blackhole-image.md b/content/ar/case-studies/blackhole-image.md
new file mode 100644
index 00000000..ca6f4351
--- /dev/null
+++ b/content/ar/case-studies/blackhole-image.md
@@ -0,0 +1,127 @@
+---
+title: "Case Study: First Image of a Black Hole"
+sidebar: false
+---
+
+{{< figure
+ src='/images/content_images/cs/blackhole.jpg'
+ title='Black Hole M87'
+ alt='black hole image'
+ attribution='(Image Credits: Event Horizon Telescope Collaboration)'
+ attributionlink="https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg"
+>}}
+
+{{< blockquote
+ cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
+ by="Katie Bouman, _Assistant Professor, Computing & Mathematical Sciences, Caltech_"
+>}}
+{{< /blockquote >}}
+
+## A telescope the size of the earth
+
+The [Event Horizon telescope (EHT)](https://eventhorizontelescope.org) is an
+array of eight ground-based radio telescopes forming a computational telescope
+the size of the earth, studing the universe with unprecedented
+sensitivity and resolution. The huge virtual telescope, which uses a technique
+called very-long-baseline interferometry (VLBI), has an angular resolution of
+[20 micro-arcseconds][resolution] — enough to read a newspaper in New York
+from a sidewalk café in Paris!
+
+[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
+
+### Key Goals and Results
+
+- **A New View of the Universe:**
+ The groundwork for the EHT's groundbreaking image had been laid 100 years
+ earlier when [Sir Arthur Eddington][eddington] yielded the first
+ observational support of Einstein's theory of general relativity.
+
+- **The Black Hole:** EHT was trained on a supermassive black hole
+ approximately 55 million light-years from Earth, lying at the center
+ of the galaxy Messier 87 (M87) in the Virgo galaxy cluster. Its mass is
+ 6.5 billion times the Sun's. It had been studied for
+ [over 100 years](https://www.jpl.nasa.gov/news/news.php?feature=7385), but never before
+ had a black hole been visually observed.
+
+- **Comparing Observations to Theory:** From Einstein’s general theory of
+ relativity, scientists expected to find a shadow-like region caused by
+ gravitational bending and capture of light. Scientists could
+ use it to measure the black hole's enormous mass.
+
+[eddington]: https://en.wikipedia.org/wiki/Eddington_experiment
+
+### The Challenges
+
+- **Computational scale**
+
+ EHT poses massive data-processing challenges, including rapid atmospheric
+ phase fluctuations, large recording bandwidth, and telescopes that are
+ widely dissimilar and geographically dispersed.
+
+- **Too much information**
+
+ Each day EHT generates over 350 terabytes of observations, stored on
+ helium-filled hard drives. Reducing the volume and complexity of this much
+ data is enormously difficult.
+
+- **Into the unknown**
+
+ When the goal is to see something never before seen, how can scientists be
+ confident the image is correct?
+
+{{< figure >}}
+{{< /figure >}}
+
+## NumPy’s Role
+
+What if there's a problem with the data? Or perhaps an algorithm relies too
+heavily on a particular assumption. Will the image change drastically if a
+single parameter is changed?
+
+The EHT collaboration met these challenges by having independent teams
+evaluate the data, using both established and cutting-edge image reconstruction
+techniques. When results proved consistent, they were combined to yield the
+first-of-a-kind image of the black hole.
+
+Their work illustrates the role the scientific Python ecosystem plays in
+advancing science through collaborative data analysis.
+
+{{< figure >}}
+{{< /figure >}}
+
+For example, the [`eht-imaging`][ehtim] Python package provides tools for
+simulating and performing image reconstruction on VLBI data.
+NumPy is at the core of array data processing used
+in this package, as illustrated by the partial software
+dependency chart below.
+
+{{< figure >}}
+{{< /figure >}}
+
+[ehtim]: https://github.com/achael/eht-imaging
+
+Besides NumPy, many other packages, such as
+[SciPy](https://scipy.org) and [Pandas](https://pandas.pydata.org), are part of the
+data processing pipeline for imaging the black hole.
+The standard astronomical file formats and time/coordinate transformations
+were handled by [Astropy][astropy], while [Matplotlib][mpl] was used
+in visualizing data throughout the analysis pipeline, including the generation
+of the final image of the black hole.
+
+[astropy]: https://www.astropy.org/
+[mpl]: https://matplotlib.org/
+
+## Summary
+
+The efficient and adaptable n-dimensional array that is NumPy's central feature
+enabled researchers to manipulate large numerical datasets, providing a
+foundation for the first-ever image of a black hole. A landmark moment in
+science, it gives stunning visual evidence of Einstein’s theory. The
+achievement encompasses not only technological breakthroughs but also
+international collaboration among over 200 scientists and some of the world's
+best radio observatories. Innovative algorithms and data processing
+techniques, improving upon existing astronomical models, helped unfold a
+mystery of the universe.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/ar/case-studies/cricket-analytics.md b/content/ar/case-studies/cricket-analytics.md
new file mode 100644
index 00000000..ff64c20a
--- /dev/null
+++ b/content/ar/case-studies/cricket-analytics.md
@@ -0,0 +1,146 @@
+---
+title: "Case Study: Cricket Analytics, the game changer!"
+sidebar: false
+---
+
+{{< figure
+ src='/images/content_images/cs/ipl-stadium.png'
+ >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="https://www.scoopwhoop.com/sports/ms-dhoni/"
+ by="M S Dhoni, _International Cricket Player, ex-captain, Indian Team, plays for Chennai Super Kings in IPL_"
+>}}
+{{< /blockquote >}}
+
+## About Cricket
+
+It would be an understatement to state that Indians love cricket. The game is
+played in just about every nook and cranny of India, rural or urban, popular
+with the young and the old alike, connecting billions in India unlike any other sport.
+Cricket enjoys lots of media attention. There is a significant amount of
+[money](https://www.statista.com/topics/4543/indian-premier-league-ipl/) and
+fame at stake. Over the last several years, technology has literally been a game
+changer. Audiences are spoilt for choice with streaming media, tournaments,
+affordable access to mobile based live cricket watching, and more.
+
+The Indian Premier League (IPL) is a professional Twenty20 cricket
+league, founded in 2008. It is one of the most attended cricketing events in
+the world, valued at [$6.7 billion](https://en.wikipedia.org/wiki/Indian_Premier_League)
+in 2019.
+
+Cricket is a game of numbers - the runs scored by a batsman, the wickets taken
+by a bowler, the matches won by a cricket team, the number of times a batsman
+responds in a certain way to a kind of bowling attack, etc. The capability to
+dig into cricketing numbers for both improving performance and studying
+the business opportunities, overall market, and economics of cricket via powerful
+analytics tools, powered by numerical computing software such as NumPy, is a big
+deal. Cricket analytics provides interesting insights into the game and
+predictive intelligence regarding game outcomes.
+
+Today, there are rich and almost infinite troves of cricket game records and
+statistics available, e.g., ESPN
+cricinfo and
+[cricsheet](https://cricsheet.org). These and several such cricket databases
+have been used for cricket
+analysis
+using the latest machine learning and predictive modelling algorithms.
+Media and entertainment platforms along with professional sports bodies
+associated with the game use technology and analytics for determining key
+metrics for improving match winning chances:
+
+- batting performance moving average,
+- score forecasting,
+- gaining insights into fitness and performance of a player against different opposition,
+- player contribution to wins and losses for making strategic decisions on team composition
+
+{{< figure >}}
+{{< /figure >}}
+
+### Key Data Analytics Objectives
+
+- Sports data analytics are used not only in cricket but many other
+ sports for
+ improving the overall team performance and maximizing winning chances.
+- Real-time data analytics can help in gaining insights even during the game
+ for changing tactics by the team and by associated businesses for economic
+ benefits and growth.
+- Besides historical analysis, predictive models are
+ harnessed to determine the possible match outcomes that require significant
+ number crunching and data science know-how, visualization tools and capability
+ to include newer observations in the analysis.
+
+{{< figure >}}
+{{< /figure >}}
+
+### The Challenges
+
+- **Data Cleaning and preprocessing**
+
+ IPL has expanded cricket beyond the classic test match format to a much
+ larger scale. The number of matches played every season across various
+ formats has increased and so has the data, the algorithms, newer sports data
+ analysis technologies and simulation models. Cricket data analysis requires
+ field mapping, player tracking, ball tracking, player shot analysis, and
+ several other aspects involved in how the ball is delivered, its angle, spin,
+ velocity, and trajectory. All these factors together have increased the
+ complexity of data cleaning and preprocessing.
+
+- **Dynamic Modeling**
+
+ In cricket, just like any other sport,
+ there can be a large number of variables related to tracking various numbers
+ of players on the field, their attributes, the ball, and several possibilities
+ of potential actions. The complexity of data analytics and modeling is
+ directly proportional to the kind of predictive questions that are put forth
+ during analysis and are highly dependent on data representation and the
+ model. Things get even more challenging in terms of computation, data
+ comparisons when dynamic cricket play predictions are sought such as what
+ would have happened if the batsman had hit the ball at a different angle or
+ velocity.
+
+- **Predictive Analytics Complexity**
+
+ Much of the decision making in cricket is based on questions such as "how
+ often does a batsman play a certain kind of shot if the ball delivery is of a
+ particular type", or "how does a bowler change his line and length if the
+ batsman responds to his delivery in a certain way".
+ This kind of predictive analytics query requires highly granular dataset
+ availability and the capability to synthesize data and create generative
+ models that are highly accurate.
+
+## NumPy’s Role in Cricket Analytics
+
+Sports Analytics is a thriving field. Many researchers and companies
+[use NumPy](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx)
+and other PyData packages like Scikit-learn, SciPy, Matplotlib, and Jupyter,
+besides using the latest machine learning and AI techniques. NumPy has been used
+for various kinds of cricket related sporting analytics such as:
+
+- **Statistical Analysis:** NumPy's numerical capabilities help estimate the
+ statistical significance of observational data or match events in the context
+ of various player and game tactics, estimating the game outcome by comparison
+ with a generative or static model.
+ [Causal analysis](https://amplitude.com/blog/2017/01/19/causation-correlation)
+ and [big data approaches](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996805/)
+ are used for tactical analysis.
+
+- **Data Visualization:** Data graphing and visualization provide useful insights into relationship between various datasets.
+
+## Summary
+
+Sports Analytics is a game changer when it comes to how professional games are
+played, especially how strategic decision making happens, which until recently
+was primarily done based on “gut feeling" or adherence to past traditions. NumPy
+forms a solid foundation for a large set of Python packages which provide higher
+level functions related to data analytics, machine learning, and AI algorithms.
+These packages are widely deployed to gain real-time insights that help in
+decision making for game-changing outcomes, both on field as well as to draw
+inferences and drive business around the game of cricket. Finding out the
+hidden parameters, patterns, and attributes that lead to the outcome of a
+cricket match helps the stakeholders to take notice of game insights that are
+otherwise hidden in numbers and statistics.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/ar/case-studies/deeplabcut-dnn.md b/content/ar/case-studies/deeplabcut-dnn.md
new file mode 100644
index 00000000..d2767383
--- /dev/null
+++ b/content/ar/case-studies/deeplabcut-dnn.md
@@ -0,0 +1,154 @@
+---
+title: "دراسة حالة: تقدير DeepLabCut 3D Pose"
+sidebar: false
+---
+
+{{< figure >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="https://news.harvard.edu/gazette/story/newsplus/harvard-researchers-awarded-czi-open-source-award/"
+ by="Alexander Mathis, _Assistant Professor, École polytechnique fédérale de Lausanne_ ([EPFL](https://www.epfl.ch/en/))"
+>}}
+{{< /blockquote >}}
+
+## About DeepLabCut
+
+[DeepLabCut](https://github.com/DeepLabCut/DeepLabCut) is an open source toolbox that empowers researchers at hundreds of institutions worldwide to track behaviour of laboratory animals, with very little training data, at human-level accuracy. With DeepLabCut technology, scientists can delve deeper into the scientific understanding of motor control and behavior across animal species and timescales.
+
+Several areas of research, including neuroscience, medicine, and biomechanics, use data from tracking animal movement. DeepLabCut helps in understanding what humans and other animals are doing by parsing actions that have been recorded on film. Using automation for laborious tasks of tagging and monitoring, along with deep neural network based data analysis, DeepLabCut makes scientific studies involving observing animals, such as primates, mice, fish, flies etc., much faster and more accurate.
+
+{{< figure >}}
+{{< /figure >}}
+
+DeepLabCut's non-invasive behavioral tracking of animals by extracting the poses of animals is crucial for scientific pursuits in domains such as biomechanics, genetics, ethology & neuroscience. Measuring animal poses non-invasively from video - without markers - in dynamically changing backgrounds is computationally challenging, both technically as well as in terms of resource needs and training data required.
+
+DeepLabCut allows researchers to estimate the pose of the subject, efficiently enabling them to quantify the behavior through a Python based software toolkit. With DeepLabCut, researchers can identify distinct frames from videos, digitally label specific body parts in a few dozen frames with a tailored GUI, and then the deep learning based pose estimation architectures in DeepLabCut learn how to pick out those same features in the rest of the video and in other similar videos of animals. It works across species of animals, from common laboratory animals such as flies and mice to more unusual animals like [cheetahs][cheetah-movement].
+
+[cheetah-movement]: https://www.technologynetworks.com/neuroscience/articles/interview-a-deeper-cut-into-behavior-with-mackenzie-mathis-327618
+
+DeepLabCut uses a principle called [transfer learning](https://arxiv.org/pdf/1909.11229), which greatly reduces the amount of training data required and speeds up the convergence of the training period. Depending on the needs, users can pick different network architectures that provide faster inference (e.g. MobileNetV2), which can also be combined with real-time experimental feedback. DeepLabCut originally used the feature detectors from a top-performing human pose estimation architecture, called [DeeperCut](https://arxiv.org/abs/1605.03170), which inspired the name. The package now has been significantly changed to include additional architectures, augmentation methods, and a full front-end user experience. Furthermore, to support large-scale biological experiments DeepLabCut provides active learning capabilities so that users can increase the training set over time to cover edge cases and make their pose estimation algorithm robust within the specific context.
+
+Recently, the [DeepLabCut model zoo](https://deeplabcut.github.io/DeepLabCut/docs/ModelZoo.html) was introduced, which provides pre-trained models for various species and experimental conditions from facial analysis in primates to dog posture. This can be run for instance in the cloud without any labeling of new data, or neural network training, and no programming experience is necessary.
+
+### Key Goals and Results
+
+- **Automation of animal pose analysis for scientific studies:**
+
+ The primary objective of DeepLabCut technology is to measure and track posture
+ of animals in a diverse settings. This data can be used, for example, in
+ neuroscience studies to understand how the brain controls movement, or to
+ elucidate how animals socially interact. Researchers have observed a
+ [tenfold performance boost](https://www.biorxiv.org/content/10.1101/457242v1)
+ with DeepLabCut. Poses can be inferred offline at up to 1200 frames per second
+ (FPS).
+
+- **Creation of an easy-to-use Python toolkit for pose estimation:**
+
+ DeepLabCut wanted to share their animal pose-estimation technology in the form
+ of an easy to use tool that can be adopted by researchers easily. So they have
+ created a complete, easy-to-use Python toolbox with project management features
+ as well. These enable not only automation of pose-estimation but also
+ managing the project end-to-end by helping the DeepLabCut Toolkit user right
+ from the dataset collection stage to creating shareable and reusable analysis
+ pipelines.
+
+ Their [toolkit][DLCToolkit] is now available as open source.
+
+ A typical DeepLabCut Workflow includes:
+
+ - creation and refining of training sets via active learning
+ - creation of tailored neural networks for specific animals and scenarios
+ - code for large-scale inference on videos
+ - draw inferences using integrated visualization tools
+
+{{< figure >}}
+{{< /figure >}}
+
+[DLCToolkit]: https://github.com/DeepLabCut/DeepLabCut
+
+### The Challenges
+
+- **Speed**
+
+ Fast processing of animal behavior videos in order to measure their behavior
+ and at the same time make scientific experiments more efficient, accurate.
+ Extracting detailed animal poses for laboratory experiments, without
+ markers, in dynamically changing backgrounds, can be challenging, both
+ technically as well as in terms of resource needs and training data required.
+ Coming up with a tool that is easy to use without the need for skills such
+ as computer vision expertise that enables scientists to do research in more
+ real-world contexts, is a non-trivial problem to solve.
+
+- **Combinatorics**
+
+ Combinatorics involves assembly and integration of movement of multiple
+ limbs into individual animal behavior. Assembling keypoints and their
+ connections into individual animal movements and linking them across time
+ is a complex process that requires heavy-duty numerical analysis, especially
+ in case of multi-animal movement tracking in experiment videos.
+
+- **Data Processing**
+
+ Last but not the least, array manipulation - processing large stacks of
+ arrays corresponding to various images, target tensors and keypoints is
+ fairly challenging.
+
+{{< figure >}}
+{{< /figure >}}
+
+## NumPy's Role in meeting Pose Estimation Challenges
+
+NumPy addresses DeepLabCut technology's core need of numerical computations at
+high speed for behavioural analytics. Besides NumPy, DeepLabCut employs
+various Python software that utilize NumPy at their core, such as
+[SciPy](https://www.scipy.org), [Pandas](https://pandas.pydata.org),
+[matplotlib](https://matplotlib.org),
+[Tensorpack](https://github.com/tensorpack/tensorpack),
+[imgaug](https://github.com/aleju/imgaug),
+[scikit-learn](https://scikit-learn.org/stable/),
+[scikit-image](https://scikit-image.org) and
+[Tensorflow](https://www.tensorflow.org).
+
+The following features of NumPy played a key role in addressing the image
+processing, combinatorics requirements and need for fast computation in
+DeepLabCut pose estimation algorithms:
+
+- Vectorization
+- Masked Array Operations
+- Linear Algebra
+- Random Sampling
+- Reshaping of large arrays
+
+DeepLabCut utilizes NumPy’s array capabilities throughout the workflow offered
+by the toolkit. In particular, NumPy is used for sampling distinct frames for
+human annotation labeling, and for writing, editing and processing annotation
+data. Within TensorFlow the neural network is trained by DeepLabCut technology
+over thousands of iterations to predict the ground truth annotations from
+frames. For this purpose, target densities (scoremaps) are created to cast pose
+estimation as a image-to-image translation problem. To make the neural networks
+robust, data augmentation is employed, which requires the calculation of target
+scoremaps subject to various geometric and image processing steps. To make
+training fast, NumPy’s vectorization capabilities are leveraged. For inference,
+the most likely predictions from target scoremaps need to extracted and one
+needs to efficiently “link predictions to assemble individual animals”.
+
+{{< figure >}}
+{{< /figure >}}
+
+## Summary
+
+Observing and efficiently describing behavior is a core tenant of modern
+ethology, neuroscience, medicine, and technology.
+[DeepLabCut](https://static1.squarespace.com/static/57f6d51c9f74566f55ecf271/t/5eab5ff7999bf94756b27481/1588289532243/NathMathis2019.pdf)
+allows researchers to estimate the pose of the subject, efficiently enabling
+them to quantify the behavior. With only a small set of training images,
+the DeepLabCut Python toolbox allows training a neural network to within human
+level labeling accuracy, thus expanding its application to not only behavior
+analysis in the laboratory, but to potentially also in sports, gait analysis,
+medicine and rehabilitation studies. Complex combinatorics, data processing
+challenges faced by DeepLabCut algorithms are addressed through the use of
+NumPy's array manipulation capabilities.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/ar/case-studies/gw-discov.md b/content/ar/case-studies/gw-discov.md
new file mode 100644
index 00000000..73b006f1
--- /dev/null
+++ b/content/ar/case-studies/gw-discov.md
@@ -0,0 +1,144 @@
+---
+title: "دراسة حالة: اكتشاف الأمواج الثقالية"
+sidebar: false
+---
+
+{{< figure >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
+ by="David Shoemaker, _LIGO Scientific Collaboration_" >}}
+{{< /blockquote >}}
+
+## حول الموجات الثقالية والLIGO[](https://www.nationalgeographic.com/news/2017/10/what-are-gravitational-waves-ligo-astronomy-science/)[](https://www.ligo.caltech.edu)
+
+Gravitational waves are ripples in the fabric of space and time, generated by
+cataclysmic events in the universe such as collision and merging of two black
+holes or coalescing binary stars or supernovae. Observing GW can not only help
+in studying gravity but also in understanding some of the obscure phenomena in
+the distant universe and its impact.
+
+The [Laser Interferometer Gravitational-Wave Observatory (LIGO)](https://www.ligo.caltech.edu)
+was designed to open the field of gravitational-wave astrophysics through the
+direct detection of gravitational waves predicted by Einstein’s General Theory
+of Relativity. It comprises two widely separated interferometers within the
+United States — one in Hanford, Washington and the other in Livingston,
+Louisiana — operated in unison to detect gravitational waves. Each of them has
+multi-kilometer-scale gravitational wave detectors that use laser
+interferometry. The LIGO Scientific Collaboration (LSC), is a group of more
+than 1000 scientists from universities around the United States and in 14
+other countries supported by more than 90 universities and research institutes;
+approximately 250 students actively contributing to the collaboration. The new
+LIGO discovery is the first observation of gravitational waves themselves,
+made by measuring the tiny disturbances the waves make to space and time as
+they pass through the earth. It has opened up new astrophysical frontiers
+that explore the warped side of the universe—objects and phenomena that are
+made from warped spacetime.
+
+### Key Objectives
+
+- Though its [mission](https://www.ligo.caltech.edu/page/what-is-ligo) is to
+ detect gravitational waves from some of the most violent and energetic
+ processes in the Universe, the data LIGO collects may have far-reaching
+ effects on many areas of physics including gravitation, relativity,
+ astrophysics, cosmology, particle physics, and nuclear physics.
+- Crunch observed data via numerical relativity computations that involves
+ complex maths in order to discern signal from noise, filter out relevant
+ signal and statistically estimate significance of observed data
+- Data visualization so that the binary / numerical results can be
+ comprehended.
+
+### The Challenges
+
+- **Computation**
+
+ Gravitational Waves are hard to detect as they produce a very small effect
+ and have tiny interaction with matter. Processing and analyzing all of
+ LIGO's data requires a vast computing infrastructure.After taking care of
+ noise, which is billions of times of the signal, there is still very
+ complex relativity equations and huge amounts of data which present a
+ computational challenge:
+ [O(10^7) CPU hrs needed for binary merger analyses](https://youtu.be/7mcHknWWzNI)
+ spread on 6 dedicated LIGO clusters
+
+- **Data Deluge**
+
+ As observational devices become more sensitive and reliable, the challenges
+ posed by data deluge and finding a needle in a haystack rise multi-fold.
+ LIGO generates terabytes of data every day! Making sense of this data
+ requires an enormous effort for each and every detection. For example, the
+ signals being collected by LIGO must be matched by supercomputers against
+ hundreds of thousands of templates of possible gravitational-wave signatures.
+
+- **Visualization**
+
+ Once the obstacles related to understanding Einstein’s equations well
+ enough to solve them using supercomputers are taken care of, the next big
+ challenge was making data comprehensible to the human brain. Simulation
+ modeling as well as signal detection requires effective visualization
+ techniques. Visualization also plays a role in lending more credibility
+ to numerical relativity in the eyes of pure science aficionados, who did
+ not give enough importance to numerical relativity until imaging and
+ simulations made it easier to comprehend results for a larger audience.
+ Speed of complex computations and rendering, re-rendering images and
+ simulations using latest experimental inputs and insights can be a time
+ consuming activity that challenges researchers in this domain.
+
+{{< figure >}}
+{{< /figure >}}
+
+## NumPy’s Role in the Detection of Gravitational Waves
+
+Gravitational waves emitted from the merger cannot be computed using any
+technique except brute force numerical relativity using supercomputers.
+The amount of data LIGO collects is as incomprehensibly large as gravitational
+wave signals are small.
+
+NumPy, the standard numerical analysis package for Python, was utilized by
+the software used for various tasks performed during the GW detection project
+at LIGO. NumPy helped in solving complex maths and data manipulation at high
+speed. Here are some examples:
+
+- [Signal Processing](https://www.uv.es/virgogroup/Denoising_ROF.html): Glitch
+ detection, [Noise identification and Data Characterization](https://ep2016.europython.eu/media/conference/slides/pyhton-in-gravitational-waves-research-communities.pdf)
+ (NumPy, scikit-learn, scipy, matplotlib, pandas, pyCharm)
+- Data retrieval: Deciding which data can be analyzed, figuring out whether it
+ contains a signal - needle in a haystack
+- Statistical analysis: estimate the statistical significance of observational
+ data, estimating the signal parameters (e.g. masses of stars, spin velocity,
+ and distance) by comparison with a model.
+- Visualization of data
+ - Time series
+ - Spectrograms
+- Compute Correlations
+- Key [Software](https://github.com/lscsoft) developed in GW data analysis
+ such as [GwPy](https://gwpy.github.io/docs/stable/overview.html) and
+ [PyCBC](https://pycbc.org) uses NumPy and AstroPy under the hood for
+ providing object based interfaces to utilities, tools, and methods for
+ studying data from gravitational-wave detectors.
+
+{{< figure >}}
+{{< /figure >}}
+
+----
+
+{{< figure >}}
+{{< /figure >}}
+
+## Summary
+
+GW detection has enabled researchers to discover entirely unexpected phenomena
+while providing new insight into many of the most profound astrophysical
+phenomena known. Number crunching and data visualization is a crucial step
+that helps scientists gain insights into data gathered from the scientific
+observations and understand the results. The computations are complex and
+cannot be comprehended by humans unless it is visualized using computer
+simulations that are fed with the real observed data and analysis. NumPy
+along with other Python packages such as matplotlib, pandas, and scikit-learn
+is [enabling researchers](https://www.gw-openscience.org/events/GW150914/) to
+answer complex questions and discover new horizons in our understanding of the
+universe.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/ar/citing-numpy.md b/content/ar/citing-numpy.md
new file mode 100644
index 00000000..65a46f4e
--- /dev/null
+++ b/content/ar/citing-numpy.md
@@ -0,0 +1,35 @@
+---
+title: الاستشهاد بنمباي
+sidebar: false
+---
+
+إذا كان لنمباي دور كبير فى بحثك وتود الإشارة إليه فى منشورك الأكاديمى،فبامكانك إلقاء نظرة على هذة الورقة المقترحة للاستشهاد:
+
+- Harris, C.R., Millman, K.J., van der Walt, S.J. et al. _Array programming with NumPy_. Nature 585, 357–362 (2020). DOI: [10.1038/s41586-020-2649-2](https://doi.org/10.1038/s41586-020-2649-2). ([رابط النشر](https://www.nature.com/articles/s41586-020-2649-2)).
+
+_بتنسيق In BibTeX:_
+
+ ```
+ @Article{ harris2020array,
+ title = {Array programming with {NumPy}},
+ author = {Charles R. Harris and K. Jarrod Millman and St{\'{e}}fan J.
+ van der Walt and Ralf Gommers and Pauli Virtanen and David
+ Cournapeau and Eric Wieser and Julian Taylor and Sebastian
+ Berg and Nathaniel J. Smith and Robert Kern and Matti Picus
+ and Stephan Hoyer and Marten H. van Kerkwijk and Matthew
+ Brett and Allan Haldane and Jaime Fern{\'{a}}ndez del
+ R{\'{i}}o and Mark Wiebe and Pearu Peterson and Pierre
+ G{\'{e}}rard-Marchant and Kevin Sheppard and Tyler Reddy and
+ Warren Weckesser and Hameer Abbasi and Christoph Gohlke and
+ Travis E. Oliphant},
+ year = {2020},
+ month = sep,
+ journal = {Nature},
+ volume = {585},
+ number = {7825},
+ pages = {357--362},
+ doi = {10.1038/s41586-020-2649-2},
+ publisher = {Springer Science and Business Media {LLC}},
+ url = {https://doi.org/10.1038/s41586-020-2649-2}
+ }
+ ```
diff --git a/content/ar/code-of-conduct.md b/content/ar/code-of-conduct.md
new file mode 100644
index 00000000..4636e808
--- /dev/null
+++ b/content/ar/code-of-conduct.md
@@ -0,0 +1,83 @@
+---
+title: القواعد السلوكية لنمباي
+sidebar: false
+aliases:
+ - /conduct.html
+---
+
+### المقدمة
+
+هذه القواعد السلوكية تنطبق علي جميع المجالات التي تدار من قبل مشروع نمباي, بما في ذلك كل قوائم البريد سواء كانت خاصة أم عامة ومتعقبات القضايا والويكي والمدونات وتويتر وأي قناة اتصال تستخدم من قبل مجتمعنا. مشروع نمباي لا يقوم بتنظيم أي فعاليات شخصية ومع ذلك أي فعاليات متعلقة لمجتمعنا ينبغي أن تكون لها قواعد سلوكية مشابهة لروح هذا المستند.
+
+ينبغي علي كل شخص مشارك في مجتمع نمباي أن يحتذي بهذه القواعد سواء كان مشترك بصورة رسمية أو غير رسمية، أو يدعي انتمائه للمشروع في أي انشطه متعلقة للمشروع وخاصة عندما يمثل المشروع تحت أي دور.
+
+هذه القواعد ليست شاملة أو كاملة. لكنها تساعد علي استخلاص فهمنا المشترك للتعاون في ظل بيئة وأهداف مشتركة. من فضلك حاول أن تتبع هذه القواعد روحا ونصا من أجل إنشاء بيئة ودودة ومنتجة نثري بها المجتمع المحيط.
+
+### القواعد الارشادية المحددة
+
+نحن نسعى إلي:
+
+1. أن نكون منفتحين. نحن ندعو الجميع للمشاركة في مجتمعنا. نحن نفضل استخدام وسائل الاتصال العامة للرسائل المتعلقة بالمشروع، ما لم نناقش شيئا حساسا. ينطبق هذا علي الرسائل الخاصة بطلب المساعدة أوالمتعلقة بدعم المشروع ، ليس فقط ﻷن طلبات الدعم العام محببة لاحتمالية الوصول للإجابة عن الاستفسارات بشكل اكبر، ولكن أيضا لضمان سهولة الكشف والتصحيح عن أي أخطاء غير مقصودة في الإجابات.
+2. أن نكون عطوفين ومرحبين واكثر ودا وصبرا. نحن نعمل معا لحل الخلافات ونفترض حسن النوايا. قد نواجه بعض الإحباط من حين ألي أخر لكننا لا نسمح للإحباط أن يتحول إلي هجوم شخصي. فالمجتمع الذي يشعر فيه الناس بعدم الارتياح أو بالتهديد ليس مجتمعا منتجا.
+3. أن نكون متعاونين. كما سيستفيد بعملنا الآخرين سنستفيد نحن أيضا بعملهم. عندما نقوم بصنع شيئاً لمنفعة المشروع ، سوف نكون علي الاستعداد لشرح للآخرين كيفية عمله ، حتي يكونوا قادرين علي البناء عليه لجعله أفضل. أي قرار سنتخذه سيؤثر علي المستخدمين وعلي زملائنا في العمل لذا يجب أن تأخذ العواقب علي محمل الجد عندما نتخذ القرارات.
+4. أن نكون اكثر استطلاعاً. لا أحد علي دراية بكل شئ! طرح الأسئلة في وقت مبكر قد يجنب العديد من المشاكل اللاحقة ، لذا نحن نشجع الأسئلة علي الرغم من أننا قد نعيد توجهها إلي المنتدي المناسب. وسنحاول جاهدين أن نكون متجاوبين ومفيدين.
+5. أن نكون حذريين في اختيار الكلمات. وأن نتوخى الحذر والاحترام في اتصالاتنا، ونتحمل المسؤولية عن خطابنا. وأن نكون عطوفين مع الأخريين. لا تهين أو تحط من قدر المشاركين الآخرين. نحن لن نتقبل المضايقات أو أي سلوك استبعادي أخر ، مثل:
+ - التهديدات العنيفة أو الخطاب الموجه ضد الأخر.
+ - النكات والتلميحات القائمة علي الجنس أو العرق أو اي أشكال التمييز الأخري.
+ - نشر مواد جنسية صريحة أو مواد تشجع علي العنف.
+ - نشر (أو التهديد بنشر) المعلومات التعريفية الشخصية لأناس آخرين ("doxing").
+ - مشاركة المحتوى الخاص، مثل رسائل البريد الإلكتروني المرسلة بشكل خاص أو غير علني، أو المنتديات غير المسجلة مثل تاريخ قناة IRC، بدون موافقة المرسل.
+ - الإهانات الشخصية، خاصةً التي تستخدم مصطلحات عنصرية أو متحيزة جنسياً.
+ - الاهتمام الجنسي الغير مرحب به.
+ - البذائه المفرطه. يرجى تجنب الكلمات البذيئة، يختلف الناس اختلافا كبيرا في حساسيتهم للبذائه.
+ - • المضايقة المتكررة للآخرين. بشكل عام، إذا طلب منك شخص ما التوقف فيجب عليك التوقف.
+ - الدعوة إلى أي من السلوكيات المذكور أعلاه أو التشجيع إليها.
+
+### بيان التنوع
+
+يرحب ويشجع مشروع نمباي بمشاركات الجميع. نحن ملتزمون بأن نكون مجتمعا يتمتع كل فرد فيه بكونه جزء منه. وبالرغم أننا قد لا نكون قادرين دوماً على استيعاب تفضيلات كل فرد، إلا إننا حريصين علي بذل قصارى جهدنا لمعاملة الجميع معاملة كريمة.
+
+بغض النظر عن كيفية تعريفك لنفسك أو كيف يتصورك الآخرون: نحن نرحب بك. وعلى الرغم من أنه لا يمكن لأي قائمة أن تكون شاملة، فإننا نكرم بوضوح التنوع في: السن والثقافة والأصل العرقي والوراثي والهوية الجنسية واللغة والأصل القومي وتنوع العصبي والتكوين الظاهري والمعتقد السياسي والمهنة والعرق والديانة والتوجه الجنسي والحالة الاجتماعية الاقتصادية وثقافات الفرعية والقدرات التقنية بما لا يتعارض مع هذه القواعد السلوكية.
+
+على الرغم من أننا نتقبل الناس بجميع اللغات التي يتقنوها، إلا أن تطوير نمباي يجري باستخدام اللغة الإنجليزية.
+
+ترد في قواعد السلوكية المذكورة أعلاه تفاصيل معايير السلوك في مجتمع نمباي. وينبغي علي المشاركين في مجتمعنا أن يتمسكوا بهذه المعايير في جميع فعاليتهم وأن يساعدوا الآخرين على القيام بالمثل (انظر الفرع التالي).
+
+### القواعد الارشادية للإبلاغ
+
+We know that it is painfully common for internet communication to start at or devolve into obvious and flagrant abuse. وندرك أيضاً أن الناس قد يمرون أحيانا بيوم سيئ أو قد لا يكونون علي دراية ببعض إرشادات القواعد السلوكية. لذا ضع هذا في عين الاعتبار عند اتخاذ القرار بشأن كيفية الرد علي انتهاك هذه القواعد.
+
+أما بالنسبة للانتهاكات المتعمدة بشكل واضح فيجب إبلاغ لجنة قواعد السلوك عليها (انظر أدناه). في حالة حدوث خروفات غير متعمدة فيمكنك الرد على الشخص المعني والإشارة إلى قواعد السلوك هذه (سواء علناً أو سراً، أينما كان ذلك مناسباً). وإذا كنت تفضل عدم القيام بذلك، فلا تتردد في إبلاغ اللجنة المعنية بقواعد السلوك مباشرة ويمكنك أيضاً طلب المشورة من اللجنة بكل ثقة.
+
+يمكنك إبلاغ لجنة القواعد السلوكية لنمباي عبر numpy-conduct@googlegroups.com.
+
+وتتألف اللجنة حاليا مما يلي:
+
+- ستيفان فان دير والت (Stefan van der Walt)
+- ميليسا فيبر ميندونسا (Melissa Weber Mendonça)
+- Rohit Goswami
+
+لو كان بلاغك متورط به أحد أعضاء اللجنة أو إذا كانوا يشعرون بأن لديهم تضارب في المصالح يحدهم عن التعامل معه. أو إذا شعرت بعدم الارتياح لأي سبب من الأسباب لإبلاغ اللجنة ، فبمكانك الاتصال عوضا عن ذلك بفريق NumFOCUS الأعلى على [conduct@numfocus.org](https://numfocus.org/code-of-conduct#persons-responsible).
+
+### تسوية بلاغات الحوادث & نفاذ القواعد السلوكية
+
+_This section summarizes the most important points, more details can be found in_ [NumPy Code of Conduct - How to follow up on a report](report-handling-manual).
+
+سوف نقوم بالتحقيق في جميع الشكاوى والرد عليها. وستقوم لجنة القواعد السلوكية واللجنة التوجيهية لنمباي (إذا اشتركت) بحماية هوية المبلِّغ وسوف يتم التعامل مع مضمون الشكاوى على أنها سرية (ما لم يوافق المبلغ على غير ذلك).
+
+في حالة حدوث إخلالات خطيرة وواضحة، مثل التهديد أو العنف الشخصي أو التحيز جنسياً أو عنصرياً، سنقوم على الفور بفصل المقدم عن قنوات الاتصال الخاصة بنمباي؛ يرجى الاطلاع على الدليل للحصول على التفاصيل.
+
+وفي الحالات التي لا تنطوي على انتهاكات خطيرة وواضحة لقواعد السلوك هذه، تكون عملية التصرف بشأن أي تقرير يرد عن انتهاك القواعد السلوكية علي ما يلي:
+
+1. الإقرار بتلقي التقرير،
+2. مناقشات/ملاحظات معقولة،
+3. الوساطة (إذا لم تساعد ردود الفعل، وفقط إذا وافق كل من المبلّغ والمبلّغ على ذلك)،
+4. enforcement via transparent decision (see [Resolutions](report-handling-manual/#resolutions)) by the Code of Conduct Committee.
+
+واللجنة سترد على أي تقرير في أقرب وقت ممكن، وفي الأغلب 72 ساعة على الأكثر.
+
+### تعليق ختامي
+
+نحن ممتنون للمجموعات التي تقف وراء الوثائق التالية التي استخلصنا منها المضمون والإلهام:
+
+- [القواعد السلوكية لسكابي](https://docs.scipy.org/doc/scipy/dev/conduct/code_of_conduct.html)
diff --git a/content/ar/community.md b/content/ar/community.md
new file mode 100644
index 00000000..6b0e5de4
--- /dev/null
+++ b/content/ar/community.md
@@ -0,0 +1,72 @@
+---
+title: Community
+sidebar: false
+---
+
+NumPy is a community-driven open source project developed by a diverse group of [contributors](/teams/). The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the [NumPy Code of Conduct](/code-of-conduct) for guidance on how to interact with others in a way that makes the community thrive.
+
+We offer several communication channels to learn, share your knowledge and connect with others within the NumPy community.
+
+## Participate online
+
+The following are ways to engage directly with the NumPy project and community.
+_Please note that we encourage users and community members to support each other
+for usage questions - see [Get Help](/gethelp)._
+
+### [NumPy mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion)
+
+This list is the main forum for longer-form discussions, like adding new features to NumPy, making changes to the NumPy Roadmap, and all kinds of project-wide decision making.
+Announcements about NumPy, such as for releases, developer meetings, sprints or
+conference talks are also made on this list.
+
+On this list please use bottom posting, reply to the list (rather than to
+another sender), and don't reply to digests. A searchable archive of this list
+is available [here](https://mail.python.org/archives/list/numpy-discussion@python.org/).
+
+***
+
+### [GitHub issue tracker](https://github.com/numpy/numpy/issues)
+
+- For bug reports (e.g. "`np.arange(3).shape` returns `(5,)`, when it should return `(3,)`");
+- documentation issues (e.g. "I found this section unclear");
+- and feature requests (e.g. "I would like to have a new interpolation method in `np.percentile`").
+
+_Please note that GitHub is not the right place to report a security vulnerability. If you think you have found a security vulnerability in NumPy, please report it [here](https://tidelift.com/docs/security)._
+
+***
+
+### [Slack](https://numpy-team.slack.com)
+
+A real-time chat room to ask questions about _contributing_ to NumPy.
+This is a private space, specifically meant for people who are hesitant to
+bring up their questions or ideas on a large public mailing list or GitHub.
+Please see
+[here](https://numpy.org/devdocs/dev/index.html#contributing-to-numpy) for more
+details and how to get an invite.
+
+## Study Groups and Meetups
+
+If you would like to find a local meetup or study group to learn more about NumPy and the wider ecosystem of Python packages for data science and scientific computing, we recommend exploring the [PyData meetups](https://www.meetup.com/pro/pydata/) (150+ meetups, 100,000+ members).
+
+NumPy also organizes in-person sprints for its team and interested contributors occasionally. These are typically planned several months in advance and will be announced on the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion).
+
+## Conferences
+
+The NumPy project doesn't organize its own conferences. The conferences that have traditionally been most popular with NumPy maintainers, contributors and users are the SciPy and PyData conference series:
+
+- SciPy US
+- EuroSciPy
+- SciPy Latin America
+- SciPy India
+- SciPyData Japan
+- PyData conferences (15-20 events a year spread over many countries)
+
+Many of these conferences include tutorial days that cover NumPy and/or sprints where you can learn how to contribute to NumPy or related open source projects.
+
+## Join the NumPy community
+
+To thrive, the NumPy project needs your expertise and enthusiasm. Not a coder? Not a problem! There are many ways to contribute to NumPy.
+
+If you are interested in becoming a NumPy contributor (yay!) we recommend checking out our [Contribute](/contribute) page.
+
+Also, feel free to stop by and say hi at one of our community meetings. To keep track of them, check out our events calendar [here](https://scientific-python.org/calendars/).
diff --git a/content/ar/config.yaml b/content/ar/config.yaml
new file mode 100644
index 00000000..e4e8c235
--- /dev/null
+++ b/content/ar/config.yaml
@@ -0,0 +1,109 @@
+languageName: English
+params:
+ description: Why NumPy? Powerful n-dimensional arrays. Numerical computing tools. Interoperable. Performant. Open source.
+ navbarlogo:
+ image: logo.svg
+ text: NumPy
+ link: /
+ hero:
+ # Main hero title
+ title: NumPy
+ # Hero subtitle (optional)
+ subtitle: The fundamental package for scientific computing with Python
+ # Button text
+ buttontext: "Latest release: NumPy 2.2. View all releases"
+ # Where the main hero button links to
+ buttonlink: "/news/#releases"
+ # Hero image (from static/images/___)
+ image: logo.svg
+ shell:
+ title: placeholder
+ intro:
+ - title: Try NumPy
+ text: Use the interactive shell to try NumPy in the browser
+ docslink: Don't forget to check out the docs.
+ casestudies:
+ title: CASE STUDIES
+ features:
+ - title: First Image of a Black Hole
+ text: How NumPy, together with libraries like SciPy and Matplotlib that depend on NumPy, enabled the Event Horizon Telescope to produce the first ever image of a black hole
+ img: /images/content_images/case_studies/blackhole.png
+ alttext: First image of a black hole. It is an orange circle in a black background.
+ url: /case-studies/blackhole-image
+ - title: Detection of Gravitational Waves
+ text: In 1916, Albert Einstein predicted gravitational waves; 100 years later their existence was confirmed by LIGO scientists using NumPy.
+ img: /images/content_images/case_studies/gravitional.png
+ alttext: Two orbs orbiting each other. They are displacing gravity around them.
+ url: /case-studies/gw-discov
+ - title: Sports Analytics
+ text: Cricket Analytics is changing the game by improving player and team performance through statistical modelling and predictive analytics. NumPy enables many of these analyses.
+ img: /images/content_images/case_studies/sports.jpg
+ alttext: Cricket ball on green field.
+ url: /case-studies/cricket-analytics
+ - title: Pose Estimation using deep learning
+ text: DeepLabCut uses NumPy for accelerating scientific studies that involve observing animal behavior for better understanding of motor control, across species and timescales.
+ img: /images/content_images/case_studies/deeplabcut.png
+ alttext: Cheetah pose analysis
+ url: /case-studies/deeplabcut-dnn
+ tabs:
+ title: ECOSYSTEM
+ section5: false
+ navbar:
+ - title: Install
+ url: /install
+ - title: Documentation
+ url: https://numpy.org/doc/stable
+ - title: Learn
+ url: /learn
+ - title: Community
+ url: /community
+ - title: About Us
+ url: /about
+ - title: الأخبار
+ url: /news
+ - title: Contribute
+ url: /contribute
+ footer:
+ logo: logo.svg
+ socialmediatitle: ""
+ socialmedia:
+ - link: https://github.com/numpy/numpy
+ icon: github
+ - link: https://www.youtube.com/@NumPy_team
+ icon: youtube
+ quicklinks:
+ column1:
+ title: ""
+ links:
+ - text: Install
+ link: /install
+ - text: Documentation
+ link: https://numpy.org/doc/stable
+ - text: Learn
+ link: /learn
+ - text: الاستشهاد بنمباي
+ link: /citing-numpy
+ - text: Roadmap
+ link: https://numpy.org/neps/roadmap.html
+ column2:
+ links:
+ - text: About us
+ link: /about
+ - text: Community
+ link: /community
+ - text: User surveys
+ link: /user-surveys
+ - text: Contribute
+ link: /contribute
+ - text: Code of conduct
+ link: /code-of-conduct
+ column3:
+ links:
+ - text: Get help
+ link: /gethelp
+ - text: Terms of use
+ link: /terms
+ - text: Privacy
+ link: /privacy
+ - text: Press kit
+ link: /press-kit
diff --git a/content/ar/contribute.md b/content/ar/contribute.md
new file mode 100644
index 00000000..16e4872f
--- /dev/null
+++ b/content/ar/contribute.md
@@ -0,0 +1,116 @@
+---
+title: Contribute to NumPy
+sidebar: false
+---
+
+The NumPy project welcomes your expertise and enthusiasm!
+Your choices aren't limited to programming, as you can
+see below there are many areas where we need **your** help.
+
+If you're unsure where to start or how your skills fit in, _reach out!_ You
+can ask on the mailing
+list or
+[GitHub](http://github.com/numpy/numpy) (open an
+[issue](https://github.com/numpy/numpy/issues) or comment on a relevant
+issue).
+
+Those are our preferred channels (open source is open by nature), but
+if you prefer to talk privately, contact our community coordinators at
+
Check out also our [YouTube channel](https://www.youtube.com/playlist?list=PLCK6zCrcN3GXBUUzDr9L4__LnXZVtaIzS) for additional advice.
+
+### Reviewing pull requests
+
+The project has more than 250 open pull requests -- meaning many potential
+improvements and many open-source contributors waiting for feedback. If you're
+a developer who knows NumPy, you can help even if you're not familiar with the
+codebase. You can:
+
+- summarize a long-running discussion
+- triage documentation PRs
+- test proposed changes
+
+### Developing educational materials
+
+NumPy's [User Guide](https://numpy.org/devdocs) is undergoing rehabilitation.
+We're in need of new tutorials, how-to's, and deep-dive explanations, and the
+site needs restructuring. Opportunities aren't limited to writers. We'd also
+welcome worked examples, notebooks, and videos. NEP 44 — Restructuring the
+NumPyDocumentation
+lays out our ideas -- and you may have others.
+
+### Issue triaging
+
+The [NumPy issue tracker](https://github.com/numpy/numpy/issues) has a _lot_
+of open issues. Some are no longer valid, some should be prioritized, and some
+would make good issues for new contributors. You can:
+
+- check if older bugs are still present
+- find duplicate issues and link related ones
+- add good self-contained reproducers to issues
+- label issues correctly (this requires triage rights -- just ask)
+
+Please just dive in.
+
+### Website development
+
+We've just revamped our website, but we're far from done. If you love web
+development, these
+[issues](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign)
+list some of our unmet needs -- and feel free to share your own ideas.
+
+### Graphic design
+
+We can barely begin to list the contributions a graphic designer can make here.
+Our docs are parched for illustration; our growing website craves images --
+opportunities abound.
+
+### Translating website content
+
+We plan multiple translations of [numpy.org](https://numpy.org) to make NumPy
+accessible to users in their native language. Volunteer translators are at the heart
+of this effort. See
+[here](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n)
+for background; comment on this GitHub
+issue to sign up.
+
+### Community coordination and outreach
+
+Through community contact we share our work more widely and learn where we're
+falling short. We're eager to get more people involved in efforts like organizing NumPy code
+sprints, a newsletter, and perhaps a blog.
+
+### Fundraising
+
+For many years, NumPy was maintained by dedicated volunteers, but as its importance grew it
+became clear that to ensure stability and growth we would need financial support.
+[This SciPy'19 talk](https://www.youtube.com/watch?v=dBTJD_FDVjU) explains how much difference
+that support has made. Like most nonprofits, we are constantly seeking grants, sponsorships,
+and other kinds of funding. We have a number of ideas and of course we welcome more.
+Fundraising is a scarce skill here -- we'd appreciate your help.
+
+### التبرع
+
+If you'd like to contribute to NumPy by making a donation, visit [https://numpy.org/about/#donate](https://numpy.org/about/#donate).
+
+
diff --git a/content/ar/gethelp.md b/content/ar/gethelp.md
new file mode 100644
index 00000000..f24bb84a
--- /dev/null
+++ b/content/ar/gethelp.md
@@ -0,0 +1,22 @@
+---
+title: الحصول على مساعدة
+sidebar: false
+---
+
+**Development issues:** For NumPy development-related matters (e.g., bug reports), please see [Community](/community).
+
+**User questions:** The best way to get help is to post your question to a site like [StackOverflow](http://stackoverflow.com/questions/tagged/numpy) or [Reddit](https://www.reddit.com/r/Numpy/). We wish we could keep an eye on
+these sites, or answer questions directly, but the volume is a little
+overwhelming!
+
+### [StackOverflow](http://stackoverflow.com/questions/tagged/numpy)
+
+منتدى لطرح أسئلة الاستخدام مثل" كيف أستطيع أن أفعل x في نمباي؟". برجاء [استخدم `#numpy` tag](https://stackoverflow.com/help/tagging)
+
+***
+
+### [Reddit](https://www.reddit.com/r/Numpy/)
+
+منتدى آخر لأسئلة الاستخدام.
+
+***
diff --git a/content/ar/history.md b/content/ar/history.md
new file mode 100644
index 00000000..de19ad1d
--- /dev/null
+++ b/content/ar/history.md
@@ -0,0 +1,21 @@
+---
+title: تاريخ مشروع NumPy
+sidebar: false
+---
+
+مشروع NumPy هو مكتبة تأسيسية للغة البايثون يوفر هياكل بيانات المصفوفات وما يتصل بها من إجراءات رقمية سريعة. لم تمول المكتبة في البداية إلا بالقليل، وكتبها طلبة الدراسات العليا بشكل أساسي وكان الكثير منهم ليسوا بدارسي علوم الحاسوب ولا حاصلين على موافقة أو تشجيع مستشاريهم. To even imagine that a small group of “rogue” student programmers could upend the already well-established ecosystem of research software—backed by millions in funding and many hundreds of highly qualified engineers — was preposterous. Yet, the philosophical motivations behind a fully open tool stack, in combination with the excited, friendly community with a singular focus, have proven auspicious in the long run. Nowadays, NumPy is relied upon by scientists, engineers, and many other professionals around the world. For example, the published scripts used in the analysis of gravitational waves import NumPy, and the M87 black hole imaging project directly cites NumPy.
+
+For the in-depth account on milestones in the development of NumPy and related libraries please see [arxiv.org](https://arxiv.org/abs/1907.10121).
+
+إذا كنت ترغب في الحصول على نسخة من مكتبة القياسية Numeric و Numarray الأصلية، فاتبع الروابط التالية:
+
+[Download Page for _Numeric_](https://sourceforge.net/projects/numpy/files/Old%20Numeric/)\*
+
+[Download Page for _Numarray_](https://sourceforge.net/projects/numpy/files/Old%20Numarray/)\*
+
+\*يرجى ملاحظة أن حزم المصفوفات القديمة هذه لم تعد محفوظة، وننصح المستخدمين بشدة باستخدام NumPy لأي أغراض متعلقة بالمصفوفات أو إعادة هيكلة أي كود موجود مسبقًا لاستخدام مكتبة NumPy.
+
+### الوثائق التاريخية
+
+[Download _\`Numeric'_ Manual](static/numeric-manual.pdf)
+
diff --git a/content/ar/install.md b/content/ar/install.md
new file mode 100644
index 00000000..2e3550b9
--- /dev/null
+++ b/content/ar/install.md
@@ -0,0 +1,131 @@
+---
+title: Installing NumPy
+sidebar: false
+---
+
+{{< admonition >}}
+{{< /admonition >}}
+
+The recommended method of installing NumPy depends on your preferred workflow. Below, we break down the installation methods into the following categories:
+
+- **Project-based** (e.g., uv, pixi) _(recommended for new users)_
+- **Environment-based** (e.g., pip, conda) _(the traditional workflow)_
+- **System package managers** _(not recommended for most users)_
+- **Building from source** _(for advanced users and development purposes)_
+
+Choose the method that best suits your needs. If you're unsure, start with the **Environment-based** method using `conda` or `pip`.
+
+{{< tabs >}}
+
+[[tab]]
+name = 'Project Based'
+content = '''
+
+Recommended for new users who want a streamlined workflow.
+
+- **uv:** A modern Python package manager designed for speed and simplicity.
+ ```bash
+ uv pip install numpy
+ ```
+
+- **pixi:** A cross-platform package manager for Python and other languages.
+ ```bash
+ pixi add numpy
+ ```
+
+'''
+
+[[tab]]
+name = 'Environment Based'
+content = '''
+
+The two main tools that install Python packages are `pip` and `conda`. Their functionality partially overlaps (e.g. both can install `numpy`), however, they can also work together. We’ll discuss the major differences between pip and conda here - this is important to understand if you want to manage packages effectively.
+
+The first difference is that conda is cross-language and it can install Python, while pip is installed for a particular Python on your system and installs other packages to that same Python install only. This also means conda can install non-Python libraries and tools you may need (e.g. compilers, CUDA, HDF5), while pip can’t.
+
+The second difference is that pip installs from the Python Packaging Index (PyPI), while conda installs from its own channels (typically “defaults” or “conda-forge”). PyPI is the largest collection of packages by far, however, all popular packages are available for conda as well.
+
+The third difference is that conda is an integrated solution for managing packages, dependencies and environments, while with pip you may need another tool (there are many!) for dealing with environments or complex dependencies.
+
+- **Conda:** If you use conda, you can install NumPy from the defaults or conda-forge channels:
+ ```bash
+ conda create -n my-env
+ conda activate my-env
+ conda install numpy
+ ```
+- **Pip:**
+ ```bash
+ pip install numpy
+ ```
+
+{{< admonition >}}
+{{< /admonition >}}
+
+ ```bash
+ python -m venv my-env
+ source my-env/bin/activate # macOS/Linux
+ my-env\Scripts\activate # Windows
+ pip install numpy
+ ```
+
+'''
+
+[[tab]]
+name = 'System Package Managers'
+content = '''
+Not recommended for most users, but available for convenience.
+
+**macOS (Homebrew):**
+
+```bash
+brew install numpy
+```
+
+**Linux (APT):**
+
+```bash
+sudo apt install python3-numpy
+```
+
+**Windows (Chocolatey):**
+
+```bash
+choco install numpy
+```
+
+'''
+
+[[tab]]
+name = 'Building from Source'
+content = '''
+For advanced users and developers who want to customize or debug **NumPy**.
+
+A word of warning: building Numpy from source can be a nontrivial exercise.
+We recommend using binaries instead if those are available for your platform via one of the above methods.
+For details on how to build from source, see [the building from source guide in the Numpy docs](https://numpy.org/devdocs/building/).
+
+{{< /tabs >}}
+
+## Verifying the Installation
+
+After installing NumPy, verify the installation by running the following in a Python shell or script:
+
+```python
+import numpy as np
+print(np.__version__)
+```
+
+This should print the installed version of NumPy without errors.
+
+## Troubleshooting
+
+If your installation fails with the message below, see Troubleshooting
+ImportError.
+
+```
+IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
+
+Importing the numpy c-extensions failed. This error can happen for
+different reasons, often due to issues with your setup.
+```
+
diff --git a/content/ar/learn.md b/content/ar/learn.md
new file mode 100644
index 00000000..d382db6f
--- /dev/null
+++ b/content/ar/learn.md
@@ -0,0 +1,76 @@
+---
+title: Learn
+sidebar: false
+---
+
+للحصول على وثائق مشروع نمباى الرسمية عليك بزيارة[numpy.org/doc/stable](https://numpy.org/doc/stable).
+
+***
+
+Below is a curated collection of educational resources, both for self-learning and teaching others, developed by NumPy contributors and vetted by the community.
+
+## للمبتدئين
+
+يوجد الكثير من المعلومات حول مشروع نمباي هناك. If you are just starting, we'd strongly recommend the following:
+
+ **المحتوى التعليمي**
+
+- [دروس Quickstart](https://numpy.org/devdocs/user/quickstart.html)
+- [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
+- [NumPy Illustrated: The Visual Guide to NumPy _by Lev Maximov_](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
+- [Scientific Python Lectures](https://lectures.scientific-python.org/) Besides covering NumPy, these lectures offer a broader introduction to the scientific Python ecosystem.
+- [نمباى: الأساسيات الثابتة للمبتدئين](https://numpy.org/devdocs/user/absolute_beginners.html)
+- [برنامج نمباي التعليمي _من قبل نيكولاس روجير_](https://github.com/rougier/numpy-tutorial)
+- [CS231 لجامعة ستانفورد_من قبل جاستين جونسون_](http://cs231n.github.io/python-numpy-tutorial/)
+- [دليل استخدام نمباي](https://numpy.org/devdocs)
+
+ **الكتب**
+
+- [Guide to NumPy _by Travis E. Oliphant_](https://web.mit.edu/dvp/Public/numpybook.pdf) This is a free version 1 from 2006. For the latest copy (2015) see [here](https://dl.acm.org/doi/10.5555/2886196).
+- [من لغة البرمجة بايثون إلى نمباى \* ل نيكولاس ب. روجير\*](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
+- [محاضرات SciPy ممتازة](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877)_> لكلا من خوان نونيز إغليسياس وستيفان فان دير والت بالإضافة إلى هارييت داشنوف_
+
+You may also want to check out the [Goodreads list](https://www.goodreads.com/shelf/show/python-scipy) on the subject of "Python+SciPy." Most books there are about the "SciPy ecosystem," which has NumPy at its core.
+
+ **الفيديو**
+
+- [مقدمة للحوسبة الرقمية مع نمباى ](http://youtu.be/ZB7BZMhfPgk) _أليكساندر شابوت لوكلير_
+
+***
+
+## خيارات متقدمة
+
+لفهم أفضل لمفاهيم مشروع نمباى جرب هذة المصادر المتطورة مثل الفهرسة المتقدمة و والتقسيم والتكامل والجبر الخطى و.. إلخ.
+
+ **المحتوى التعليمي**
+
+- [100 تمرين لنمباى](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html) \* لنيكولاس بي روجير\*
+- [مقدمة لنمباى وScipy](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf) \* ل ام سكوت شيل\*
+- [Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/) _by Stéfan van der Walt_
+- [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
+
+ **الكتب**
+
+- [Python Data Science Handbook](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1098121228) _by Jake Vanderplas_
+- [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-Jupyter/dp/109810403X) _by Wes McKinney_
+- [الحوسبة العلمية بلغة البايثون: تطبيقات باستخدام نمباى وSciPy ومكتبة Matplotlib المُختصة بالإظهار المرئي للبيانات للحوسبة العلمية وتحليل البيانات](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) \* من قبل روبرت جونسون\*
+
+ **الفيديو**
+
+- [خيارات نمباي المتقدمة - قواعد البث والمسارات والفهرسة المتقدمة](https://www.youtube.com/watch?v=cYugp9IN1-Q) \* لخوان نونيز إغليسياس\*
+
+***
+
+## مناقشات نمباى
+
+- [مستقبل فهرسة نمباى](https://www.youtube.com/watch?v=o0EacbIbf58) \* ل جيمي فيرنانديز\*(2016)
+- Evolution of Array Computing in Python _by Ralf Gommers_ (2019)
+- [نمباى: إلى أى مدى تغير نمباى وما هى التغييرات المستقبلية له؟](https://www.youtube.com/watch?v=YFLVQFjRmPY) _ل ماتى بيكاس_ (2019)
+- [محتوى نمباى](https://www.youtube.com/watch?v=dBTJD_FDVjU) _بواسطة رالف غومرس وسيباستيان بيرغ وماتى بيكاس وتايلر ريدي وستيفان فان دير والت وتشارلز هاريس_ (2019)
+- [Brief Review of Array Computing in Python](https://www.youtube.com/watch?v=f176j2g2eNc) _by Travis Oliphant_ (2019)
+
+***
+
+## الاستشهاد بنمباي
+
+If NumPy has been significant in your research, and you would like to acknowledge the project in your academic publication, please see [this citation information](/citing-numpy).
diff --git a/content/ar/news.md b/content/ar/news.md
new file mode 100644
index 00000000..4da388be
--- /dev/null
+++ b/content/ar/news.md
@@ -0,0 +1,485 @@
+---
+title: الأخبار
+sidebar: false
+newsHeader: NumPy 2.2.0 released!
+date: 2024-12-08
+---
+
+### NumPy 2.2.0 released
+
+_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back
+into sync with the usual twice yearly release cycle. There have been a number
+of small cleanups, improvements to the StringDType, and better support for free
+threaded Python. Highlights are:
+
+- New functions `matvec` and `vecmat`,
+- Many improved annotations,
+- Improved support for the new StringDType,
+- Improved support for free threaded Python,
+- Fixes for f2py.
+
+This release supports Python versions 3.10-3.13.
+
+### NumPy 2.1.0 released
+
+_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
+drops support for Python 3.9. In addition to the usual bug fixes and
+updated Python support, it helps get NumPy back to its usual release
+cycle after the extended development of 2.0. The highlights for this
+release are:
+
+- Support for Python 3.13.
+- Preliminary support for free threaded Python 3.13.
+- Support for the array-api 2023.12 standard.
+
+Python versions 3.10-3.13 are supported by this release.
+
+### NumPy 2.0.0 released
+
+_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
+result of 11 months of development since the last feature release and is the
+work of 212 contributors spread over 1078 pull requests. It contains a large
+number of exciting new features as well as changes to both the Python and C
+APIs. It includes breaking changes that could not happen in a regular minor
+release - including an ABI break, changes to type promotion rules, and API
+changes which may not have been emitting deprecation warnings in 1.26.x. Key
+documents related to how to adapt to changes in NumPy 2.0 include:
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
+tells a bit of the story about how this release came together.
+
+### NumPy 2.0 release date: June 16
+
+_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
+released on June 16, 2024. This release has been over a year in the making, and
+is the first major release since 2006. Importantly, in addition to many new
+features and performance improvement, it contains **breaking changes** to the
+ABI as well as the Python and C APIs. It is likely that downstream packages and
+end user code needs to be adapted - if you can, please verify whether your code
+works with NumPy `2.0.0rc2`. **Please see the following for more details:**
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+### NumFOCUS end of the year fundraiser
+
+_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
+on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
+until December 23rd, 2023 will go directly to the NumFOCUS programs.
+
+Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
+or a coupon code ISUPPORTDATASCIENCE
+
+### NumPy 1.26.0 released
+
+_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
+is now available. The highlights of the release are:
+
+- Python 3.12.0 support.
+- Cython 3.0.0 compatibility.
+- Use of the Meson build system
+- Updated SIMD support
+- f2py fixes, meson and bind(x) support
+- Support for the updated Accelerate BLAS/LAPACK library
+
+The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
+transition to the Meson build system and provision of support for Cython 3.0.0.
+A total of 20 people contributed to this release and 59 pull requests were
+merged.
+
+The Python versions supported by this release are 3.9-3.12.
+
+### numpy.org is now available in Japanese and Portuguese
+
+_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
+Japanese and Portuguese. This wouldn’t be possible without our dedicated volunteers:
+
+_Portuguese:_
+
+- Melissa Weber Mendonça (melissawm)
+- Ricardo Prins (ricardoprins)
+- Getúlio Silva (getuliosilva)
+- Julio Batista Silva (jbsilva)
+- Alexandre de Siqueira (alexdesiqueira)
+- Alexandre B A Villares (villares)
+- Vini Salazar (vinisalazar)
+
+_Japanese:_
+
+- Atsushi Sakai (AtsushiSakai)
+- KKunai
+- Tom Kelly (TomKellyGenetics)
+- Yuji Kanagawa (kngwyu)
+- Tetsuo Koyama (tkoyama010)
+
+The work on the translation infrastructure is supported with funding from CZI.
+
+Looking ahead, we’d love to translate the website into more languages.
+If you’d like to help, please connect with the NumPy Translations Team on Slack:
+https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
+(Look for the #translations channel.) We are also building a Translations Team who will be
+working on localizing documentation and educational content across the Scientific Python
+ecosystem. If this piqued your interest, join us on the Scientific Python
+Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
+
+### NumPy 1.25.0 released
+
+_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
+is now available. The highlights of the release are:
+
+- Support for MUSL, there are now MUSL wheels.
+- Support for the Fujitsu C/C++ compiler.
+- Object arrays are now supported in einsum.
+- Support for the inplace matrix multiplication (`@=`).
+
+The NumPy 1.25.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase the execution speed, and clarify the
+documentation. There has also been preparatory work for the future NumPy 2.0.0,
+resulting in a large number of new and expired deprecations.
+
+A total of 148 people contributed to this release and 530 pull requests were
+merged.
+
+The Python versions supported by this release are 3.9-3.11.
+
+### Fostering an Inclusive Culture: Call for Participation
+
+_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
+
+How can we be better when it comes to diversity and inclusion?
+Read the report and find out how to get involved
+[here](https://contributor-experience.org/docs/posts/dei-report/).
+
+### NumPy documentation team leadership transition
+
+_Jan 6, 2023_ –- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
+documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
+contributions to the NumPy official documentation and educational materials,
+and Mukulika and Ross for stepping up.
+
+### NumPy 1.24.0 released
+
+_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
+is now available. The highlights of the release are:
+
+- New "dtype" and "casting" keywords for stacking functions.
+- New F2PY features and fixes.
+- Many new deprecations, check them out.
+- Many expired deprecations,
+
+The NumPy 1.24.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase execution speed, and clarify the documentation.
+There are a large number of new and expired deprecations due to changes in
+dtype promotion and cleanups. It is the work of 177 contributors spread over
+444 pull requests. The supported Python versions are 3.8-3.11.
+
+### Numpy 1.23.0 released
+
+_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
+is now available. The highlights of the release are:
+
+- Implementation of `loadtxt` in C, greatly improving its performance.
+- Exposure of DLPack at the Python level for easy data exchange.
+- Changes to the promotion and comparisons of structured dtypes.
+- Improvements to f2py.
+
+The NumPy 1.23.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase the execution speed, clarify the documentation,
+and expire old deprecations. It is the work of 151 contributors spread over
+494 pull requests. The Python versions supported by this release 3.8-3.10.
+Python 3.11 will be supported when it reaches the rc stage.
+
+### NumFOCUS DEI research study: call for participation
+
+_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
+research project
+funded by the Gordon & Betty Moore Foundation to
+understand the barriers to participation that contributors, particularly those
+from historically underrepresented groups, face in the open-source software
+community. The research team would like to talk to new contributors, project
+developers and maintainers, and those who have contributed in the past about
+their experiences joining and contributing to NumPy.
+
+**Interested in sharing your experiences?**
+
+Please complete this brief [“Participant Interest” form](https://numfocus.typeform.com/to/WBWVJSqe)
+which contains additional information on the research goals, privacy, and
+confidentiality considerations. Your participation will be valuable to the
+growth and sustainability of diverse and inclusive open-source software
+communities. Accepted participants will participate in a 30-minute interview
+with a research team member.
+
+### Numpy 1.22.0 release
+
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
+is now available. The highlights of the release are:
+
+- Type annotations of the main namespace are essentially complete. Upstream is
+ a moving target, so there will likely be further improvements, but the major
+ work is done. This is probably the most user visible enhancement in this
+ release.
+- A preliminary version of the proposed
+ [array API Standard](https://data-apis.org/array-api/latest/) is provided
+ (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
+ This is a step in creating a standard collection of functions that can be
+ used across libraries such as CuPy and JAX.
+- NumPy now has a DLPack backend. DLPack provides a common interchange format
+ for array (tensor) data.
+- New methods for `quantile`, `percentile`, and related functions. The new
+ methods provide a complete set of the methods commonly found in the
+ literature.
+- The universal functions have been refactored to implement most of
+ [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
+ This also unlocks the ability to experiment with the future DType API.
+- A new configurable memory allocator for use by downstream projects.
+
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
+over 609 pull requests. The Python versions supported by this release are
+3.8-3.10.
+
+### Advancing an inclusive culture in the scientific Python ecosystem
+
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
+[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
+to support the onboarding, inclusion, and retention of people from historically
+marginalized groups on scientific Python projects, and to structurally improve
+the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
+
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
+this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
+will support the creation of dedicated Contributor Experience Lead positions to
+identify, document, and implement practices to foster inclusive open-source
+communities. This project will be led by Melissa Mendonça (NumPy), with
+additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
+Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
+Joris Van den Bossche (Pandas).
+
+This is an ambitious project aiming to discover and implement activities that
+should structurally improve the community dynamics of our projects. By
+establishing these new cross-project roles, we hope to introduce a new
+collaboration model to the Scientific Python communities, allowing
+community-building work within the ecosystem to be done more efficiently and
+with greater outcomes. We also expect to develop a clearer picture of what
+works and what doesn't in our projects to engage and retain new contributors,
+especially from historically underrepresented groups. Finally, we plan on
+producing detailed reports on the actions executed, explaining how they have
+impacted our projects in terms of representation and interaction with our
+communities.
+
+The two-year project is expected to start by November 2021, and we are excited
+to see the results from this work!
+[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### 2021 NumPy survey
+
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
+NumPy users from 75 countries participated in our inaugural survey last year.
+The survey findings gave us a very good understanding of what we should focus
+on for the next 12 months.
+
+It’s time for another survey, and we are counting on you once again. It will
+take about 15 minutes of your time. Besides English, the survey questionnaire
+is available in 8 additional languages: Bangla, French, Hindi, Japanese,
+Mandarin, Portuguese, Russian, and Spanish.
+
+Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+### Numpy 1.21.0 release
+
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
+is now available. The highlights of the release are:
+
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- improved documentation,
+- improved annotations,
+- new `PCG64DXSM` bitgenerator for random numbers.
+
+This NumPy release is the result of 581 merged pull requests contributed by 175
+people. The Python versions supported for this release are 3.7-3.9, support
+for Python 3.10 will be added after Python 3.10 is released.
+
+### 2020 NumPy survey results
+
+_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
+and faculty from the University of Michigan and the University of Maryland
+conducted the first official NumPy community survey. Find the survey results
+here: https://numpy.org/user-survey-2020/.
+
+### Numpy 1.20.0 release
+
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
+is now available. This is the largest NumPy release to date, thanks to 180+
+contributors. The two most exciting new features are:
+
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
+ containing `ArrayLike` and `DtypeLike` aliases that users and downstream
+ libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
+ AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
+ performance improvements for many functions (examples:
+ [sin/cos](https://github.com/numpy/numpy/pull/17587),
+ [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### Diversity in the NumPy project
+
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
+
+### First official NumPy paper published in Nature!
+
+_Sep 16, 2020_ -- We are pleased to announce the publication of
+[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
+as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
+The paper covers applications and fundamental concepts of array programming,
+the rich scientific Python ecosystem built on top of NumPy, and the recently added
+array protocols to facilitate interoperability with external array and tensor
+libraries like CuPy, Dask, and JAX.
+
+### Python 3.9 is coming, when will NumPy release binary wheels?
+
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
+early adopter of Python versions, you may be dissapointed to find that NumPy
+(and other binary packages like SciPy) will not have binary wheels ready on the
+day of the release. It is a major effort to adapt the build infrastructure to a
+new Python version and it typically takes a few weeks for the packages to appear
+on PyPI and conda-forge. In preparation for this event, please make sure to
+
+- update your `pip` to version 20.1 at least to support `manylinux2010` and
+ `manylinux2014`
+- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
+ trying to build from source.
+
+### Numpy 1.19.2 release
+
+_Sep 10, 2020_ -- NumPy
+1.19.2 is now available.
+This latest release in the 1.19 series fixes several bugs, prepares for the
+upcoming Cython 3.x
+release and pins
+setuptools to keep distutils working while upstream modifications are ongoing.
+The aarch64 wheels are built with the latest manylinux2014 release that fixes
+the problem of differing page sizes used by different linux distros.
+
+### The inaugural NumPy survey is live!
+
+_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
+decision-making about the development of NumPy as software and as a community.
+The survey is available in 8 additional languages besides English:
+Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
+
+Please help us make NumPy better and take the survey
+[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+### NumPy has a new logo!
+
+_Jun 24, 2020_ -- NumPy now has a new logo:
+
+
+
+The logo is a modern take on the old one, with a cleaner design. Thanks to
+Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
+for the old logo that served us well for 15+ years.
+
+### NumPy 1.19.0 release
+
+_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
+without Python 2 support, hence it was a "clean-up release". The minimum
+supported Python version is now Python 3.6. An important new feature is that
+the random number generation infrastructure that was introduced in NumPy 1.17.0
+is now accessible from Cython.
+
+### Season of Docs acceptance
+
+_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
+the Google Season of Docs program. We are excited about the opportunity to
+work with a technical writer to improve NumPy's documentation once again! For more
+details, please see
+[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
+[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
+
+### NumPy 1.18.0 release
+
+_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
+1.17.0, this is a consolidation release. It is the last minor release that will
+support Python 3.5. Highlights of the release includes the addition of basic
+infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
+
+Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
+
+### NumPy receives a grant from the Chan Zuckerberg Initiative
+
+_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
+
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
+
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
+
+
+
+## الإصدارات
+
+Here is a list of NumPy releases, with links to release notes. Bugfix
+releases (only the `z` changes in the `x.y.z` version number) have no new
+features; minor releases (the `y` increases) do.
+
+- NumPy 2.2.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.5)) -- _19 Apr 2025_.
+- NumPy 2.2.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.4)) -- _16 Mar 2025_.
+- NumPy 2.2.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.3)) -- _13 Feb 2025_.
+- NumPy 2.2.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.2)) -- _18 Jan 2025_.
+- NumPy 2.2.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.1)) -- _21 Dec 2024_.
+- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
+- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
+- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
+- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
+- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
+- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
+- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
+- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
+- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
+- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
+- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
+- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
+- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
+- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
+- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
+- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
+- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
+- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
+- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
+- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
+- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
+- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
+- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
+- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
+- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
+- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
+- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
+- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
+- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
+- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
+- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
+- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
+- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
+- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
+- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
+- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
+- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
+- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
+- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
+- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
+- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
+- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
+- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
+- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
+- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
diff --git a/content/ar/press-kit.md b/content/ar/press-kit.md
new file mode 100644
index 00000000..92343fd4
--- /dev/null
+++ b/content/ar/press-kit.md
@@ -0,0 +1,8 @@
+---
+title: Press kit
+sidebar: false
+---
+
+نرحب بتسهيل إدراج مشروع نمباى عليك سواء فى بحثك الأكاديمى أو كمادة دراسية أو كعرض.
+
+سوف تجد عدة إصدارات عالية الدقة من شعار الأرقام [هنا](https://github.com/numpy/numpy/tree/main/branding/logo). وعليك أن تلاحظ أنه باستخدام موارد numpy.org فأنت توافق على[ قواعد السلوك لنمباى](/code-of-conduct).
diff --git a/content/ar/privacy.md b/content/ar/privacy.md
new file mode 100644
index 00000000..93c6c713
--- /dev/null
+++ b/content/ar/privacy.md
@@ -0,0 +1,8 @@
+---
+title: سياسة الخصوصية
+sidebar: false
+---
+
+**numpy.org** يتم تشغيلة بواسطة [NumFOCUS, Inc.](https://numfocus.org), الراعى المالى لمشروع نمباى. للوصول إلى سياسة الخصوصية لهذا الموقع برجاء زيارة https://numfocus.org/privacy-policy.
+
+إذا كان لديك أسئلة بخصوص سياسة أو جمع بيانات NumFOCUS واستخدامها بالإضافة إلى ممارسات الإفصاح، يرجى الاتصال بموظفى NumFOCUS على موقع privacy@numfocus.org.
diff --git a/content/ar/report-handling-manual.md b/content/ar/report-handling-manual.md
new file mode 100644
index 00000000..32998bc6
--- /dev/null
+++ b/content/ar/report-handling-manual.md
@@ -0,0 +1,89 @@
+---
+title: قواعد السلوك لنمباي - كيفية متابعة تقرير
+sidebar: false
+---
+
+This is the manual followed by NumPy’s Code of Conduct Committee. It’s used when we respond to an issue to make sure we’re consistent and fair.
+
+Enforcing the [Code of Conduct](/code-of-conduct) impacts our community today and for the future. It’s an action that we do not take lightly. When reviewing enforcement measures, the Code of Conduct Committee will keep the following values and guidelines in mind:
+
+- Act in a personal manner rather than impersonal. The Committee can engage the parties to understand the situation while respecting the privacy and any necessary confidentiality of reporters. However, sometimes it is necessary to communicate with one or more individuals directly: the Committee’s goal is to improve the health of our community rather than only produce a formal decision.
+- Emphasize empathy for individuals rather than judging behavior, avoiding binary labels of “good” and “bad/evil”. Overt, clear-cut aggression and harassment exist, and we will address them firmly. But many scenarios that can prove challenging to resolve are those where normal disagreements devolve into unhelpful or harmful behavior from multiple parties. Understanding the full context and finding a path that re-engages all is hard, but ultimately the most productive for our community.
+- We understand that email is a difficult medium and can be isolating. Receiving criticism over email, without personal contact, can be particularly painful. This makes it especially important to keep an atmosphere of open-minded respect for the views of others. It also means that we must be transparent in our actions, and that we will do everything in our power to make sure that all our members are treated fairly and with sympathy.
+- Discrimination can be subtle and it can be unconscious. It can show itself as unfairness and hostility in otherwise ordinary interactions. We know that this does occur, and we will take care to look out for it. We would very much like to hear from you if you feel you have been treated unfairly, and we will use these procedures to make sure that your complaint is heard and addressed.
+- Help increase engagement in good discussion practice: try to identify where discussion may have broken down, and provide actionable information, pointers, and resources that can lead to positive change on these points.
+- Be mindful of the needs of new members: provide them with explicit support and consideration, with the aim of increasing participation from underrepresented groups in particular.
+- Individuals come from different cultural backgrounds and native languages. Try to identify any honest misunderstandings caused by a non-native speaker and help them understand the issue and what they can change to avoid causing offence. Complex discussion in a foreign language can be very intimidating, and we want to grow our diversity also across nationalities and cultures.
+
+## Mediation
+
+Voluntary informal mediation is a tool at our disposal. In contexts such as when two or more parties have all escalated to the point of inappropriate behavior (something sadly common in human conflict), it may be useful to facilitate a mediation process. This is only an example: the Committee can consider mediation in any case, mindful that the process is meant to be strictly voluntary and no party can be pressured to participate. If the Committee suggests mediation, it should:
+
+- Find a candidate who can serve as a mediator.
+- Obtain the agreement of the reporter(s). The reporter(s) have complete freedom to decline the mediation idea or to propose an alternate mediator.
+- Obtain the agreement of the reported person(s).
+- Settle on the mediator: while parties can propose a different mediator than the suggested candidate, only if a common agreement is reached on all terms can the process move forward.
+- Establish a timeline for mediation to complete, ideally within two weeks.
+
+The mediator will engage with all the parties and seek a resolution that is satisfactory to all. Upon completion, the mediator will provide a report (vetted by all parties to the process) to the Committee, with recommendations on further steps. The Committee will then evaluate these results (whether a satisfactory resolution was achieved or not) and decide on any additional action deemed necessary.
+
+## How the Committee will respond to reports
+
+When the Committee (or a Committee member) receives a report, they will first determine whether the report is about a clear and severe breach (as defined below). If so, immediate action needs to be taken in addition to the regular report handling process.
+
+## Clear and severe breach actions
+
+We know that it is painfully common for internet communication to start at or devolve into obvious and flagrant abuse. We will deal quickly with clear and severe breaches like personal threats, violent, sexist or racist language.
+
+When a member of the Code of Conduct Committee becomes aware of a clear and severe breach, they will do the following:
+
+- Immediately disconnect the originator from all NumPy communication channels.
+- Reply to the reporter that their report has been received and that the originator has been disconnected.
+- In every case, the moderator should make a reasonable effort to contact the originator, and tell them specifically how their language or actions qualify as a “clear and severe breach”. The moderator should also say that, if the originator believes this is unfair or they want to be reconnected to NumPy, they have the right to ask for a review, as below, by the Code of Conduct Committee. The moderator should copy this explanation to the Code of Conduct Committee.
+- The Code of Conduct Committee will formally review and sign off on all cases where this mechanism has been applied to make sure it is not being used to control ordinary heated disagreement.
+
+## Report handling
+
+When a report is sent to the Committee they will immediately reply to the reporter to confirm receipt. This reply must be sent within 72 hours, and the group should strive to respond much quicker than that.
+
+If a report doesn’t contain enough information, the Committee will obtain all relevant data before acting. The Committee is empowered to act on the Steering Council’s behalf in contacting any individuals involved to get a more complete account of events.
+
+The Committee will then review the incident and determine, to the best of their ability:
+
+- What happened.
+- Whether this event constitutes a Code of Conduct violation.
+- Who are the responsible party(ies).
+- Whether this is an ongoing situation, and there is a threat to anyone’s physical safety.
+
+This information will be collected in writing, and whenever possible the group’s deliberations will be recorded and retained (i.e. chat transcripts, email discussions, recorded conference calls, summaries of voice conversations, etc).
+
+It is important to retain an archive of all activities of this Committee to ensure consistency in behavior and provide institutional memory for the project. To assist in this, the default channel of discussion for this Committee will be a private mailing list accessible to current and future members of the Committee as well as members of the Steering Council upon justified request. If the Committee finds the need to use off-list communications (e.g. phone calls for early/rapid response), it should in all cases summarize these back to the list so there’s a good record of the process.
+
+The Code of Conduct Committee should aim to have a resolution agreed upon within two weeks. In the event that a resolution can’t be determined in that time, the Committee will respond to the reporter(s) with an update and projected timeline for resolution.
+
+## Resolutions
+
+The Committee must agree on a resolution by consensus. If the group cannot reach consensus and deadlocks for over a week, the group will turn the matter over to the Steering Council for resolution.
+
+Possible responses may include:
+
+- Taking no further action:
+ - if we determine no violations have occurred;
+ - if the matter has been resolved publicly while the Committee was considering responses.
+- Coordinating voluntary mediation: if all involved parties agree, the Committee may facilitate a mediation process as detailed above.
+- Remind publicly, and point out that some behavior/actions/language have been judged inappropriate and why in the current context, or can but hurtful to some people, requesting the community to self-adjust.
+- A private reprimand from the Committee to the individual(s) involved. In this case, the group chair will deliver that reprimand to the individual(s) over email, cc’ing the group.
+- A public reprimand. In this case, the Committee chair will deliver that reprimand in the same venue that the violation occurred, within the limits of practicality. E.g., the original mailing list for an email violation, but for a chat room discussion where the person/context may be gone, they can be reached by other means. The group may choose to publish this message elsewhere for documentation purposes.
+- A request for a public or private apology, assuming the reporter agrees to this idea: they may at their discretion refuse further contact with the violator. The chair will deliver this request. The Committee may, if it chooses, attach “strings” to this request: for example, the group may ask a violator to apologize in order to retain one’s membership on a mailing list.
+- A “mutually agreed upon hiatus” where the Committee asks the individual to temporarily refrain from community participation. If the individual chooses not to take a temporary break voluntarily, the Committee may issue a “mandatory cooling off period”.
+- A permanent or temporary ban from some or all NumPy spaces (mailing lists, gitter.im, etc.). The group will maintain records of all such bans so that they may be reviewed in the future or otherwise maintained.
+
+Once a resolution is agreed upon, but before it is enacted, the Committee will contact the original reporter and any other affected parties and explain the proposed resolution. The Committee will ask if this resolution is acceptable, and must note feedback for the record.
+
+Finally, the Committee will make a report to the NumPy Steering Council (as well as the NumPy core team in the event of an ongoing resolution, such as a ban).
+
+The Committee will never publicly discuss the issue; all public statements will be made by the chair of the Code of Conduct Committee or the NumPy Steering Council.
+
+## Conflicts of Interest
+
+In the event of any conflict of interest, a Committee member must immediately notify the other members, and recuse themselves if necessary.
diff --git a/content/ar/tabcontents.yaml b/content/ar/tabcontents.yaml
new file mode 100644
index 00000000..ecfce140
--- /dev/null
+++ b/content/ar/tabcontents.yaml
@@ -0,0 +1,275 @@
+params:
+ machinelearning:
+ paras:
+ - para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlow’s](https://www.tensorflow.org) deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing.
+ para2: Statistical techniques called [ensemble methods](https://scikit-learn.org/stable/modules/ensemble.html) such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://xgboost.readthedocs.io/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) — one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
+ arraylibraries:
+ intro:
+ - text: NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.
+ headers:
+ - text: Array Library
+ - text: Capabilities & Application areas
+ libraries:
+ - title: Dask
+ text: Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
+ img: /images/content_images/arlib/dask.png
+ alttext: Dask
+ url: https://dask.org/
+ - title: CuPy
+ text: NumPy-compatible array library for GPU-accelerated computing with Python.
+ img: /images/content_images/arlib/cupy.png
+ alttext: CuPy
+ url: https://cupy.dev
+ - title: JAX
+ text: "Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU."
+ img: /images/content_images/arlib/jax_logo_250px.png
+ alttext: JAX
+ url: https://jax.readthedocs.io/
+ - title: Xarray
+ text: Labeled, indexed multi-dimensional arrays for advanced analytics and visualization.
+ img: /images/content_images/arlib/xarray.png
+ alttext: xarray
+ url: https://xarray.pydata.org/en/stable/index.html
+ - title: Sparse
+ text: NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
+ img: /images/content_images/arlib/sparse.png
+ alttext: sparse
+ url: https://sparse.pydata.org/en/latest/
+ - title: PyTorch
+ text: Deep learning framework that accelerates the path from research prototyping to production deployment.
+ img: /images/content_images/arlib/pytorch-logo-dark.svg
+ alttext: PyTorch
+ url: https://pytorch.org/
+ - title: TensorFlow
+ text: An end-to-end platform for machine learning to easily build and deploy ML powered applications.
+ img: /images/content_images/arlib/tensorflow-logo.svg
+ alttext: TensorFlow
+ url: https://www.tensorflow.org
+ - title: Arrow
+ text: A cross-language development platform for columnar in-memory data and analytics.
+ img: /images/content_images/arlib/arrow.png
+ alttext: arrow
+ url: https://arrow.apache.org/
+ - title: xtensor
+ text: Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
+ img: /images/content_images/arlib/xtensor.png
+ alttext: xtensor
+ url: https://github.com/xtensor-stack/xtensor-python
+ - title: Awkward Array
+ text: Manipulate JSON-like data with NumPy-like idioms.
+ img: /images/content_images/arlib/awkward.svg
+ alttext: awkward
+ url: https://awkward-array.org/
+ - title: uarray
+ text: Python backend system that decouples API from implementation; unumpy provides a NumPy API.
+ img: /images/content_images/arlib/uarray.png
+ alttext: uarray
+ url: https://uarray.org/en/latest/
+ - title: tensorly
+ text: Tensor learning, algebra and backends to seamlessly use NumPy, PyTorch, TensorFlow or CuPy.
+ img: /images/content_images/arlib/tensorly.png
+ alttext: tensorly
+ url: http://tensorly.org/stable/home.html
+ scientificdomains:
+ intro:
+ - text: Nearly every scientist working in Python draws on the power of NumPy.
+ - text: "NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant."
+ libraries:
+ - title: Quantum Computing
+ alttext: A computer chip.
+ img: /images/content_images/sc_dom_img/quantum_computing.svg
+ links:
+ - url: https://qutip.org
+ label: QuTiP
+ - url: https://pyquil-docs.rigetti.com/en/stable
+ label: PyQuil
+ - url: https://qiskit.org
+ label: Qiskit
+ - url: https://pennylane.ai
+ label: PennyLane
+ - title: Statistical Computing
+ alttext: A line graph with the line moving up.
+ img: /images/content_images/sc_dom_img/statistical_computing.svg
+ links:
+ - url: https://pandas.pydata.org/
+ label: Pandas
+ - url: https://www.statsmodels.org/
+ label: statsmodels
+ - url: https://xarray.pydata.org/en/stable/
+ label: Xarray
+ - url: https://seaborn.pydata.org/
+ label: Seaborn
+ - title: Signal Processing
+ alttext: A bar chart with positive and negative values.
+ img: /images/content_images/sc_dom_img/signal_processing.svg
+ links:
+ - url: https://www.scipy.org/
+ label: SciPy
+ - url: https://pywavelets.readthedocs.io/
+ label: PyWavelets
+ - url: https://python-control.org/
+ label: python-control
+ - url: https://hyperspy.org/
+ label: HyperSpy
+ - title: Image Processing
+ alttext: An photograph of the mountains.
+ img: /images/content_images/sc_dom_img/image_processing.svg
+ links:
+ - url: https://scikit-image.org/
+ label: Scikit-image
+ - url: https://opencv.org/
+ label: OpenCV
+ - url: https://mahotas.rtfd.io/
+ label: Mahotas
+ - title: Graphs and Networks
+ alttext: A simple graph.
+ img: /images/content_images/sc_dom_img/sd6.svg
+ links:
+ - url: https://networkx.org/
+ label: NetworkX
+ - url: https://graph-tool.skewed.de/
+ label: graph-tool
+ - url: https://igraph.org/python/
+ label: igraph
+ - url: https://pygsp.rtfd.io/
+ label: PyGSP
+ - title: Astronomy
+ alttext: A telescope.
+ img: /images/content_images/sc_dom_img/astronomy_processes.svg
+ links:
+ - url: https://www.astropy.org/
+ label: AstroPy
+ - url: https://sunpy.org/
+ label: SunPy
+ - url: https://spacepy.github.io/
+ label: SpacePy
+ - title: Cognitive Psychology
+ alttext: A human head with gears.
+ img: /images/content_images/sc_dom_img/cognitive_psychology.svg
+ links:
+ - url: https://www.psychopy.org/
+ label: PsychoPy
+ - title: Bioinformatics
+ alttext: A strand of DNA.
+ img: /images/content_images/sc_dom_img/bioinformatics.svg
+ links:
+ - url: https://biopython.org/
+ label: BioPython
+ - url: http://scikit-bio.org/
+ label: Scikit-Bio
+ - url: https://github.com/openvax/pyensembl
+ label: PyEnsembl
+ - url: http://etetoolkit.org/
+ label: ETE
+ - title: Bayesian Inference
+ alttext: A graph with a bell-shaped curve.
+ img: /images/content_images/sc_dom_img/bayesian_inference.svg
+ links:
+ - url: https://pystan.readthedocs.io/en/latest/
+ label: PyStan
+ - url: https://docs.pymc.io/
+ label: PyMC
+ - url: https://arviz-devs.github.io/arviz/
+ label: ArviZ
+ - url: https://emcee.readthedocs.io/
+ label: emcee
+ - title: Mathematical Analysis
+ alttext: Four mathematical symbols.
+ img: /images/content_images/sc_dom_img/mathematical_analysis.svg
+ links:
+ - url: https://www.scipy.org/
+ label: SciPy
+ - url: https://www.sympy.org/
+ label: SymPy
+ - url: https://www.cvxpy.org/
+ label: cvxpy
+ - url: https://fenicsproject.org/
+ label: FEniCS
+ - title: Chemistry
+ alttext: A test tube.
+ img: /images/content_images/sc_dom_img/chemistry.svg
+ links:
+ - url: https://cantera.org/
+ label: Cantera
+ - url: https://www.mdanalysis.org/
+ label: MDAnalysis
+ - url: https://github.com/rdkit/rdkit
+ label: RDKit
+ - url: https://www.pybamm.org/
+ label: PyBaMM
+ - title: Geoscience
+ alttext: The Earth.
+ img: /images/content_images/sc_dom_img/geoscience.svg
+ links:
+ - url: https://pangeo.io/
+ label: Pangeo
+ - url: https://simpeg.xyz/
+ label: Simpeg
+ - url: https://github.com/obspy/obspy/wiki
+ label: ObsPy
+ - url: https://www.fatiando.org/
+ label: Fatiando a Terra
+ - title: Geographic Processing
+ alttext: A map.
+ img: /images/content_images/sc_dom_img/GIS.svg
+ links:
+ - url: https://shapely.readthedocs.io/
+ label: Shapely
+ - url: https://geopandas.org/
+ label: GeoPandas
+ - url: https://python-visualization.github.io/folium
+ label: Folium
+ - title: Architecture & Engineering
+ alttext: A microprocessor development board.
+ img: /images/content_images/sc_dom_img/robotics.svg
+ links:
+ - url: https://compas.dev/
+ label: COMPAS
+ - url: https://cityenergyanalyst.com/
+ label: City Energy Analyst
+ - url: https://nortikin.github.io/sverchok/
+ label: Sverchok
+ datascience:
+ intro: "NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:"
+ image1:
+ - img: /images/content_images/ds-landscape.png
+ alttext: Diagram of Python Libraries. The five catagories are 'Extract, Transform, Load', 'Data Exploration', 'Data Modeling', 'Data Evaluation' and 'Data Presentation'.
+ image2:
+ - img: /images/content_images/data-science.png
+ alttext: Diagram of three overlapping circles. The circles are labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
+ examples:
+ - text: "Extract, Transform, Load: [Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor-devs.github.io/pyjanitor/)"
+ - text: "Exploratory analysis: [Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
+ - text: "Model and evaluate: [scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC](https://docs.pymc.io), [spaCy](https://spacy.io)"
+ - text: "Report in a dashboard: [Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://voila.readthedocs.io/)"
+ content:
+ - text: For high data volumes, [Dask](https://dask.org) and [Ray](https://ray.io/) are designed to scale. Stable deployments rely on data versioning ([DVC](https://dvc.org)), experiment tracking ([MLFlow](https://mlflow.org)), and workflow automation ([Airflow](https://airflow.apache.org), [Dagster](https://dagster.io) and [Prefect](https://www.prefect.io)).
+ visualization:
+ images:
+ - url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
+ img: /images/content_images/v_matplotlib.png
+ alttext: A streamplot made in matplotlib
+ - url: https://github.com/yhat/ggpy
+ img: /images/content_images/v_ggpy.png
+ alttext: A scatter-plot graph made in ggpy
+ - url: https://www.journaldev.com/19692/python-plotly-tutorial
+ img: /images/content_images/v_plotly.png
+ alttext: A box-plot made in plotly
+ - url: https://altair-viz.github.io/gallery/streamgraph.html
+ img: /images/content_images/v_altair.png
+ alttext: A streamgraph made in altair
+ - url: https://seaborn.pydata.org
+ img: /images/content_images/v_seaborn.png
+ alttext: A pairplot of two types of graph, a plot-graph and a frequency graph made in seaborn"
+ - url: https://docs.pyvista.org/
+ img: /images/content_images/v_pyvista.png
+ alttext: A 3D volume rendering made in PyVista.
+ - url: https://napari.org
+ img: /images/content_images/v_napari.png
+ alttext: A multi-dimensionan image made in napari.
+ - url: https://vispy.org/gallery/index.html
+ img: /images/content_images/v_vispy.png
+ alttext: A Voronoi diagram made in vispy.
+ content:
+ - text: NumPy is an essential component in the burgeoning [Python visualization landscape](https://pyviz.org/overviews/index.html), which includes [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://napari.org/), and [PyVista](https://docs.pyvista.org/), to name a few.
+ - text: NumPy's accelerated processing of large arrays allows researchers to visualize datasets far larger than native Python could handle.
diff --git a/content/ar/teams/index.md b/content/ar/teams/index.md
new file mode 100644
index 00000000..d510afd2
--- /dev/null
+++ b/content/ar/teams/index.md
@@ -0,0 +1,39 @@
+---
+title: هيئات نمباي
+sidebar: false
+---
+
+نحن فريق دولي نسعى لدعم المجتمعات العلمية والبحثية في جميع دول العالم وذلك من خلال إنشاء برامج عالية الجودة ومفتوحة المصدر.
+[Join us](/contribute)!
+
+### Maintainers
+
+{{< grid file="maintainers.toml" columns="2 3 4 5" />}}
+
+### Docs team
+
+{{< grid file="docs-team.toml" columns="2 3 4 5" />}}
+
+### Web team
+
+{{< grid file="web-team.toml" columns="2 3 4 5" />}}
+
+### Triage team
+
+{{< grid file="triage-team.toml" columns="2 3 4 5" />}}
+
+### Survey team
+
+{{< grid file="survey-team.toml" columns="2 3 4 5" />}}
+
+### Translations team
+
+{{< grid file="translations-team.toml" columns="2 3 4 5" />}}
+
+### Emeritus maintainers
+
+{{< grid file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
+
+# الحوكمة
+
+For the list of the Steering Council members, please see [here](https://numpy.org/about/).
diff --git a/content/ar/user-survey-2020.md b/content/ar/user-survey-2020.md
new file mode 100644
index 00000000..98504821
--- /dev/null
+++ b/content/ar/user-survey-2020.md
@@ -0,0 +1,16 @@
+---
+title: استطلاع مجتمع نمباي لعام 2020
+sidebar: false
+---
+
+في عام 2020، شارك فريق استطلاع نمباي بإجراء أول دراسة استقصائية رسمية للمجتمع مع الطلاب وأعضاء هيئة التدريس الملتحقين ببرنامج ماجستير في منهجية الاستطلاع الذي تستضيفه جامعتي ميتشيجان وميريلاند. شارك أكثر من 1200 مستخدم من 75 دولة لمساعدتنا في تصميم مخطط لمجتمع نمباي كما عبروا عن أفكارهم حول مستقبل المشروع.
+
+{{< figure >}}
+{{< /figure >}}
+
+**[قم بتحميل هذا التقرير ](/surveys/NumPy_usersurvey_2020_report.pdf)** لإلقاء نظرة أدق على نتائج الاستطلاع.
+
+للنقاط الأكثر أهمية، تحقق من **[هذة التصاميم التي تتضمن معلومات](https://github.com/numpy/numpy-surveys/blob/master/images/2020NumPysurveyresults_community_infographic.pdf)**.
+
+أمستعد لأكثر من ذلك؟ أمستعد لأكثر من ذلك؟ قم بزيارة **https://numpy.org/user-survey-2020-details/**.
+
diff --git a/content/ar/user-surveys.md b/content/ar/user-surveys.md
new file mode 100644
index 00000000..05ec6764
--- /dev/null
+++ b/content/ar/user-surveys.md
@@ -0,0 +1,10 @@
+---
+title: استطلاعات مستخدمي NUMPY
+sidebar: false
+---
+
+**2020** أجرى فريق استطلاع NumPy أول دراسة استقصائية رسمية لمجتمع NumPy وذلك بالشراكة مع الطلاب وأعضاء هيئة التدريس من جامعة ميشيغان وجامعة ميريلاند. بإمكانك معرفة نتائج الدراسة الاستقصائية من هنا [here](https://numpy.org/user-survey-2020/).
+
+**2021** وتحلل البيانات المجمعة حاليا.
+
+إذا كان لديك أي أسئلة أو اقتراحات للاستطلاعات السابقة أو المستقبلية، يرجى فتح طلب من هنا [](https://github.com/numpy/numpy-surveys/issues).
diff --git a/content/ca/404.md b/content/ca/404.md
new file mode 100644
index 00000000..7fe5d79a
--- /dev/null
+++ b/content/ca/404.md
@@ -0,0 +1,8 @@
+---
+title: 404
+sidebar: false
+---
+
+Oops! You've reached a dead end.
+
+If you think something should be here, you can [open an issue](https://github.com/numpy/numpy.org/issues) on GitHub.
diff --git a/content/ca/_index.md b/content/ca/_index.md
new file mode 100644
index 00000000..43b25e39
--- /dev/null
+++ b/content/ca/_index.md
@@ -0,0 +1,49 @@
+---
+title: NumPy
+---
+
+{{< grid columns="1 2 2 3" >}}
+
+[[item]]
+type = 'card'
+title = 'Powerful N-dimensional arrays'
+body = '''
+Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today.
+'''
+
+[[item]]
+type = 'card'
+title = 'Numerical computing tools'
+body = '''
+NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.
+'''
+
+[[item]]
+type = 'card'
+title = 'Open source'
+body = '''
+Distributed under a liberal [BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt), NumPy is developed and maintained [publicly on GitHub](https://github.com/numpy/numpy) by a vibrant, responsive, and diverse [community](/community).
+'''
+
+[[item]]
+type = 'card'
+title = 'Interoperable'
+body = '''
+NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.
+'''
+
+[[item]]
+type = 'card'
+title = 'Performant'
+body = '''
+The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code.
+'''
+
+[[item]]
+type = 'card'
+title = 'Easy to use'
+body = '''
+NumPy's high level syntax makes it accessible and productive for programmers from any background or experience level.
+'''
+
+{{< /grid>}}
diff --git a/content/ca/about.md b/content/ca/about.md
new file mode 100644
index 00000000..29e14c04
--- /dev/null
+++ b/content/ca/about.md
@@ -0,0 +1,88 @@
+---
+title: About Us
+sidebar: false
+---
+
+NumPy is an open source project that enables numerical computing with Python. It was created in 2005 building on the early work of the Numeric and Numarray libraries. NumPy will always be 100% open source software and free for all to use. It is released under the liberal terms of the [modified BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt).
+
+NumPy is developed in the open on GitHub, through the consensus of the NumPy and wider scientific Python community. For more information on our governance approach, please see our [Governance Document](https://www.numpy.org/devdocs/dev/governance/index.html).
+
+## Steering Council
+
+The NumPy Steering Council is the project's governing body. Its role is to ensure, through working with and serving the broader NumPy community, the long-term sustainability of the project, both as a software package and community. The NumPy Steering Council currently consists of the following members (in alphabetical order, by last name):
+
+- Sebastian Berg
+- Ralf Gommers
+- Charles Harris
+- Inessa Pawson
+- Matti Picus
+- Stéfan van der Walt
+- Melissa Weber Mendonça
+- Marten van Kerkwijk
+- Nathan Goldbaum
+
+Emeritus:
+
+- Alex Griffing (2015-2017)
+- Allan Haldane (2015-2021)
+- Travis Oliphant (project founder, 2005-2012)
+- Nathaniel Smith (2012-2021)
+- Julian Taylor (2013-2021)
+- Jaime Fernández del Río (2014-2021)
+- Pauli Virtanen (2008-2021)
+- Eric Wieser (2017-2025)
+- Stephan Hoyer (2017-2025)
+
+To contact the NumPy Steering Council, please email numpy-team@googlegroups.com.
+
+## Teams
+
+The NumPy project leadership is actively working on diversifying contribution pathways to the project.
+NumPy currently has the following teams:
+
+- development
+- documentation
+- triage
+- website
+- survey
+- translations
+- sprint mentors
+- optimization
+- funding and grants
+
+See the [Team](/teams) page for more info.
+
+## NumFOCUS Subcommittee
+
+- Charles Harris
+- Ralf Gommers
+- Inessa Pawson
+- Sebastian Berg
+- External member: Thomas Caswell
+
+## Sponsors
+
+{{< sponsors >}}
+
+## Institutional Partners
+
+Institutional Partners are organizations that support the project by employing people that contribute to NumPy as part of their job. Current Institutional Partners include:
+
+- UC Berkeley (Stéfan van der Walt)
+- Quansight (Nathan Goldbaum, Ralf Gommers, Matti Picus, Melissa Weber Mendonça, Mateusz Sokol, Rohit Goswami)
+- NVIDIA (Sebastian Berg)
+
+{{< partners >}}
+
+## Donate
+
+If you have found NumPy useful in your work, research, or company, please consider a donation to the project commensurate with your resources. Any amount helps! All donations will be used strictly to fund the development of NumPy’s open source software, documentation, and community.
+
+NumPy is a Sponsored Project of NumFOCUS, a 501(c)(3) nonprofit charity in the United States. NumFOCUS provides NumPy with fiscal, legal, and administrative support to help ensure the health and sustainability of the project. Visit [numfocus.org](https://numfocus.org) for more information.
+
+Donations to NumPy are managed by [NumFOCUS](https://numfocus.org). For donors in the United States, your gift is tax-deductible to the extent provided by law. As with any donation, you should consult with your tax advisor about your particular tax situation.
+
+NumPy's Steering Council will make the decisions on how to best use any funds received. Technical and infrastructure priorities are documented on the [NumPy Roadmap](https://www.numpy.org/neps/index.html#roadmap).
+
+{{
+
+**Array computing** is based on **arrays** data structures. _Arrays_ are used
+to organize vast amounts of data such that a related set of values can be easily
+sorted, searched, mathematically manipulated, and transformed easily and quickly.
+
+Array computing is _unique_ as it involves operating on the data array _at
+once_. What this means is that any array operation applies to an entire set of
+values in one shot. This vectorized approach provides speed and simplicity by
+enabling programmers to code and operate on aggregates of data, without having
+to use loops of individual scalar operations.
diff --git a/content/ca/case-studies/blackhole-image.md b/content/ca/case-studies/blackhole-image.md
new file mode 100644
index 00000000..ca6f4351
--- /dev/null
+++ b/content/ca/case-studies/blackhole-image.md
@@ -0,0 +1,127 @@
+---
+title: "Case Study: First Image of a Black Hole"
+sidebar: false
+---
+
+{{< figure
+ src='/images/content_images/cs/blackhole.jpg'
+ title='Black Hole M87'
+ alt='black hole image'
+ attribution='(Image Credits: Event Horizon Telescope Collaboration)'
+ attributionlink="https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg"
+>}}
+
+{{< blockquote
+ cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
+ by="Katie Bouman, _Assistant Professor, Computing & Mathematical Sciences, Caltech_"
+>}}
+{{< /blockquote >}}
+
+## A telescope the size of the earth
+
+The [Event Horizon telescope (EHT)](https://eventhorizontelescope.org) is an
+array of eight ground-based radio telescopes forming a computational telescope
+the size of the earth, studing the universe with unprecedented
+sensitivity and resolution. The huge virtual telescope, which uses a technique
+called very-long-baseline interferometry (VLBI), has an angular resolution of
+[20 micro-arcseconds][resolution] — enough to read a newspaper in New York
+from a sidewalk café in Paris!
+
+[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
+
+### Key Goals and Results
+
+- **A New View of the Universe:**
+ The groundwork for the EHT's groundbreaking image had been laid 100 years
+ earlier when [Sir Arthur Eddington][eddington] yielded the first
+ observational support of Einstein's theory of general relativity.
+
+- **The Black Hole:** EHT was trained on a supermassive black hole
+ approximately 55 million light-years from Earth, lying at the center
+ of the galaxy Messier 87 (M87) in the Virgo galaxy cluster. Its mass is
+ 6.5 billion times the Sun's. It had been studied for
+ [over 100 years](https://www.jpl.nasa.gov/news/news.php?feature=7385), but never before
+ had a black hole been visually observed.
+
+- **Comparing Observations to Theory:** From Einstein’s general theory of
+ relativity, scientists expected to find a shadow-like region caused by
+ gravitational bending and capture of light. Scientists could
+ use it to measure the black hole's enormous mass.
+
+[eddington]: https://en.wikipedia.org/wiki/Eddington_experiment
+
+### The Challenges
+
+- **Computational scale**
+
+ EHT poses massive data-processing challenges, including rapid atmospheric
+ phase fluctuations, large recording bandwidth, and telescopes that are
+ widely dissimilar and geographically dispersed.
+
+- **Too much information**
+
+ Each day EHT generates over 350 terabytes of observations, stored on
+ helium-filled hard drives. Reducing the volume and complexity of this much
+ data is enormously difficult.
+
+- **Into the unknown**
+
+ When the goal is to see something never before seen, how can scientists be
+ confident the image is correct?
+
+{{< figure >}}
+{{< /figure >}}
+
+## NumPy’s Role
+
+What if there's a problem with the data? Or perhaps an algorithm relies too
+heavily on a particular assumption. Will the image change drastically if a
+single parameter is changed?
+
+The EHT collaboration met these challenges by having independent teams
+evaluate the data, using both established and cutting-edge image reconstruction
+techniques. When results proved consistent, they were combined to yield the
+first-of-a-kind image of the black hole.
+
+Their work illustrates the role the scientific Python ecosystem plays in
+advancing science through collaborative data analysis.
+
+{{< figure >}}
+{{< /figure >}}
+
+For example, the [`eht-imaging`][ehtim] Python package provides tools for
+simulating and performing image reconstruction on VLBI data.
+NumPy is at the core of array data processing used
+in this package, as illustrated by the partial software
+dependency chart below.
+
+{{< figure >}}
+{{< /figure >}}
+
+[ehtim]: https://github.com/achael/eht-imaging
+
+Besides NumPy, many other packages, such as
+[SciPy](https://scipy.org) and [Pandas](https://pandas.pydata.org), are part of the
+data processing pipeline for imaging the black hole.
+The standard astronomical file formats and time/coordinate transformations
+were handled by [Astropy][astropy], while [Matplotlib][mpl] was used
+in visualizing data throughout the analysis pipeline, including the generation
+of the final image of the black hole.
+
+[astropy]: https://www.astropy.org/
+[mpl]: https://matplotlib.org/
+
+## Summary
+
+The efficient and adaptable n-dimensional array that is NumPy's central feature
+enabled researchers to manipulate large numerical datasets, providing a
+foundation for the first-ever image of a black hole. A landmark moment in
+science, it gives stunning visual evidence of Einstein’s theory. The
+achievement encompasses not only technological breakthroughs but also
+international collaboration among over 200 scientists and some of the world's
+best radio observatories. Innovative algorithms and data processing
+techniques, improving upon existing astronomical models, helped unfold a
+mystery of the universe.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/ca/case-studies/cricket-analytics.md b/content/ca/case-studies/cricket-analytics.md
new file mode 100644
index 00000000..ff64c20a
--- /dev/null
+++ b/content/ca/case-studies/cricket-analytics.md
@@ -0,0 +1,146 @@
+---
+title: "Case Study: Cricket Analytics, the game changer!"
+sidebar: false
+---
+
+{{< figure
+ src='/images/content_images/cs/ipl-stadium.png'
+ >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="https://www.scoopwhoop.com/sports/ms-dhoni/"
+ by="M S Dhoni, _International Cricket Player, ex-captain, Indian Team, plays for Chennai Super Kings in IPL_"
+>}}
+{{< /blockquote >}}
+
+## About Cricket
+
+It would be an understatement to state that Indians love cricket. The game is
+played in just about every nook and cranny of India, rural or urban, popular
+with the young and the old alike, connecting billions in India unlike any other sport.
+Cricket enjoys lots of media attention. There is a significant amount of
+[money](https://www.statista.com/topics/4543/indian-premier-league-ipl/) and
+fame at stake. Over the last several years, technology has literally been a game
+changer. Audiences are spoilt for choice with streaming media, tournaments,
+affordable access to mobile based live cricket watching, and more.
+
+The Indian Premier League (IPL) is a professional Twenty20 cricket
+league, founded in 2008. It is one of the most attended cricketing events in
+the world, valued at [$6.7 billion](https://en.wikipedia.org/wiki/Indian_Premier_League)
+in 2019.
+
+Cricket is a game of numbers - the runs scored by a batsman, the wickets taken
+by a bowler, the matches won by a cricket team, the number of times a batsman
+responds in a certain way to a kind of bowling attack, etc. The capability to
+dig into cricketing numbers for both improving performance and studying
+the business opportunities, overall market, and economics of cricket via powerful
+analytics tools, powered by numerical computing software such as NumPy, is a big
+deal. Cricket analytics provides interesting insights into the game and
+predictive intelligence regarding game outcomes.
+
+Today, there are rich and almost infinite troves of cricket game records and
+statistics available, e.g., ESPN
+cricinfo and
+[cricsheet](https://cricsheet.org). These and several such cricket databases
+have been used for cricket
+analysis
+using the latest machine learning and predictive modelling algorithms.
+Media and entertainment platforms along with professional sports bodies
+associated with the game use technology and analytics for determining key
+metrics for improving match winning chances:
+
+- batting performance moving average,
+- score forecasting,
+- gaining insights into fitness and performance of a player against different opposition,
+- player contribution to wins and losses for making strategic decisions on team composition
+
+{{< figure >}}
+{{< /figure >}}
+
+### Key Data Analytics Objectives
+
+- Sports data analytics are used not only in cricket but many other
+ sports for
+ improving the overall team performance and maximizing winning chances.
+- Real-time data analytics can help in gaining insights even during the game
+ for changing tactics by the team and by associated businesses for economic
+ benefits and growth.
+- Besides historical analysis, predictive models are
+ harnessed to determine the possible match outcomes that require significant
+ number crunching and data science know-how, visualization tools and capability
+ to include newer observations in the analysis.
+
+{{< figure >}}
+{{< /figure >}}
+
+### The Challenges
+
+- **Data Cleaning and preprocessing**
+
+ IPL has expanded cricket beyond the classic test match format to a much
+ larger scale. The number of matches played every season across various
+ formats has increased and so has the data, the algorithms, newer sports data
+ analysis technologies and simulation models. Cricket data analysis requires
+ field mapping, player tracking, ball tracking, player shot analysis, and
+ several other aspects involved in how the ball is delivered, its angle, spin,
+ velocity, and trajectory. All these factors together have increased the
+ complexity of data cleaning and preprocessing.
+
+- **Dynamic Modeling**
+
+ In cricket, just like any other sport,
+ there can be a large number of variables related to tracking various numbers
+ of players on the field, their attributes, the ball, and several possibilities
+ of potential actions. The complexity of data analytics and modeling is
+ directly proportional to the kind of predictive questions that are put forth
+ during analysis and are highly dependent on data representation and the
+ model. Things get even more challenging in terms of computation, data
+ comparisons when dynamic cricket play predictions are sought such as what
+ would have happened if the batsman had hit the ball at a different angle or
+ velocity.
+
+- **Predictive Analytics Complexity**
+
+ Much of the decision making in cricket is based on questions such as "how
+ often does a batsman play a certain kind of shot if the ball delivery is of a
+ particular type", or "how does a bowler change his line and length if the
+ batsman responds to his delivery in a certain way".
+ This kind of predictive analytics query requires highly granular dataset
+ availability and the capability to synthesize data and create generative
+ models that are highly accurate.
+
+## NumPy’s Role in Cricket Analytics
+
+Sports Analytics is a thriving field. Many researchers and companies
+[use NumPy](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx)
+and other PyData packages like Scikit-learn, SciPy, Matplotlib, and Jupyter,
+besides using the latest machine learning and AI techniques. NumPy has been used
+for various kinds of cricket related sporting analytics such as:
+
+- **Statistical Analysis:** NumPy's numerical capabilities help estimate the
+ statistical significance of observational data or match events in the context
+ of various player and game tactics, estimating the game outcome by comparison
+ with a generative or static model.
+ [Causal analysis](https://amplitude.com/blog/2017/01/19/causation-correlation)
+ and [big data approaches](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996805/)
+ are used for tactical analysis.
+
+- **Data Visualization:** Data graphing and visualization provide useful insights into relationship between various datasets.
+
+## Summary
+
+Sports Analytics is a game changer when it comes to how professional games are
+played, especially how strategic decision making happens, which until recently
+was primarily done based on “gut feeling" or adherence to past traditions. NumPy
+forms a solid foundation for a large set of Python packages which provide higher
+level functions related to data analytics, machine learning, and AI algorithms.
+These packages are widely deployed to gain real-time insights that help in
+decision making for game-changing outcomes, both on field as well as to draw
+inferences and drive business around the game of cricket. Finding out the
+hidden parameters, patterns, and attributes that lead to the outcome of a
+cricket match helps the stakeholders to take notice of game insights that are
+otherwise hidden in numbers and statistics.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/ca/case-studies/deeplabcut-dnn.md b/content/ca/case-studies/deeplabcut-dnn.md
new file mode 100644
index 00000000..60b48522
--- /dev/null
+++ b/content/ca/case-studies/deeplabcut-dnn.md
@@ -0,0 +1,154 @@
+---
+title: "Case Study: DeepLabCut 3D Pose Estimation"
+sidebar: false
+---
+
+{{< figure >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="https://news.harvard.edu/gazette/story/newsplus/harvard-researchers-awarded-czi-open-source-award/"
+ by="Alexander Mathis, _Assistant Professor, École polytechnique fédérale de Lausanne_ ([EPFL](https://www.epfl.ch/en/))"
+>}}
+{{< /blockquote >}}
+
+## About DeepLabCut
+
+[DeepLabCut](https://github.com/DeepLabCut/DeepLabCut) is an open source toolbox that empowers researchers at hundreds of institutions worldwide to track behaviour of laboratory animals, with very little training data, at human-level accuracy. With DeepLabCut technology, scientists can delve deeper into the scientific understanding of motor control and behavior across animal species and timescales.
+
+Several areas of research, including neuroscience, medicine, and biomechanics, use data from tracking animal movement. DeepLabCut helps in understanding what humans and other animals are doing by parsing actions that have been recorded on film. Using automation for laborious tasks of tagging and monitoring, along with deep neural network based data analysis, DeepLabCut makes scientific studies involving observing animals, such as primates, mice, fish, flies etc., much faster and more accurate.
+
+{{< figure >}}
+{{< /figure >}}
+
+DeepLabCut's non-invasive behavioral tracking of animals by extracting the poses of animals is crucial for scientific pursuits in domains such as biomechanics, genetics, ethology & neuroscience. Measuring animal poses non-invasively from video - without markers - in dynamically changing backgrounds is computationally challenging, both technically as well as in terms of resource needs and training data required.
+
+DeepLabCut allows researchers to estimate the pose of the subject, efficiently enabling them to quantify the behavior through a Python based software toolkit. With DeepLabCut, researchers can identify distinct frames from videos, digitally label specific body parts in a few dozen frames with a tailored GUI, and then the deep learning based pose estimation architectures in DeepLabCut learn how to pick out those same features in the rest of the video and in other similar videos of animals. It works across species of animals, from common laboratory animals such as flies and mice to more unusual animals like [cheetahs][cheetah-movement].
+
+[cheetah-movement]: https://www.technologynetworks.com/neuroscience/articles/interview-a-deeper-cut-into-behavior-with-mackenzie-mathis-327618
+
+DeepLabCut uses a principle called [transfer learning](https://arxiv.org/pdf/1909.11229), which greatly reduces the amount of training data required and speeds up the convergence of the training period. Depending on the needs, users can pick different network architectures that provide faster inference (e.g. MobileNetV2), which can also be combined with real-time experimental feedback. DeepLabCut originally used the feature detectors from a top-performing human pose estimation architecture, called [DeeperCut](https://arxiv.org/abs/1605.03170), which inspired the name. The package now has been significantly changed to include additional architectures, augmentation methods, and a full front-end user experience. Furthermore, to support large-scale biological experiments DeepLabCut provides active learning capabilities so that users can increase the training set over time to cover edge cases and make their pose estimation algorithm robust within the specific context.
+
+Recently, the [DeepLabCut model zoo](https://deeplabcut.github.io/DeepLabCut/docs/ModelZoo.html) was introduced, which provides pre-trained models for various species and experimental conditions from facial analysis in primates to dog posture. This can be run for instance in the cloud without any labeling of new data, or neural network training, and no programming experience is necessary.
+
+### Key Goals and Results
+
+- **Automation of animal pose analysis for scientific studies:**
+
+ The primary objective of DeepLabCut technology is to measure and track posture
+ of animals in a diverse settings. This data can be used, for example, in
+ neuroscience studies to understand how the brain controls movement, or to
+ elucidate how animals socially interact. Researchers have observed a
+ [tenfold performance boost](https://www.biorxiv.org/content/10.1101/457242v1)
+ with DeepLabCut. Poses can be inferred offline at up to 1200 frames per second
+ (FPS).
+
+- **Creation of an easy-to-use Python toolkit for pose estimation:**
+
+ DeepLabCut wanted to share their animal pose-estimation technology in the form
+ of an easy to use tool that can be adopted by researchers easily. So they have
+ created a complete, easy-to-use Python toolbox with project management features
+ as well. These enable not only automation of pose-estimation but also
+ managing the project end-to-end by helping the DeepLabCut Toolkit user right
+ from the dataset collection stage to creating shareable and reusable analysis
+ pipelines.
+
+ Their [toolkit][DLCToolkit] is now available as open source.
+
+ A typical DeepLabCut Workflow includes:
+
+ - creation and refining of training sets via active learning
+ - creation of tailored neural networks for specific animals and scenarios
+ - code for large-scale inference on videos
+ - draw inferences using integrated visualization tools
+
+{{< figure >}}
+{{< /figure >}}
+
+[DLCToolkit]: https://github.com/DeepLabCut/DeepLabCut
+
+### The Challenges
+
+- **Speed**
+
+ Fast processing of animal behavior videos in order to measure their behavior
+ and at the same time make scientific experiments more efficient, accurate.
+ Extracting detailed animal poses for laboratory experiments, without
+ markers, in dynamically changing backgrounds, can be challenging, both
+ technically as well as in terms of resource needs and training data required.
+ Coming up with a tool that is easy to use without the need for skills such
+ as computer vision expertise that enables scientists to do research in more
+ real-world contexts, is a non-trivial problem to solve.
+
+- **Combinatorics**
+
+ Combinatorics involves assembly and integration of movement of multiple
+ limbs into individual animal behavior. Assembling keypoints and their
+ connections into individual animal movements and linking them across time
+ is a complex process that requires heavy-duty numerical analysis, especially
+ in case of multi-animal movement tracking in experiment videos.
+
+- **Data Processing**
+
+ Last but not the least, array manipulation - processing large stacks of
+ arrays corresponding to various images, target tensors and keypoints is
+ fairly challenging.
+
+{{< figure >}}
+{{< /figure >}}
+
+## NumPy's Role in meeting Pose Estimation Challenges
+
+NumPy addresses DeepLabCut technology's core need of numerical computations at
+high speed for behavioural analytics. Besides NumPy, DeepLabCut employs
+various Python software that utilize NumPy at their core, such as
+[SciPy](https://www.scipy.org), [Pandas](https://pandas.pydata.org),
+[matplotlib](https://matplotlib.org),
+[Tensorpack](https://github.com/tensorpack/tensorpack),
+[imgaug](https://github.com/aleju/imgaug),
+[scikit-learn](https://scikit-learn.org/stable/),
+[scikit-image](https://scikit-image.org) and
+[Tensorflow](https://www.tensorflow.org).
+
+The following features of NumPy played a key role in addressing the image
+processing, combinatorics requirements and need for fast computation in
+DeepLabCut pose estimation algorithms:
+
+- Vectorization
+- Masked Array Operations
+- Linear Algebra
+- Random Sampling
+- Reshaping of large arrays
+
+DeepLabCut utilizes NumPy’s array capabilities throughout the workflow offered
+by the toolkit. In particular, NumPy is used for sampling distinct frames for
+human annotation labeling, and for writing, editing and processing annotation
+data. Within TensorFlow the neural network is trained by DeepLabCut technology
+over thousands of iterations to predict the ground truth annotations from
+frames. For this purpose, target densities (scoremaps) are created to cast pose
+estimation as a image-to-image translation problem. To make the neural networks
+robust, data augmentation is employed, which requires the calculation of target
+scoremaps subject to various geometric and image processing steps. To make
+training fast, NumPy’s vectorization capabilities are leveraged. For inference,
+the most likely predictions from target scoremaps need to extracted and one
+needs to efficiently “link predictions to assemble individual animals”.
+
+{{< figure >}}
+{{< /figure >}}
+
+## Summary
+
+Observing and efficiently describing behavior is a core tenant of modern
+ethology, neuroscience, medicine, and technology.
+[DeepLabCut](https://static1.squarespace.com/static/57f6d51c9f74566f55ecf271/t/5eab5ff7999bf94756b27481/1588289532243/NathMathis2019.pdf)
+allows researchers to estimate the pose of the subject, efficiently enabling
+them to quantify the behavior. With only a small set of training images,
+the DeepLabCut Python toolbox allows training a neural network to within human
+level labeling accuracy, thus expanding its application to not only behavior
+analysis in the laboratory, but to potentially also in sports, gait analysis,
+medicine and rehabilitation studies. Complex combinatorics, data processing
+challenges faced by DeepLabCut algorithms are addressed through the use of
+NumPy's array manipulation capabilities.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/ca/case-studies/gw-discov.md b/content/ca/case-studies/gw-discov.md
new file mode 100644
index 00000000..2ff32510
--- /dev/null
+++ b/content/ca/case-studies/gw-discov.md
@@ -0,0 +1,144 @@
+---
+title: "Case Study: Discovery of Gravitational Waves"
+sidebar: false
+---
+
+{{< figure >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
+ by="David Shoemaker, _LIGO Scientific Collaboration_" >}}
+{{< /blockquote >}}
+
+## About [Gravitational Waves](https://www.nationalgeographic.com/news/2017/10/what-are-gravitational-waves-ligo-astronomy-science/) and [LIGO](https://www.ligo.caltech.edu)
+
+Gravitational waves are ripples in the fabric of space and time, generated by
+cataclysmic events in the universe such as collision and merging of two black
+holes or coalescing binary stars or supernovae. Observing GW can not only help
+in studying gravity but also in understanding some of the obscure phenomena in
+the distant universe and its impact.
+
+The [Laser Interferometer Gravitational-Wave Observatory (LIGO)](https://www.ligo.caltech.edu)
+was designed to open the field of gravitational-wave astrophysics through the
+direct detection of gravitational waves predicted by Einstein’s General Theory
+of Relativity. It comprises two widely separated interferometers within the
+United States — one in Hanford, Washington and the other in Livingston,
+Louisiana — operated in unison to detect gravitational waves. Each of them has
+multi-kilometer-scale gravitational wave detectors that use laser
+interferometry. The LIGO Scientific Collaboration (LSC), is a group of more
+than 1000 scientists from universities around the United States and in 14
+other countries supported by more than 90 universities and research institutes;
+approximately 250 students actively contributing to the collaboration. The new
+LIGO discovery is the first observation of gravitational waves themselves,
+made by measuring the tiny disturbances the waves make to space and time as
+they pass through the earth. It has opened up new astrophysical frontiers
+that explore the warped side of the universe—objects and phenomena that are
+made from warped spacetime.
+
+### Key Objectives
+
+- Though its [mission](https://www.ligo.caltech.edu/page/what-is-ligo) is to
+ detect gravitational waves from some of the most violent and energetic
+ processes in the Universe, the data LIGO collects may have far-reaching
+ effects on many areas of physics including gravitation, relativity,
+ astrophysics, cosmology, particle physics, and nuclear physics.
+- Crunch observed data via numerical relativity computations that involves
+ complex maths in order to discern signal from noise, filter out relevant
+ signal and statistically estimate significance of observed data
+- Data visualization so that the binary / numerical results can be
+ comprehended.
+
+### The Challenges
+
+- **Computation**
+
+ Gravitational Waves are hard to detect as they produce a very small effect
+ and have tiny interaction with matter. Processing and analyzing all of
+ LIGO's data requires a vast computing infrastructure.After taking care of
+ noise, which is billions of times of the signal, there is still very
+ complex relativity equations and huge amounts of data which present a
+ computational challenge:
+ [O(10^7) CPU hrs needed for binary merger analyses](https://youtu.be/7mcHknWWzNI)
+ spread on 6 dedicated LIGO clusters
+
+- **Data Deluge**
+
+ As observational devices become more sensitive and reliable, the challenges
+ posed by data deluge and finding a needle in a haystack rise multi-fold.
+ LIGO generates terabytes of data every day! Making sense of this data
+ requires an enormous effort for each and every detection. For example, the
+ signals being collected by LIGO must be matched by supercomputers against
+ hundreds of thousands of templates of possible gravitational-wave signatures.
+
+- **Visualization**
+
+ Once the obstacles related to understanding Einstein’s equations well
+ enough to solve them using supercomputers are taken care of, the next big
+ challenge was making data comprehensible to the human brain. Simulation
+ modeling as well as signal detection requires effective visualization
+ techniques. Visualization also plays a role in lending more credibility
+ to numerical relativity in the eyes of pure science aficionados, who did
+ not give enough importance to numerical relativity until imaging and
+ simulations made it easier to comprehend results for a larger audience.
+ Speed of complex computations and rendering, re-rendering images and
+ simulations using latest experimental inputs and insights can be a time
+ consuming activity that challenges researchers in this domain.
+
+{{< figure >}}
+{{< /figure >}}
+
+## NumPy’s Role in the Detection of Gravitational Waves
+
+Gravitational waves emitted from the merger cannot be computed using any
+technique except brute force numerical relativity using supercomputers.
+The amount of data LIGO collects is as incomprehensibly large as gravitational
+wave signals are small.
+
+NumPy, the standard numerical analysis package for Python, was utilized by
+the software used for various tasks performed during the GW detection project
+at LIGO. NumPy helped in solving complex maths and data manipulation at high
+speed. Here are some examples:
+
+- [Signal Processing](https://www.uv.es/virgogroup/Denoising_ROF.html): Glitch
+ detection, [Noise identification and Data Characterization](https://ep2016.europython.eu/media/conference/slides/pyhton-in-gravitational-waves-research-communities.pdf)
+ (NumPy, scikit-learn, scipy, matplotlib, pandas, pyCharm)
+- Data retrieval: Deciding which data can be analyzed, figuring out whether it
+ contains a signal - needle in a haystack
+- Statistical analysis: estimate the statistical significance of observational
+ data, estimating the signal parameters (e.g. masses of stars, spin velocity,
+ and distance) by comparison with a model.
+- Visualization of data
+ - Time series
+ - Spectrograms
+- Compute Correlations
+- Key [Software](https://github.com/lscsoft) developed in GW data analysis
+ such as [GwPy](https://gwpy.github.io/docs/stable/overview.html) and
+ [PyCBC](https://pycbc.org) uses NumPy and AstroPy under the hood for
+ providing object based interfaces to utilities, tools, and methods for
+ studying data from gravitational-wave detectors.
+
+{{< figure >}}
+{{< /figure >}}
+
+----
+
+{{< figure >}}
+{{< /figure >}}
+
+## Summary
+
+GW detection has enabled researchers to discover entirely unexpected phenomena
+while providing new insight into many of the most profound astrophysical
+phenomena known. Number crunching and data visualization is a crucial step
+that helps scientists gain insights into data gathered from the scientific
+observations and understand the results. The computations are complex and
+cannot be comprehended by humans unless it is visualized using computer
+simulations that are fed with the real observed data and analysis. NumPy
+along with other Python packages such as matplotlib, pandas, and scikit-learn
+is [enabling researchers](https://www.gw-openscience.org/events/GW150914/) to
+answer complex questions and discover new horizons in our understanding of the
+universe.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/ca/citing-numpy.md b/content/ca/citing-numpy.md
new file mode 100644
index 00000000..60925013
--- /dev/null
+++ b/content/ca/citing-numpy.md
@@ -0,0 +1,35 @@
+---
+title: Citing NumPy
+sidebar: false
+---
+
+If NumPy has been significant in your research, and you would like to acknowledge the project in your academic publication, we suggest citing the following paper:
+
+- Harris, C.R., Millman, K.J., van der Walt, S.J. et al. _Array programming with NumPy_. Nature 585, 357–362 (2020). DOI: [10.1038/s41586-020-2649-2](https://doi.org/10.1038/s41586-020-2649-2). ([Publisher link](https://www.nature.com/articles/s41586-020-2649-2)).
+
+_In BibTeX format:_
+
+ ```
+ @Article{ harris2020array,
+ title = {Array programming with {NumPy}},
+ author = {Charles R. Harris and K. Jarrod Millman and St{\'{e}}fan J.
+ van der Walt and Ralf Gommers and Pauli Virtanen and David
+ Cournapeau and Eric Wieser and Julian Taylor and Sebastian
+ Berg and Nathaniel J. Smith and Robert Kern and Matti Picus
+ and Stephan Hoyer and Marten H. van Kerkwijk and Matthew
+ Brett and Allan Haldane and Jaime Fern{\'{a}}ndez del
+ R{\'{i}}o and Mark Wiebe and Pearu Peterson and Pierre
+ G{\'{e}}rard-Marchant and Kevin Sheppard and Tyler Reddy and
+ Warren Weckesser and Hameer Abbasi and Christoph Gohlke and
+ Travis E. Oliphant},
+ year = {2020},
+ month = sep,
+ journal = {Nature},
+ volume = {585},
+ number = {7825},
+ pages = {357--362},
+ doi = {10.1038/s41586-020-2649-2},
+ publisher = {Springer Science and Business Media {LLC}},
+ url = {https://doi.org/10.1038/s41586-020-2649-2}
+ }
+ ```
diff --git a/content/ca/code-of-conduct.md b/content/ca/code-of-conduct.md
new file mode 100644
index 00000000..d5819b62
--- /dev/null
+++ b/content/ca/code-of-conduct.md
@@ -0,0 +1,83 @@
+---
+title: NumPy Code of Conduct
+sidebar: false
+aliases:
+ - /conduct.html
+---
+
+### Introduction
+
+This Code of Conduct applies to all spaces managed by the NumPy project, including all public and private mailing lists, issue trackers, wikis, blogs, X, and any other communication channel used by our community. The NumPy project does not organise in-person events, however events related to our community should have a code of conduct similar in spirit to this one.
+
+This Code of Conduct should be honored by everyone who participates in the NumPy community formally or informally, or claims any affiliation with the project, in any project-related activities and especially when representing the project, in any role.
+
+This code is not exhaustive or complete. It serves to distill our common understanding of a collaborative, shared environment and goals. Please try to follow this code in spirit as much as in letter, to create a friendly and productive environment that enriches the surrounding community.
+
+### Specific Guidelines
+
+We strive to:
+
+1. Be open. We invite anyone to participate in our community. We prefer to use public methods of communication for project-related messages, unless discussing something sensitive. This applies to messages for help or project-related support, too; not only is a public support request much more likely to result in an answer to a question, it also ensures that any inadvertent mistakes in answering are more easily detected and corrected.
+2. Be empathetic, welcoming, friendly, and patient. We work together to resolve conflict, and assume good intentions. We may all experience some frustration from time to time, but we do not allow frustration to turn into a personal attack. A community where people feel uncomfortable or threatened is not a productive one.
+3. Be collaborative. Our work will be used by other people, and in turn we will depend on the work of others. When we make something for the benefit of the project, we are willing to explain to others how it works, so that they can build on the work to make it even better. Any decision we make will affect users and colleagues, and we take those consequences seriously when making decisions.
+4. Be inquisitive. Nobody knows everything! Asking questions early avoids many problems later, so we encourage questions, although we may direct them to the appropriate forum. We will try hard to be responsive and helpful.
+5. Be careful in the words that we choose. We are careful and respectful in our communication, and we take responsibility for our own speech. Be kind to others. Do not insult or put down other participants. We will not accept harassment or other exclusionary behaviour, such as:
+ - Violent threats or language directed against another person.
+ - Sexist, racist, or otherwise discriminatory jokes and language.
+ - Posting sexually explicit or violent material.
+ - Posting (or threatening to post) other people’s personally identifying information (“doxing”).
+ - Sharing private content, such as emails sent privately or non-publicly, or unlogged forums such as IRC channel history, without the sender’s consent.
+ - Personal insults, especially those using racist or sexist terms.
+ - Unwelcome sexual attention.
+ - Excessive profanity. Please avoid swearwords; people differ greatly in their sensitivity to swearing.
+ - Repeated harassment of others. In general, if someone asks you to stop, then stop.
+ - Advocating for, or encouraging, any of the above behaviour.
+
+### Diversity Statement
+
+The NumPy project welcomes and encourages participation by everyone. We are committed to being a community that everyone enjoys being part of. Although we may not always be able to accommodate each individual’s preferences, we try our best to treat everyone kindly.
+
+No matter how you identify yourself or how others perceive you: we welcome you. Though no list can hope to be comprehensive, we explicitly honour diversity in: age, culture, ethnicity, genotype, gender identity or expression, language, national origin, neurotype, phenotype, political beliefs, profession, race, religion, sexual orientation, socioeconomic status, subculture and technical ability, to the extent that these do not conflict with this code of conduct.
+
+Though we welcome people fluent in all languages, NumPy development is conducted in English.
+
+Standards for behaviour in the NumPy community are detailed in the Code of Conduct above. Participants in our community should uphold these standards in all their interactions and help others to do so as well (see next section).
+
+### Reporting Guidelines
+
+We know that it is painfully common for internet communication to start at or devolve into obvious and flagrant abuse. We also recognize that sometimes people may have a bad day, or be unaware of some of the guidelines in this Code of Conduct. Please keep this in mind when deciding on how to respond to a breach of this Code.
+
+For clearly intentional breaches, report those to the Code of Conduct Committee (see below). For possibly unintentional breaches, you may reply to the person and point out this code of conduct (either in public or in private, whatever is most appropriate). If you would prefer not to do that, please feel free to report to the Code of Conduct Committee directly, or ask the Committee for advice, in confidence.
+
+You can report issues to the NumPy Code of Conduct Committee at numpy-conduct@googlegroups.com.
+
+Currently, the Committee consists of:
+
+- Stefan van der Walt
+- Melissa Weber Mendonça
+- Rohit Goswami
+
+If your report involves any members of the Committee, or if they feel they have a conflict of interest in handling it, then they will recuse themselves from considering your report. Alternatively, if for any reason you feel uncomfortable making a report to the Committee, then you can also contact senior NumFOCUS staff at [conduct@numfocus.org](https://numfocus.org/code-of-conduct#persons-responsible).
+
+### Incident reporting resolution & Code of Conduct enforcement
+
+_This section summarizes the most important points, more details can be found in_ [NumPy Code of Conduct - How to follow up on a report](report-handling-manual).
+
+We will investigate and respond to all complaints. The NumPy Code of Conduct Committee and the NumPy Steering Committee (if involved) will protect the identity of the reporter, and treat the content of complaints as confidential (unless the reporter agrees otherwise).
+
+In case of severe and obvious breaches, e.g. personal threat or violent, sexist or racist language, we will immediately disconnect the originator from NumPy communication channels; please see the manual for details.
+
+In cases not involving clear severe and obvious breaches of this Code of Conduct the process for acting on any received Code of Conduct violation report will be:
+
+1. acknowledge report is received,
+2. reasonable discussion/feedback,
+3. mediation (if feedback didn’t help, and only if both reporter and reportee agree to this),
+4. enforcement via transparent decision (see [Resolutions](report-handling-manual/#resolutions)) by the Code of Conduct Committee.
+
+The Committee will respond to any report as soon as possible, and at most within 72 hours.
+
+### Endnotes
+
+We are thankful to the groups behind the following documents, from which we drew content and inspiration:
+
+- [The SciPy Code of Conduct](https://docs.scipy.org/doc/scipy/dev/conduct/code_of_conduct.html)
diff --git a/content/ca/community.md b/content/ca/community.md
new file mode 100644
index 00000000..6b0e5de4
--- /dev/null
+++ b/content/ca/community.md
@@ -0,0 +1,72 @@
+---
+title: Community
+sidebar: false
+---
+
+NumPy is a community-driven open source project developed by a diverse group of [contributors](/teams/). The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the [NumPy Code of Conduct](/code-of-conduct) for guidance on how to interact with others in a way that makes the community thrive.
+
+We offer several communication channels to learn, share your knowledge and connect with others within the NumPy community.
+
+## Participate online
+
+The following are ways to engage directly with the NumPy project and community.
+_Please note that we encourage users and community members to support each other
+for usage questions - see [Get Help](/gethelp)._
+
+### [NumPy mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion)
+
+This list is the main forum for longer-form discussions, like adding new features to NumPy, making changes to the NumPy Roadmap, and all kinds of project-wide decision making.
+Announcements about NumPy, such as for releases, developer meetings, sprints or
+conference talks are also made on this list.
+
+On this list please use bottom posting, reply to the list (rather than to
+another sender), and don't reply to digests. A searchable archive of this list
+is available [here](https://mail.python.org/archives/list/numpy-discussion@python.org/).
+
+***
+
+### [GitHub issue tracker](https://github.com/numpy/numpy/issues)
+
+- For bug reports (e.g. "`np.arange(3).shape` returns `(5,)`, when it should return `(3,)`");
+- documentation issues (e.g. "I found this section unclear");
+- and feature requests (e.g. "I would like to have a new interpolation method in `np.percentile`").
+
+_Please note that GitHub is not the right place to report a security vulnerability. If you think you have found a security vulnerability in NumPy, please report it [here](https://tidelift.com/docs/security)._
+
+***
+
+### [Slack](https://numpy-team.slack.com)
+
+A real-time chat room to ask questions about _contributing_ to NumPy.
+This is a private space, specifically meant for people who are hesitant to
+bring up their questions or ideas on a large public mailing list or GitHub.
+Please see
+[here](https://numpy.org/devdocs/dev/index.html#contributing-to-numpy) for more
+details and how to get an invite.
+
+## Study Groups and Meetups
+
+If you would like to find a local meetup or study group to learn more about NumPy and the wider ecosystem of Python packages for data science and scientific computing, we recommend exploring the [PyData meetups](https://www.meetup.com/pro/pydata/) (150+ meetups, 100,000+ members).
+
+NumPy also organizes in-person sprints for its team and interested contributors occasionally. These are typically planned several months in advance and will be announced on the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion).
+
+## Conferences
+
+The NumPy project doesn't organize its own conferences. The conferences that have traditionally been most popular with NumPy maintainers, contributors and users are the SciPy and PyData conference series:
+
+- SciPy US
+- EuroSciPy
+- SciPy Latin America
+- SciPy India
+- SciPyData Japan
+- PyData conferences (15-20 events a year spread over many countries)
+
+Many of these conferences include tutorial days that cover NumPy and/or sprints where you can learn how to contribute to NumPy or related open source projects.
+
+## Join the NumPy community
+
+To thrive, the NumPy project needs your expertise and enthusiasm. Not a coder? Not a problem! There are many ways to contribute to NumPy.
+
+If you are interested in becoming a NumPy contributor (yay!) we recommend checking out our [Contribute](/contribute) page.
+
+Also, feel free to stop by and say hi at one of our community meetings. To keep track of them, check out our events calendar [here](https://scientific-python.org/calendars/).
diff --git a/content/ca/config.yaml b/content/ca/config.yaml
new file mode 100644
index 00000000..f045713c
--- /dev/null
+++ b/content/ca/config.yaml
@@ -0,0 +1,109 @@
+languageName: English
+params:
+ description: Why NumPy? Powerful n-dimensional arrays. Numerical computing tools. Interoperable. Performant. Open source.
+ navbarlogo:
+ image: logo.svg
+ text: NumPy
+ link: /
+ hero:
+ # Main hero title
+ title: NumPy
+ # Hero subtitle (optional)
+ subtitle: The fundamental package for scientific computing with Python
+ # Button text
+ buttontext: "Latest release: NumPy 2.2. View all releases"
+ # Where the main hero button links to
+ buttonlink: "/news/#releases"
+ # Hero image (from static/images/___)
+ image: logo.svg
+ shell:
+ title: placeholder
+ intro:
+ - title: Try NumPy
+ text: Use the interactive shell to try NumPy in the browser
+ docslink: Don't forget to check out the docs.
+ casestudies:
+ title: CASE STUDIES
+ features:
+ - title: First Image of a Black Hole
+ text: How NumPy, together with libraries like SciPy and Matplotlib that depend on NumPy, enabled the Event Horizon Telescope to produce the first ever image of a black hole
+ img: /images/content_images/case_studies/blackhole.png
+ alttext: First image of a black hole. It is an orange circle in a black background.
+ url: /case-studies/blackhole-image
+ - title: Detection of Gravitational Waves
+ text: In 1916, Albert Einstein predicted gravitational waves; 100 years later their existence was confirmed by LIGO scientists using NumPy.
+ img: /images/content_images/case_studies/gravitional.png
+ alttext: Two orbs orbiting each other. They are displacing gravity around them.
+ url: /case-studies/gw-discov
+ - title: Sports Analytics
+ text: Cricket Analytics is changing the game by improving player and team performance through statistical modelling and predictive analytics. NumPy enables many of these analyses.
+ img: /images/content_images/case_studies/sports.jpg
+ alttext: Cricket ball on green field.
+ url: /case-studies/cricket-analytics
+ - title: Pose Estimation using deep learning
+ text: DeepLabCut uses NumPy for accelerating scientific studies that involve observing animal behavior for better understanding of motor control, across species and timescales.
+ img: /images/content_images/case_studies/deeplabcut.png
+ alttext: Cheetah pose analysis
+ url: /case-studies/deeplabcut-dnn
+ tabs:
+ title: ECOSYSTEM
+ section5: false
+ navbar:
+ - title: Install
+ url: /install
+ - title: Documentation
+ url: https://numpy.org/doc/stable
+ - title: Learn
+ url: /learn
+ - title: Community
+ url: /community
+ - title: About Us
+ url: /about
+ - title: News
+ url: /news
+ - title: Contribute
+ url: /contribute
+ footer:
+ logo: logo.svg
+ socialmediatitle: ""
+ socialmedia:
+ - link: https://github.com/numpy/numpy
+ icon: github
+ - link: https://www.youtube.com/@NumPy_team
+ icon: youtube
+ quicklinks:
+ column1:
+ title: ""
+ links:
+ - text: Install
+ link: /install
+ - text: Documentation
+ link: https://numpy.org/doc/stable
+ - text: Learn
+ link: /learn
+ - text: Citing NumPy
+ link: /citing-numpy
+ - text: Roadmap
+ link: https://numpy.org/neps/roadmap.html
+ column2:
+ links:
+ - text: About us
+ link: /about
+ - text: Community
+ link: /community
+ - text: User surveys
+ link: /user-surveys
+ - text: Contribute
+ link: /contribute
+ - text: Code of conduct
+ link: /code-of-conduct
+ column3:
+ links:
+ - text: Get help
+ link: /gethelp
+ - text: Terms of use
+ link: /terms
+ - text: Privacy
+ link: /privacy
+ - text: Press kit
+ link: /press-kit
diff --git a/content/ca/contribute.md b/content/ca/contribute.md
new file mode 100644
index 00000000..fdd8e223
--- /dev/null
+++ b/content/ca/contribute.md
@@ -0,0 +1,116 @@
+---
+title: Contribute to NumPy
+sidebar: false
+---
+
+The NumPy project welcomes your expertise and enthusiasm!
+Your choices aren't limited to programming, as you can
+see below there are many areas where we need **your** help.
+
+If you're unsure where to start or how your skills fit in, _reach out!_ You
+can ask on the mailing
+list or
+[GitHub](http://github.com/numpy/numpy) (open an
+[issue](https://github.com/numpy/numpy/issues) or comment on a relevant
+issue).
+
+Those are our preferred channels (open source is open by nature), but
+if you prefer to talk privately, contact our community coordinators at
+
Check out also our [YouTube channel](https://www.youtube.com/playlist?list=PLCK6zCrcN3GXBUUzDr9L4__LnXZVtaIzS) for additional advice.
+
+### Reviewing pull requests
+
+The project has more than 250 open pull requests -- meaning many potential
+improvements and many open-source contributors waiting for feedback. If you're
+a developer who knows NumPy, you can help even if you're not familiar with the
+codebase. You can:
+
+- summarize a long-running discussion
+- triage documentation PRs
+- test proposed changes
+
+### Developing educational materials
+
+NumPy's [User Guide](https://numpy.org/devdocs) is undergoing rehabilitation.
+We're in need of new tutorials, how-to's, and deep-dive explanations, and the
+site needs restructuring. Opportunities aren't limited to writers. We'd also
+welcome worked examples, notebooks, and videos. NEP 44 — Restructuring the
+NumPyDocumentation
+lays out our ideas -- and you may have others.
+
+### Issue triaging
+
+The [NumPy issue tracker](https://github.com/numpy/numpy/issues) has a _lot_
+of open issues. Some are no longer valid, some should be prioritized, and some
+would make good issues for new contributors. You can:
+
+- check if older bugs are still present
+- find duplicate issues and link related ones
+- add good self-contained reproducers to issues
+- label issues correctly (this requires triage rights -- just ask)
+
+Please just dive in.
+
+### Website development
+
+We've just revamped our website, but we're far from done. If you love web
+development, these
+[issues](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign)
+list some of our unmet needs -- and feel free to share your own ideas.
+
+### Graphic design
+
+We can barely begin to list the contributions a graphic designer can make here.
+Our docs are parched for illustration; our growing website craves images --
+opportunities abound.
+
+### Translating website content
+
+We plan multiple translations of [numpy.org](https://numpy.org) to make NumPy
+accessible to users in their native language. Volunteer translators are at the heart
+of this effort. See
+[here](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n)
+for background; comment on this GitHub
+issue to sign up.
+
+### Community coordination and outreach
+
+Through community contact we share our work more widely and learn where we're
+falling short. We're eager to get more people involved in efforts like organizing NumPy code
+sprints, a newsletter, and perhaps a blog.
+
+### Fundraising
+
+For many years, NumPy was maintained by dedicated volunteers, but as its importance grew it
+became clear that to ensure stability and growth we would need financial support.
+[This SciPy'19 talk](https://www.youtube.com/watch?v=dBTJD_FDVjU) explains how much difference
+that support has made. Like most nonprofits, we are constantly seeking grants, sponsorships,
+and other kinds of funding. We have a number of ideas and of course we welcome more.
+Fundraising is a scarce skill here -- we'd appreciate your help.
+
+### Donate
+
+If you'd like to contribute to NumPy by making a donation, visit [https://numpy.org/about/#donate](https://numpy.org/about/#donate).
+
+
diff --git a/content/ca/gethelp.md b/content/ca/gethelp.md
new file mode 100644
index 00000000..cce276b9
--- /dev/null
+++ b/content/ca/gethelp.md
@@ -0,0 +1,25 @@
+---
+title: Get Help
+sidebar: false
+---
+
+**Development issues:** For NumPy development-related matters (e.g., bug reports), please
+see [Community](/community).
+
+**User questions:** The best way to get help is to post your question to a site
+like [StackOverflow](http://stackoverflow.com/questions/tagged/numpy) or
+[Reddit](https://www.reddit.com/r/Numpy/). We wish we could keep an eye on
+these sites, or answer questions directly, but the volume is a little
+overwhelming!
+
+### [StackOverflow](http://stackoverflow.com/questions/tagged/numpy)
+
+A forum for asking usage questions, e.g. "How do I do X in NumPy?”. Please [use the `#numpy` tag](https://stackoverflow.com/help/tagging)
+
+***
+
+### [Reddit](https://www.reddit.com/r/Numpy/)
+
+Another forum for usage questions.
+
+***
diff --git a/content/ca/history.md b/content/ca/history.md
new file mode 100644
index 00000000..c02bb936
--- /dev/null
+++ b/content/ca/history.md
@@ -0,0 +1,21 @@
+---
+title: History of NumPy
+sidebar: false
+---
+
+NumPy is a foundational Python library that provides array data structures and related fast numerical routines. When started, the library had little funding, and was written mainly by graduate students—many of them without computer science education, and often without a blessing of their advisors. To even imagine that a small group of “rogue” student programmers could upend the already well-established ecosystem of research software—backed by millions in funding and many hundreds of highly qualified engineers — was preposterous. Yet, the philosophical motivations behind a fully open tool stack, in combination with the excited, friendly community with a singular focus, have proven auspicious in the long run. Nowadays, NumPy is relied upon by scientists, engineers, and many other professionals around the world. For example, the published scripts used in the analysis of gravitational waves import NumPy, and the M87 black hole imaging project directly cites NumPy.
+
+For the in-depth account on milestones in the development of NumPy and related libraries please see [arxiv.org](https://arxiv.org/abs/1907.10121).
+
+If you’d like to obtain a copy of the original Numeric and Numarray libraries, follow the links below:
+
+[Download Page for _Numeric_](https://sourceforge.net/projects/numpy/files/Old%20Numeric/)\*
+
+[Download Page for _Numarray_](https://sourceforge.net/projects/numpy/files/Old%20Numarray/)\*
+
+\*Please note that these older array packages are no longer maintained, and users are strongly advised to use NumPy for any array-related purposes or refactor any pre-existing code to utilize the NumPy library.
+
+### Historic Documentation
+
+[Download _\`Numeric'_ Manual](static/numeric-manual.pdf)
+
diff --git a/content/ca/install.md b/content/ca/install.md
new file mode 100644
index 00000000..2e3550b9
--- /dev/null
+++ b/content/ca/install.md
@@ -0,0 +1,131 @@
+---
+title: Installing NumPy
+sidebar: false
+---
+
+{{< admonition >}}
+{{< /admonition >}}
+
+The recommended method of installing NumPy depends on your preferred workflow. Below, we break down the installation methods into the following categories:
+
+- **Project-based** (e.g., uv, pixi) _(recommended for new users)_
+- **Environment-based** (e.g., pip, conda) _(the traditional workflow)_
+- **System package managers** _(not recommended for most users)_
+- **Building from source** _(for advanced users and development purposes)_
+
+Choose the method that best suits your needs. If you're unsure, start with the **Environment-based** method using `conda` or `pip`.
+
+{{< tabs >}}
+
+[[tab]]
+name = 'Project Based'
+content = '''
+
+Recommended for new users who want a streamlined workflow.
+
+- **uv:** A modern Python package manager designed for speed and simplicity.
+ ```bash
+ uv pip install numpy
+ ```
+
+- **pixi:** A cross-platform package manager for Python and other languages.
+ ```bash
+ pixi add numpy
+ ```
+
+'''
+
+[[tab]]
+name = 'Environment Based'
+content = '''
+
+The two main tools that install Python packages are `pip` and `conda`. Their functionality partially overlaps (e.g. both can install `numpy`), however, they can also work together. We’ll discuss the major differences between pip and conda here - this is important to understand if you want to manage packages effectively.
+
+The first difference is that conda is cross-language and it can install Python, while pip is installed for a particular Python on your system and installs other packages to that same Python install only. This also means conda can install non-Python libraries and tools you may need (e.g. compilers, CUDA, HDF5), while pip can’t.
+
+The second difference is that pip installs from the Python Packaging Index (PyPI), while conda installs from its own channels (typically “defaults” or “conda-forge”). PyPI is the largest collection of packages by far, however, all popular packages are available for conda as well.
+
+The third difference is that conda is an integrated solution for managing packages, dependencies and environments, while with pip you may need another tool (there are many!) for dealing with environments or complex dependencies.
+
+- **Conda:** If you use conda, you can install NumPy from the defaults or conda-forge channels:
+ ```bash
+ conda create -n my-env
+ conda activate my-env
+ conda install numpy
+ ```
+- **Pip:**
+ ```bash
+ pip install numpy
+ ```
+
+{{< admonition >}}
+{{< /admonition >}}
+
+ ```bash
+ python -m venv my-env
+ source my-env/bin/activate # macOS/Linux
+ my-env\Scripts\activate # Windows
+ pip install numpy
+ ```
+
+'''
+
+[[tab]]
+name = 'System Package Managers'
+content = '''
+Not recommended for most users, but available for convenience.
+
+**macOS (Homebrew):**
+
+```bash
+brew install numpy
+```
+
+**Linux (APT):**
+
+```bash
+sudo apt install python3-numpy
+```
+
+**Windows (Chocolatey):**
+
+```bash
+choco install numpy
+```
+
+'''
+
+[[tab]]
+name = 'Building from Source'
+content = '''
+For advanced users and developers who want to customize or debug **NumPy**.
+
+A word of warning: building Numpy from source can be a nontrivial exercise.
+We recommend using binaries instead if those are available for your platform via one of the above methods.
+For details on how to build from source, see [the building from source guide in the Numpy docs](https://numpy.org/devdocs/building/).
+
+{{< /tabs >}}
+
+## Verifying the Installation
+
+After installing NumPy, verify the installation by running the following in a Python shell or script:
+
+```python
+import numpy as np
+print(np.__version__)
+```
+
+This should print the installed version of NumPy without errors.
+
+## Troubleshooting
+
+If your installation fails with the message below, see Troubleshooting
+ImportError.
+
+```
+IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
+
+Importing the numpy c-extensions failed. This error can happen for
+different reasons, often due to issues with your setup.
+```
+
diff --git a/content/ca/learn.md b/content/ca/learn.md
new file mode 100644
index 00000000..ca13a1c2
--- /dev/null
+++ b/content/ca/learn.md
@@ -0,0 +1,76 @@
+---
+title: Learn
+sidebar: false
+---
+
+For the **official NumPy documentation** visit [numpy.org/doc/stable](https://numpy.org/doc/stable).
+
+***
+
+Below is a curated collection of educational resources, both for self-learning and teaching others, developed by NumPy contributors and vetted by the community.
+
+## Beginners
+
+There's a ton of information about NumPy out there. If you are just starting, we'd strongly recommend the following:
+
+ **Tutorials**
+
+- [NumPy Quickstart Tutorial](https://numpy.org/devdocs/user/quickstart.html)
+- [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
+- [NumPy Illustrated: The Visual Guide to NumPy _by Lev Maximov_](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
+- [Scientific Python Lectures](https://lectures.scientific-python.org/) Besides covering NumPy, these lectures offer a broader introduction to the scientific Python ecosystem.
+- [NumPy: the absolute basics for beginners](https://numpy.org/devdocs/user/absolute_beginners.html)
+- [NumPy tutorial _by Nicolas Rougier_](https://github.com/rougier/numpy-tutorial)
+- [Stanford CS231 _by Justin Johnson_](http://cs231n.github.io/python-numpy-tutorial/)
+- [NumPy User Guide](https://numpy.org/devdocs)
+
+ **Books**
+
+- [Guide to NumPy _by Travis E. Oliphant_](https://web.mit.edu/dvp/Public/numpybook.pdf) This is a free version 1 from 2006. For the latest copy (2015) see [here](https://dl.acm.org/doi/10.5555/2886196).
+- [From Python to NumPy _by Nicolas P. Rougier_](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
+- [Elegant SciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877) _by Juan Nunez-Iglesias, Stefan van der Walt, and Harriet Dashnow_
+
+You may also want to check out the [Goodreads list](https://www.goodreads.com/shelf/show/python-scipy) on the subject of "Python+SciPy." Most books there are about the "SciPy ecosystem," which has NumPy at its core.
+
+ **Videos**
+
+- [Introduction to Numerical Computing with NumPy](http://youtu.be/ZB7BZMhfPgk) _by Alex Chabot-Leclerc_
+
+***
+
+## Advanced
+
+Try these advanced resources for a better understanding of NumPy concepts like advanced indexing, splitting, stacking, linear algebra, and more.
+
+ **Tutorials**
+
+- [100 NumPy Exercises](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html) _by Nicolas P. Rougier_
+- [An Introduction to NumPy and Scipy](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf) _by M. Scott Shell_
+- [Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/) _by Stéfan van der Walt_
+- [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
+
+ **Books**
+
+- [Python Data Science Handbook](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1098121228) _by Jake Vanderplas_
+- [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-Jupyter/dp/109810403X) _by Wes McKinney_
+- [Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) _by Robert Johansson_
+
+ **Videos**
+
+- [Advanced NumPy - broadcasting rules, strides, and advanced indexing](https://www.youtube.com/watch?v=cYugp9IN1-Q) _by Juan Nunez-Iglesias_
+
+***
+
+## NumPy Talks
+
+- [The Future of NumPy Indexing](https://www.youtube.com/watch?v=o0EacbIbf58) _by Jaime Fernández_ (2016)
+- Evolution of Array Computing in Python _by Ralf Gommers_ (2019)
+- [NumPy: what has changed and what is going to change?](https://www.youtube.com/watch?v=YFLVQFjRmPY) _by Matti Picus_ (2019)
+- [Inside NumPy](https://www.youtube.com/watch?v=dBTJD_FDVjU) _by Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stefan van der Walt, Charles Harris_ (2019)
+- [Brief Review of Array Computing in Python](https://www.youtube.com/watch?v=f176j2g2eNc) _by Travis Oliphant_ (2019)
+
+***
+
+## Citing NumPy
+
+If NumPy has been significant in your research, and you would like to acknowledge the project in your academic publication, please see [this citation information](/citing-numpy).
diff --git a/content/ca/news.md b/content/ca/news.md
new file mode 100644
index 00000000..8448d825
--- /dev/null
+++ b/content/ca/news.md
@@ -0,0 +1,485 @@
+---
+title: News
+sidebar: false
+newsHeader: NumPy 2.2.0 released!
+date: 2024-12-08
+---
+
+### NumPy 2.2.0 released
+
+_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back
+into sync with the usual twice yearly release cycle. There have been a number
+of small cleanups, improvements to the StringDType, and better support for free
+threaded Python. Highlights are:
+
+- New functions `matvec` and `vecmat`,
+- Many improved annotations,
+- Improved support for the new StringDType,
+- Improved support for free threaded Python,
+- Fixes for f2py.
+
+This release supports Python versions 3.10-3.13.
+
+### NumPy 2.1.0 released
+
+_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
+drops support for Python 3.9. In addition to the usual bug fixes and
+updated Python support, it helps get NumPy back to its usual release
+cycle after the extended development of 2.0. The highlights for this
+release are:
+
+- Support for Python 3.13.
+- Preliminary support for free threaded Python 3.13.
+- Support for the array-api 2023.12 standard.
+
+Python versions 3.10-3.13 are supported by this release.
+
+### NumPy 2.0.0 released
+
+_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
+result of 11 months of development since the last feature release and is the
+work of 212 contributors spread over 1078 pull requests. It contains a large
+number of exciting new features as well as changes to both the Python and C
+APIs. It includes breaking changes that could not happen in a regular minor
+release - including an ABI break, changes to type promotion rules, and API
+changes which may not have been emitting deprecation warnings in 1.26.x. Key
+documents related to how to adapt to changes in NumPy 2.0 include:
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
+tells a bit of the story about how this release came together.
+
+### NumPy 2.0 release date: June 16
+
+_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
+released on June 16, 2024. This release has been over a year in the making, and
+is the first major release since 2006. Importantly, in addition to many new
+features and performance improvement, it contains **breaking changes** to the
+ABI as well as the Python and C APIs. It is likely that downstream packages and
+end user code needs to be adapted - if you can, please verify whether your code
+works with NumPy `2.0.0rc2`. **Please see the following for more details:**
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+### NumFOCUS end of the year fundraiser
+
+_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
+on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
+until December 23rd, 2023 will go directly to the NumFOCUS programs.
+
+Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
+or a coupon code ISUPPORTDATASCIENCE
+
+### NumPy 1.26.0 released
+
+_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
+is now available. The highlights of the release are:
+
+- Python 3.12.0 support.
+- Cython 3.0.0 compatibility.
+- Use of the Meson build system
+- Updated SIMD support
+- f2py fixes, meson and bind(x) support
+- Support for the updated Accelerate BLAS/LAPACK library
+
+The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
+transition to the Meson build system and provision of support for Cython 3.0.0.
+A total of 20 people contributed to this release and 59 pull requests were
+merged.
+
+The Python versions supported by this release are 3.9-3.12.
+
+### numpy.org is now available in Japanese and Portuguese
+
+_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
+Japanese and Portuguese. This wouldn’t be possible without our dedicated volunteers:
+
+_Portuguese:_
+
+- Melissa Weber Mendonça (melissawm)
+- Ricardo Prins (ricardoprins)
+- Getúlio Silva (getuliosilva)
+- Julio Batista Silva (jbsilva)
+- Alexandre de Siqueira (alexdesiqueira)
+- Alexandre B A Villares (villares)
+- Vini Salazar (vinisalazar)
+
+_Japanese:_
+
+- Atsushi Sakai (AtsushiSakai)
+- KKunai
+- Tom Kelly (TomKellyGenetics)
+- Yuji Kanagawa (kngwyu)
+- Tetsuo Koyama (tkoyama010)
+
+The work on the translation infrastructure is supported with funding from CZI.
+
+Looking ahead, we’d love to translate the website into more languages.
+If you’d like to help, please connect with the NumPy Translations Team on Slack:
+https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
+(Look for the #translations channel.) We are also building a Translations Team who will be
+working on localizing documentation and educational content across the Scientific Python
+ecosystem. If this piqued your interest, join us on the Scientific Python
+Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
+
+### NumPy 1.25.0 released
+
+_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
+is now available. The highlights of the release are:
+
+- Support for MUSL, there are now MUSL wheels.
+- Support for the Fujitsu C/C++ compiler.
+- Object arrays are now supported in einsum.
+- Support for the inplace matrix multiplication (`@=`).
+
+The NumPy 1.25.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase the execution speed, and clarify the
+documentation. There has also been preparatory work for the future NumPy 2.0.0,
+resulting in a large number of new and expired deprecations.
+
+A total of 148 people contributed to this release and 530 pull requests were
+merged.
+
+The Python versions supported by this release are 3.9-3.11.
+
+### Fostering an Inclusive Culture: Call for Participation
+
+_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
+
+How can we be better when it comes to diversity and inclusion?
+Read the report and find out how to get involved
+[here](https://contributor-experience.org/docs/posts/dei-report/).
+
+### NumPy documentation team leadership transition
+
+_Jan 6, 2023_ –- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
+documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
+contributions to the NumPy official documentation and educational materials,
+and Mukulika and Ross for stepping up.
+
+### NumPy 1.24.0 released
+
+_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
+is now available. The highlights of the release are:
+
+- New "dtype" and "casting" keywords for stacking functions.
+- New F2PY features and fixes.
+- Many new deprecations, check them out.
+- Many expired deprecations,
+
+The NumPy 1.24.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase execution speed, and clarify the documentation.
+There are a large number of new and expired deprecations due to changes in
+dtype promotion and cleanups. It is the work of 177 contributors spread over
+444 pull requests. The supported Python versions are 3.8-3.11.
+
+### Numpy 1.23.0 released
+
+_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
+is now available. The highlights of the release are:
+
+- Implementation of `loadtxt` in C, greatly improving its performance.
+- Exposure of DLPack at the Python level for easy data exchange.
+- Changes to the promotion and comparisons of structured dtypes.
+- Improvements to f2py.
+
+The NumPy 1.23.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase the execution speed, clarify the documentation,
+and expire old deprecations. It is the work of 151 contributors spread over
+494 pull requests. The Python versions supported by this release 3.8-3.10.
+Python 3.11 will be supported when it reaches the rc stage.
+
+### NumFOCUS DEI research study: call for participation
+
+_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
+research project
+funded by the Gordon & Betty Moore Foundation to
+understand the barriers to participation that contributors, particularly those
+from historically underrepresented groups, face in the open-source software
+community. The research team would like to talk to new contributors, project
+developers and maintainers, and those who have contributed in the past about
+their experiences joining and contributing to NumPy.
+
+**Interested in sharing your experiences?**
+
+Please complete this brief [“Participant Interest” form](https://numfocus.typeform.com/to/WBWVJSqe)
+which contains additional information on the research goals, privacy, and
+confidentiality considerations. Your participation will be valuable to the
+growth and sustainability of diverse and inclusive open-source software
+communities. Accepted participants will participate in a 30-minute interview
+with a research team member.
+
+### Numpy 1.22.0 release
+
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
+is now available. The highlights of the release are:
+
+- Type annotations of the main namespace are essentially complete. Upstream is
+ a moving target, so there will likely be further improvements, but the major
+ work is done. This is probably the most user visible enhancement in this
+ release.
+- A preliminary version of the proposed
+ [array API Standard](https://data-apis.org/array-api/latest/) is provided
+ (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
+ This is a step in creating a standard collection of functions that can be
+ used across libraries such as CuPy and JAX.
+- NumPy now has a DLPack backend. DLPack provides a common interchange format
+ for array (tensor) data.
+- New methods for `quantile`, `percentile`, and related functions. The new
+ methods provide a complete set of the methods commonly found in the
+ literature.
+- The universal functions have been refactored to implement most of
+ [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
+ This also unlocks the ability to experiment with the future DType API.
+- A new configurable memory allocator for use by downstream projects.
+
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
+over 609 pull requests. The Python versions supported by this release are
+3.8-3.10.
+
+### Advancing an inclusive culture in the scientific Python ecosystem
+
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
+[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
+to support the onboarding, inclusion, and retention of people from historically
+marginalized groups on scientific Python projects, and to structurally improve
+the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
+
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
+this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
+will support the creation of dedicated Contributor Experience Lead positions to
+identify, document, and implement practices to foster inclusive open-source
+communities. This project will be led by Melissa Mendonça (NumPy), with
+additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
+Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
+Joris Van den Bossche (Pandas).
+
+This is an ambitious project aiming to discover and implement activities that
+should structurally improve the community dynamics of our projects. By
+establishing these new cross-project roles, we hope to introduce a new
+collaboration model to the Scientific Python communities, allowing
+community-building work within the ecosystem to be done more efficiently and
+with greater outcomes. We also expect to develop a clearer picture of what
+works and what doesn't in our projects to engage and retain new contributors,
+especially from historically underrepresented groups. Finally, we plan on
+producing detailed reports on the actions executed, explaining how they have
+impacted our projects in terms of representation and interaction with our
+communities.
+
+The two-year project is expected to start by November 2021, and we are excited
+to see the results from this work!
+[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### 2021 NumPy survey
+
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
+NumPy users from 75 countries participated in our inaugural survey last year.
+The survey findings gave us a very good understanding of what we should focus
+on for the next 12 months.
+
+It’s time for another survey, and we are counting on you once again. It will
+take about 15 minutes of your time. Besides English, the survey questionnaire
+is available in 8 additional languages: Bangla, French, Hindi, Japanese,
+Mandarin, Portuguese, Russian, and Spanish.
+
+Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+### Numpy 1.21.0 release
+
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
+is now available. The highlights of the release are:
+
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- improved documentation,
+- improved annotations,
+- new `PCG64DXSM` bitgenerator for random numbers.
+
+This NumPy release is the result of 581 merged pull requests contributed by 175
+people. The Python versions supported for this release are 3.7-3.9, support
+for Python 3.10 will be added after Python 3.10 is released.
+
+### 2020 NumPy survey results
+
+_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
+and faculty from the University of Michigan and the University of Maryland
+conducted the first official NumPy community survey. Find the survey results
+here: https://numpy.org/user-survey-2020/.
+
+### Numpy 1.20.0 release
+
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
+is now available. This is the largest NumPy release to date, thanks to 180+
+contributors. The two most exciting new features are:
+
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
+ containing `ArrayLike` and `DtypeLike` aliases that users and downstream
+ libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
+ AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
+ performance improvements for many functions (examples:
+ [sin/cos](https://github.com/numpy/numpy/pull/17587),
+ [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### Diversity in the NumPy project
+
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
+
+### First official NumPy paper published in Nature!
+
+_Sep 16, 2020_ -- We are pleased to announce the publication of
+[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
+as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
+The paper covers applications and fundamental concepts of array programming,
+the rich scientific Python ecosystem built on top of NumPy, and the recently added
+array protocols to facilitate interoperability with external array and tensor
+libraries like CuPy, Dask, and JAX.
+
+### Python 3.9 is coming, when will NumPy release binary wheels?
+
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
+early adopter of Python versions, you may be dissapointed to find that NumPy
+(and other binary packages like SciPy) will not have binary wheels ready on the
+day of the release. It is a major effort to adapt the build infrastructure to a
+new Python version and it typically takes a few weeks for the packages to appear
+on PyPI and conda-forge. In preparation for this event, please make sure to
+
+- update your `pip` to version 20.1 at least to support `manylinux2010` and
+ `manylinux2014`
+- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
+ trying to build from source.
+
+### Numpy 1.19.2 release
+
+_Sep 10, 2020_ -- NumPy
+1.19.2 is now available.
+This latest release in the 1.19 series fixes several bugs, prepares for the
+upcoming Cython 3.x
+release and pins
+setuptools to keep distutils working while upstream modifications are ongoing.
+The aarch64 wheels are built with the latest manylinux2014 release that fixes
+the problem of differing page sizes used by different linux distros.
+
+### The inaugural NumPy survey is live!
+
+_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
+decision-making about the development of NumPy as software and as a community.
+The survey is available in 8 additional languages besides English:
+Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
+
+Please help us make NumPy better and take the survey
+[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+### NumPy has a new logo!
+
+_Jun 24, 2020_ -- NumPy now has a new logo:
+
+
+
+The logo is a modern take on the old one, with a cleaner design. Thanks to
+Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
+for the old logo that served us well for 15+ years.
+
+### NumPy 1.19.0 release
+
+_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
+without Python 2 support, hence it was a "clean-up release". The minimum
+supported Python version is now Python 3.6. An important new feature is that
+the random number generation infrastructure that was introduced in NumPy 1.17.0
+is now accessible from Cython.
+
+### Season of Docs acceptance
+
+_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
+the Google Season of Docs program. We are excited about the opportunity to
+work with a technical writer to improve NumPy's documentation once again! For more
+details, please see
+[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
+[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
+
+### NumPy 1.18.0 release
+
+_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
+1.17.0, this is a consolidation release. It is the last minor release that will
+support Python 3.5. Highlights of the release includes the addition of basic
+infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
+
+Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
+
+### NumPy receives a grant from the Chan Zuckerberg Initiative
+
+_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
+
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
+
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
+
+
+
+## Releases
+
+Here is a list of NumPy releases, with links to release notes. Bugfix
+releases (only the `z` changes in the `x.y.z` version number) have no new
+features; minor releases (the `y` increases) do.
+
+- NumPy 2.2.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.5)) -- _19 Apr 2025_.
+- NumPy 2.2.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.4)) -- _16 Mar 2025_.
+- NumPy 2.2.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.3)) -- _13 Feb 2025_.
+- NumPy 2.2.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.2)) -- _18 Jan 2025_.
+- NumPy 2.2.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.1)) -- _21 Dec 2024_.
+- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
+- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
+- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
+- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
+- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
+- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
+- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
+- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
+- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
+- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
+- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
+- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
+- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
+- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
+- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
+- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
+- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
+- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
+- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
+- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
+- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
+- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
+- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
+- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
+- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
+- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
+- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
+- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
+- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
+- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
+- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
+- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
+- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
+- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
+- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
+- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
+- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
+- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
+- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
+- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
+- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
+- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
+- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
+- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
+- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
diff --git a/content/ca/press-kit.md b/content/ca/press-kit.md
new file mode 100644
index 00000000..2c8970bb
--- /dev/null
+++ b/content/ca/press-kit.md
@@ -0,0 +1,8 @@
+---
+title: Press kit
+sidebar: false
+---
+
+We would like to make it easy for you to include the NumPy project identity in your next academic paper, course materials, or presentation.
+
+You will find several high-resolution versions of the NumPy logo [here](https://github.com/numpy/numpy/tree/main/branding/logo). Note that by using the numpy.org resources, you accept the [NumPy Code of Conduct](/code-of-conduct).
diff --git a/content/ca/privacy.md b/content/ca/privacy.md
new file mode 100644
index 00000000..6064e4c4
--- /dev/null
+++ b/content/ca/privacy.md
@@ -0,0 +1,8 @@
+---
+title: Privacy Policy
+sidebar: false
+---
+
+**numpy.org** is operated by [NumFOCUS, Inc.](https://numfocus.org), the fiscal sponsor of the NumPy project. For the Privacy Policy of this website please refer to https://numfocus.org/privacy-policy.
+
+If you have any questions about the policy or NumFOCUS’s data collection, use, and disclosure practices, please contact the NumFOCUS staff at privacy@numfocus.org.
diff --git a/content/ca/report-handling-manual.md b/content/ca/report-handling-manual.md
new file mode 100644
index 00000000..161757fe
--- /dev/null
+++ b/content/ca/report-handling-manual.md
@@ -0,0 +1,89 @@
+---
+title: NumPy Code of Conduct - How to follow up on a report
+sidebar: false
+---
+
+This is the manual followed by NumPy’s Code of Conduct Committee. It’s used when we respond to an issue to make sure we’re consistent and fair.
+
+Enforcing the [Code of Conduct](/code-of-conduct) impacts our community today and for the future. It’s an action that we do not take lightly. When reviewing enforcement measures, the Code of Conduct Committee will keep the following values and guidelines in mind:
+
+- Act in a personal manner rather than impersonal. The Committee can engage the parties to understand the situation while respecting the privacy and any necessary confidentiality of reporters. However, sometimes it is necessary to communicate with one or more individuals directly: the Committee’s goal is to improve the health of our community rather than only produce a formal decision.
+- Emphasize empathy for individuals rather than judging behavior, avoiding binary labels of “good” and “bad/evil”. Overt, clear-cut aggression and harassment exist, and we will address them firmly. But many scenarios that can prove challenging to resolve are those where normal disagreements devolve into unhelpful or harmful behavior from multiple parties. Understanding the full context and finding a path that re-engages all is hard, but ultimately the most productive for our community.
+- We understand that email is a difficult medium and can be isolating. Receiving criticism over email, without personal contact, can be particularly painful. This makes it especially important to keep an atmosphere of open-minded respect for the views of others. It also means that we must be transparent in our actions, and that we will do everything in our power to make sure that all our members are treated fairly and with sympathy.
+- Discrimination can be subtle and it can be unconscious. It can show itself as unfairness and hostility in otherwise ordinary interactions. We know that this does occur, and we will take care to look out for it. We would very much like to hear from you if you feel you have been treated unfairly, and we will use these procedures to make sure that your complaint is heard and addressed.
+- Help increase engagement in good discussion practice: try to identify where discussion may have broken down, and provide actionable information, pointers, and resources that can lead to positive change on these points.
+- Be mindful of the needs of new members: provide them with explicit support and consideration, with the aim of increasing participation from underrepresented groups in particular.
+- Individuals come from different cultural backgrounds and native languages. Try to identify any honest misunderstandings caused by a non-native speaker and help them understand the issue and what they can change to avoid causing offence. Complex discussion in a foreign language can be very intimidating, and we want to grow our diversity also across nationalities and cultures.
+
+## Mediation
+
+Voluntary informal mediation is a tool at our disposal. In contexts such as when two or more parties have all escalated to the point of inappropriate behavior (something sadly common in human conflict), it may be useful to facilitate a mediation process. This is only an example: the Committee can consider mediation in any case, mindful that the process is meant to be strictly voluntary and no party can be pressured to participate. If the Committee suggests mediation, it should:
+
+- Find a candidate who can serve as a mediator.
+- Obtain the agreement of the reporter(s). The reporter(s) have complete freedom to decline the mediation idea or to propose an alternate mediator.
+- Obtain the agreement of the reported person(s).
+- Settle on the mediator: while parties can propose a different mediator than the suggested candidate, only if a common agreement is reached on all terms can the process move forward.
+- Establish a timeline for mediation to complete, ideally within two weeks.
+
+The mediator will engage with all the parties and seek a resolution that is satisfactory to all. Upon completion, the mediator will provide a report (vetted by all parties to the process) to the Committee, with recommendations on further steps. The Committee will then evaluate these results (whether a satisfactory resolution was achieved or not) and decide on any additional action deemed necessary.
+
+## How the Committee will respond to reports
+
+When the Committee (or a Committee member) receives a report, they will first determine whether the report is about a clear and severe breach (as defined below). If so, immediate action needs to be taken in addition to the regular report handling process.
+
+## Clear and severe breach actions
+
+We know that it is painfully common for internet communication to start at or devolve into obvious and flagrant abuse. We will deal quickly with clear and severe breaches like personal threats, violent, sexist or racist language.
+
+When a member of the Code of Conduct Committee becomes aware of a clear and severe breach, they will do the following:
+
+- Immediately disconnect the originator from all NumPy communication channels.
+- Reply to the reporter that their report has been received and that the originator has been disconnected.
+- In every case, the moderator should make a reasonable effort to contact the originator, and tell them specifically how their language or actions qualify as a “clear and severe breach”. The moderator should also say that, if the originator believes this is unfair or they want to be reconnected to NumPy, they have the right to ask for a review, as below, by the Code of Conduct Committee. The moderator should copy this explanation to the Code of Conduct Committee.
+- The Code of Conduct Committee will formally review and sign off on all cases where this mechanism has been applied to make sure it is not being used to control ordinary heated disagreement.
+
+## Report handling
+
+When a report is sent to the Committee they will immediately reply to the reporter to confirm receipt. This reply must be sent within 72 hours, and the group should strive to respond much quicker than that.
+
+If a report doesn’t contain enough information, the Committee will obtain all relevant data before acting. The Committee is empowered to act on the Steering Council’s behalf in contacting any individuals involved to get a more complete account of events.
+
+The Committee will then review the incident and determine, to the best of their ability:
+
+- What happened.
+- Whether this event constitutes a Code of Conduct violation.
+- Who are the responsible party(ies).
+- Whether this is an ongoing situation, and there is a threat to anyone’s physical safety.
+
+This information will be collected in writing, and whenever possible the group’s deliberations will be recorded and retained (i.e. chat transcripts, email discussions, recorded conference calls, summaries of voice conversations, etc).
+
+It is important to retain an archive of all activities of this Committee to ensure consistency in behavior and provide institutional memory for the project. To assist in this, the default channel of discussion for this Committee will be a private mailing list accessible to current and future members of the Committee as well as members of the Steering Council upon justified request. If the Committee finds the need to use off-list communications (e.g. phone calls for early/rapid response), it should in all cases summarize these back to the list so there’s a good record of the process.
+
+The Code of Conduct Committee should aim to have a resolution agreed upon within two weeks. In the event that a resolution can’t be determined in that time, the Committee will respond to the reporter(s) with an update and projected timeline for resolution.
+
+## Resolutions
+
+The Committee must agree on a resolution by consensus. If the group cannot reach consensus and deadlocks for over a week, the group will turn the matter over to the Steering Council for resolution.
+
+Possible responses may include:
+
+- Taking no further action:
+ - if we determine no violations have occurred;
+ - if the matter has been resolved publicly while the Committee was considering responses.
+- Coordinating voluntary mediation: if all involved parties agree, the Committee may facilitate a mediation process as detailed above.
+- Remind publicly, and point out that some behavior/actions/language have been judged inappropriate and why in the current context, or can but hurtful to some people, requesting the community to self-adjust.
+- A private reprimand from the Committee to the individual(s) involved. In this case, the group chair will deliver that reprimand to the individual(s) over email, cc’ing the group.
+- A public reprimand. In this case, the Committee chair will deliver that reprimand in the same venue that the violation occurred, within the limits of practicality. E.g., the original mailing list for an email violation, but for a chat room discussion where the person/context may be gone, they can be reached by other means. The group may choose to publish this message elsewhere for documentation purposes.
+- A request for a public or private apology, assuming the reporter agrees to this idea: they may at their discretion refuse further contact with the violator. The chair will deliver this request. The Committee may, if it chooses, attach “strings” to this request: for example, the group may ask a violator to apologize in order to retain one’s membership on a mailing list.
+- A “mutually agreed upon hiatus” where the Committee asks the individual to temporarily refrain from community participation. If the individual chooses not to take a temporary break voluntarily, the Committee may issue a “mandatory cooling off period”.
+- A permanent or temporary ban from some or all NumPy spaces (mailing lists, gitter.im, etc.). The group will maintain records of all such bans so that they may be reviewed in the future or otherwise maintained.
+
+Once a resolution is agreed upon, but before it is enacted, the Committee will contact the original reporter and any other affected parties and explain the proposed resolution. The Committee will ask if this resolution is acceptable, and must note feedback for the record.
+
+Finally, the Committee will make a report to the NumPy Steering Council (as well as the NumPy core team in the event of an ongoing resolution, such as a ban).
+
+The Committee will never publicly discuss the issue; all public statements will be made by the chair of the Code of Conduct Committee or the NumPy Steering Council.
+
+## Conflicts of Interest
+
+In the event of any conflict of interest, a Committee member must immediately notify the other members, and recuse themselves if necessary.
diff --git a/content/ca/tabcontents.yaml b/content/ca/tabcontents.yaml
new file mode 100644
index 00000000..ecfce140
--- /dev/null
+++ b/content/ca/tabcontents.yaml
@@ -0,0 +1,275 @@
+params:
+ machinelearning:
+ paras:
+ - para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlow’s](https://www.tensorflow.org) deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing.
+ para2: Statistical techniques called [ensemble methods](https://scikit-learn.org/stable/modules/ensemble.html) such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://xgboost.readthedocs.io/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) — one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
+ arraylibraries:
+ intro:
+ - text: NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.
+ headers:
+ - text: Array Library
+ - text: Capabilities & Application areas
+ libraries:
+ - title: Dask
+ text: Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
+ img: /images/content_images/arlib/dask.png
+ alttext: Dask
+ url: https://dask.org/
+ - title: CuPy
+ text: NumPy-compatible array library for GPU-accelerated computing with Python.
+ img: /images/content_images/arlib/cupy.png
+ alttext: CuPy
+ url: https://cupy.dev
+ - title: JAX
+ text: "Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU."
+ img: /images/content_images/arlib/jax_logo_250px.png
+ alttext: JAX
+ url: https://jax.readthedocs.io/
+ - title: Xarray
+ text: Labeled, indexed multi-dimensional arrays for advanced analytics and visualization.
+ img: /images/content_images/arlib/xarray.png
+ alttext: xarray
+ url: https://xarray.pydata.org/en/stable/index.html
+ - title: Sparse
+ text: NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
+ img: /images/content_images/arlib/sparse.png
+ alttext: sparse
+ url: https://sparse.pydata.org/en/latest/
+ - title: PyTorch
+ text: Deep learning framework that accelerates the path from research prototyping to production deployment.
+ img: /images/content_images/arlib/pytorch-logo-dark.svg
+ alttext: PyTorch
+ url: https://pytorch.org/
+ - title: TensorFlow
+ text: An end-to-end platform for machine learning to easily build and deploy ML powered applications.
+ img: /images/content_images/arlib/tensorflow-logo.svg
+ alttext: TensorFlow
+ url: https://www.tensorflow.org
+ - title: Arrow
+ text: A cross-language development platform for columnar in-memory data and analytics.
+ img: /images/content_images/arlib/arrow.png
+ alttext: arrow
+ url: https://arrow.apache.org/
+ - title: xtensor
+ text: Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
+ img: /images/content_images/arlib/xtensor.png
+ alttext: xtensor
+ url: https://github.com/xtensor-stack/xtensor-python
+ - title: Awkward Array
+ text: Manipulate JSON-like data with NumPy-like idioms.
+ img: /images/content_images/arlib/awkward.svg
+ alttext: awkward
+ url: https://awkward-array.org/
+ - title: uarray
+ text: Python backend system that decouples API from implementation; unumpy provides a NumPy API.
+ img: /images/content_images/arlib/uarray.png
+ alttext: uarray
+ url: https://uarray.org/en/latest/
+ - title: tensorly
+ text: Tensor learning, algebra and backends to seamlessly use NumPy, PyTorch, TensorFlow or CuPy.
+ img: /images/content_images/arlib/tensorly.png
+ alttext: tensorly
+ url: http://tensorly.org/stable/home.html
+ scientificdomains:
+ intro:
+ - text: Nearly every scientist working in Python draws on the power of NumPy.
+ - text: "NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant."
+ libraries:
+ - title: Quantum Computing
+ alttext: A computer chip.
+ img: /images/content_images/sc_dom_img/quantum_computing.svg
+ links:
+ - url: https://qutip.org
+ label: QuTiP
+ - url: https://pyquil-docs.rigetti.com/en/stable
+ label: PyQuil
+ - url: https://qiskit.org
+ label: Qiskit
+ - url: https://pennylane.ai
+ label: PennyLane
+ - title: Statistical Computing
+ alttext: A line graph with the line moving up.
+ img: /images/content_images/sc_dom_img/statistical_computing.svg
+ links:
+ - url: https://pandas.pydata.org/
+ label: Pandas
+ - url: https://www.statsmodels.org/
+ label: statsmodels
+ - url: https://xarray.pydata.org/en/stable/
+ label: Xarray
+ - url: https://seaborn.pydata.org/
+ label: Seaborn
+ - title: Signal Processing
+ alttext: A bar chart with positive and negative values.
+ img: /images/content_images/sc_dom_img/signal_processing.svg
+ links:
+ - url: https://www.scipy.org/
+ label: SciPy
+ - url: https://pywavelets.readthedocs.io/
+ label: PyWavelets
+ - url: https://python-control.org/
+ label: python-control
+ - url: https://hyperspy.org/
+ label: HyperSpy
+ - title: Image Processing
+ alttext: An photograph of the mountains.
+ img: /images/content_images/sc_dom_img/image_processing.svg
+ links:
+ - url: https://scikit-image.org/
+ label: Scikit-image
+ - url: https://opencv.org/
+ label: OpenCV
+ - url: https://mahotas.rtfd.io/
+ label: Mahotas
+ - title: Graphs and Networks
+ alttext: A simple graph.
+ img: /images/content_images/sc_dom_img/sd6.svg
+ links:
+ - url: https://networkx.org/
+ label: NetworkX
+ - url: https://graph-tool.skewed.de/
+ label: graph-tool
+ - url: https://igraph.org/python/
+ label: igraph
+ - url: https://pygsp.rtfd.io/
+ label: PyGSP
+ - title: Astronomy
+ alttext: A telescope.
+ img: /images/content_images/sc_dom_img/astronomy_processes.svg
+ links:
+ - url: https://www.astropy.org/
+ label: AstroPy
+ - url: https://sunpy.org/
+ label: SunPy
+ - url: https://spacepy.github.io/
+ label: SpacePy
+ - title: Cognitive Psychology
+ alttext: A human head with gears.
+ img: /images/content_images/sc_dom_img/cognitive_psychology.svg
+ links:
+ - url: https://www.psychopy.org/
+ label: PsychoPy
+ - title: Bioinformatics
+ alttext: A strand of DNA.
+ img: /images/content_images/sc_dom_img/bioinformatics.svg
+ links:
+ - url: https://biopython.org/
+ label: BioPython
+ - url: http://scikit-bio.org/
+ label: Scikit-Bio
+ - url: https://github.com/openvax/pyensembl
+ label: PyEnsembl
+ - url: http://etetoolkit.org/
+ label: ETE
+ - title: Bayesian Inference
+ alttext: A graph with a bell-shaped curve.
+ img: /images/content_images/sc_dom_img/bayesian_inference.svg
+ links:
+ - url: https://pystan.readthedocs.io/en/latest/
+ label: PyStan
+ - url: https://docs.pymc.io/
+ label: PyMC
+ - url: https://arviz-devs.github.io/arviz/
+ label: ArviZ
+ - url: https://emcee.readthedocs.io/
+ label: emcee
+ - title: Mathematical Analysis
+ alttext: Four mathematical symbols.
+ img: /images/content_images/sc_dom_img/mathematical_analysis.svg
+ links:
+ - url: https://www.scipy.org/
+ label: SciPy
+ - url: https://www.sympy.org/
+ label: SymPy
+ - url: https://www.cvxpy.org/
+ label: cvxpy
+ - url: https://fenicsproject.org/
+ label: FEniCS
+ - title: Chemistry
+ alttext: A test tube.
+ img: /images/content_images/sc_dom_img/chemistry.svg
+ links:
+ - url: https://cantera.org/
+ label: Cantera
+ - url: https://www.mdanalysis.org/
+ label: MDAnalysis
+ - url: https://github.com/rdkit/rdkit
+ label: RDKit
+ - url: https://www.pybamm.org/
+ label: PyBaMM
+ - title: Geoscience
+ alttext: The Earth.
+ img: /images/content_images/sc_dom_img/geoscience.svg
+ links:
+ - url: https://pangeo.io/
+ label: Pangeo
+ - url: https://simpeg.xyz/
+ label: Simpeg
+ - url: https://github.com/obspy/obspy/wiki
+ label: ObsPy
+ - url: https://www.fatiando.org/
+ label: Fatiando a Terra
+ - title: Geographic Processing
+ alttext: A map.
+ img: /images/content_images/sc_dom_img/GIS.svg
+ links:
+ - url: https://shapely.readthedocs.io/
+ label: Shapely
+ - url: https://geopandas.org/
+ label: GeoPandas
+ - url: https://python-visualization.github.io/folium
+ label: Folium
+ - title: Architecture & Engineering
+ alttext: A microprocessor development board.
+ img: /images/content_images/sc_dom_img/robotics.svg
+ links:
+ - url: https://compas.dev/
+ label: COMPAS
+ - url: https://cityenergyanalyst.com/
+ label: City Energy Analyst
+ - url: https://nortikin.github.io/sverchok/
+ label: Sverchok
+ datascience:
+ intro: "NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:"
+ image1:
+ - img: /images/content_images/ds-landscape.png
+ alttext: Diagram of Python Libraries. The five catagories are 'Extract, Transform, Load', 'Data Exploration', 'Data Modeling', 'Data Evaluation' and 'Data Presentation'.
+ image2:
+ - img: /images/content_images/data-science.png
+ alttext: Diagram of three overlapping circles. The circles are labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
+ examples:
+ - text: "Extract, Transform, Load: [Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor-devs.github.io/pyjanitor/)"
+ - text: "Exploratory analysis: [Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
+ - text: "Model and evaluate: [scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC](https://docs.pymc.io), [spaCy](https://spacy.io)"
+ - text: "Report in a dashboard: [Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://voila.readthedocs.io/)"
+ content:
+ - text: For high data volumes, [Dask](https://dask.org) and [Ray](https://ray.io/) are designed to scale. Stable deployments rely on data versioning ([DVC](https://dvc.org)), experiment tracking ([MLFlow](https://mlflow.org)), and workflow automation ([Airflow](https://airflow.apache.org), [Dagster](https://dagster.io) and [Prefect](https://www.prefect.io)).
+ visualization:
+ images:
+ - url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
+ img: /images/content_images/v_matplotlib.png
+ alttext: A streamplot made in matplotlib
+ - url: https://github.com/yhat/ggpy
+ img: /images/content_images/v_ggpy.png
+ alttext: A scatter-plot graph made in ggpy
+ - url: https://www.journaldev.com/19692/python-plotly-tutorial
+ img: /images/content_images/v_plotly.png
+ alttext: A box-plot made in plotly
+ - url: https://altair-viz.github.io/gallery/streamgraph.html
+ img: /images/content_images/v_altair.png
+ alttext: A streamgraph made in altair
+ - url: https://seaborn.pydata.org
+ img: /images/content_images/v_seaborn.png
+ alttext: A pairplot of two types of graph, a plot-graph and a frequency graph made in seaborn"
+ - url: https://docs.pyvista.org/
+ img: /images/content_images/v_pyvista.png
+ alttext: A 3D volume rendering made in PyVista.
+ - url: https://napari.org
+ img: /images/content_images/v_napari.png
+ alttext: A multi-dimensionan image made in napari.
+ - url: https://vispy.org/gallery/index.html
+ img: /images/content_images/v_vispy.png
+ alttext: A Voronoi diagram made in vispy.
+ content:
+ - text: NumPy is an essential component in the burgeoning [Python visualization landscape](https://pyviz.org/overviews/index.html), which includes [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://napari.org/), and [PyVista](https://docs.pyvista.org/), to name a few.
+ - text: NumPy's accelerated processing of large arrays allows researchers to visualize datasets far larger than native Python could handle.
diff --git a/content/ca/teams/index.md b/content/ca/teams/index.md
new file mode 100644
index 00000000..f5be9dfd
--- /dev/null
+++ b/content/ca/teams/index.md
@@ -0,0 +1,40 @@
+---
+title: NumPy Teams
+sidebar: false
+---
+
+We are an international team on a mission to support scientific and research
+communities worldwide by building quality, open-source software.
+[Join us](/contribute)!
+
+### Maintainers
+
+{{< grid file="maintainers.toml" columns="2 3 4 5" />}}
+
+### Docs team
+
+{{< grid file="docs-team.toml" columns="2 3 4 5" />}}
+
+### Web team
+
+{{< grid file="web-team.toml" columns="2 3 4 5" />}}
+
+### Triage team
+
+{{< grid file="triage-team.toml" columns="2 3 4 5" />}}
+
+### Survey team
+
+{{< grid file="survey-team.toml" columns="2 3 4 5" />}}
+
+### Translations team
+
+{{< grid file="translations-team.toml" columns="2 3 4 5" />}}
+
+### Emeritus maintainers
+
+{{< grid file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
+
+# Governance
+
+For the list of the Steering Council members, please see [here](https://numpy.org/about/).
diff --git a/content/ca/user-survey-2020.md b/content/ca/user-survey-2020.md
new file mode 100644
index 00000000..e822c661
--- /dev/null
+++ b/content/ca/user-survey-2020.md
@@ -0,0 +1,23 @@
+---
+title: 2020 NUMPY COMMUNITY SURVEY
+sidebar: false
+---
+
+In 2020, the NumPy survey team in partnership with students and faculty from a
+Master’s course in Survey Methodology jointly hosted by the University of
+Michigan and the University of Maryland conducted the first official NumPy
+community survey. Over 1,200 users from 75 countries participated to help us
+map out a landscape of the NumPy community and voiced their thoughts about the
+future of the project.
+
+{{< figure >}}
+{{< /figure >}}
+
+**[Download the report](/surveys/NumPy_usersurvey_2020_report.pdf)**
+to take a closer look at the survey findings.
+
+For the highlights, check out
+**[this infographic](https://github.com/numpy/numpy-surveys/blob/master/images/2020NumPysurveyresults_community_infographic.pdf)**.
+
+Ready for a deep dive? Visit **https://numpy.org/user-survey-2020-details/**.
+
diff --git a/content/ca/user-surveys.md b/content/ca/user-surveys.md
new file mode 100644
index 00000000..529a6c1e
--- /dev/null
+++ b/content/ca/user-surveys.md
@@ -0,0 +1,11 @@
+---
+title: NUMPY USER SURVEYS
+sidebar: false
+---
+
+**2020**
+The NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results [here](https://numpy.org/user-survey-2020/).
+
+**2021** The collected data is currently being analyzed.
+
+If you have any questions or suggestions for the past or future surveys, please open an issue [here](https://github.com/numpy/numpy-surveys/issues).
diff --git a/content/es/404.md b/content/es/404.md
new file mode 100644
index 00000000..6a10d57e
--- /dev/null
+++ b/content/es/404.md
@@ -0,0 +1,8 @@
+---
+title: 404
+sidebar: false
+---
+
+¡Oh, oh! Has llegado a un callejón sin salida.
+
+Si crees que algo debería estar aquí, puedes [reportar este problema](https://github.com/numpy/numpy.org/issues) en GitHub.
diff --git a/content/es/_index.md b/content/es/_index.md
new file mode 100644
index 00000000..f7b9db9d
--- /dev/null
+++ b/content/es/_index.md
@@ -0,0 +1,49 @@
+---
+title: NumPy
+---
+
+{{< grid columns="2 3 4 5" >}}
+
+[[item]]
+type = 'card'
+title = 'Matrices N-dimensionales potentes'
+body = '''
+Rápida y versátil, la vectorización, indexación y conceptos de broadcasting de NumPy son los estándares de facto en el cálculo de matrices hoy en día.
+'''
+
+[[item]]
+type = 'card'
+title = 'Herramientas de cálculo numérico'
+body = '''
+NumPy ofrece funciones matemáticas completas, generadores de números aleatorios, rutinas de álgebra lineal, transformadas de Fourier, y más.
+'''
+
+[[item]]
+type = 'card'
+title = 'Código abierto'
+body = '''
+Distribuido bajo una [licencia BSD] liberal (https://github.com/numpy/numpy/blob/main/LICENSE.txt), NumPy es desarrollado y mantenido [públicamente en GitHub](https://github.com/numpy/numpy) por una vibrante, receptiva y diversa [comunidad](/comunidad).
+'''
+
+[[item]]
+type = 'card'
+title = 'Interoperable'
+body = '''
+NumPy soporta una amplia gama de hardware y plataformas de computación, y funciona bien con librerías distribuidas, de GPU y de matrices dispersas.
+'''
+
+[[item]]
+type = 'card'
+title = 'Óptimo'
+body = '''
+El núcleo de NumPy está optimizado adecuadamente con código en C. Disfrute de la flexibilidad de Python con la velocidad del código compilado.
+'''
+
+[[item]]
+type = 'card'
+title = 'Fácil de usar'
+body = '''
+La sintaxis de alto nivel de NumPy lo hace accesible y productivo para programadores de cualquier formación o nivel de experiencia.
+'''
+
+{{< /grid>}}
diff --git a/content/es/about.md b/content/es/about.md
new file mode 100644
index 00000000..5e020f1f
--- /dev/null
+++ b/content/es/about.md
@@ -0,0 +1,88 @@
+---
+title: Quiénes somos
+sidebar: false
+---
+
+NumPy es un proyecto de código abierto cuyo objetivo es permitir la computación numérica en Python. Fue creado en el 2005, a partir de los primeros trabajos de las bibliotecas Numeric y Numarray. NumPy siempre será un software 100% de código abierto y de uso libre para todos. It is released under the liberal terms of the [modified BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt).
+
+NumPy es desarrollado de forma abierta en GitHub, mediante el consenso de las comunidades NumPy y Python científico en general. For more information on our governance approach, please see our [Governance Document](https://www.numpy.org/devdocs/dev/governance/index.html).
+
+## Consejo Directivo
+
+El Consejo de Dirección de NumPy es el órgano de gobernanza del proyecto. Su papel es garantizar, a través del trabajo con la comunidad NumPy en general y al servicio de la misma, el bienestar a largo plazo del proyecto, tanto desde el punto de vista técnico como de la comunidad. El Consejo Directivo de NumPy está formado actualmente por los siguientes miembros (en orden alfabético):
+
+- Sebastian Berg
+- Ralf Gommers
+- Charles Harris
+- Inessa Pawson
+- Matti Picus
+- Stéfan van der Walt
+- Melissa Weber Mendonça
+- Marten van Kerkwijk
+- Eric Wieser
+
+Eméritos:
+
+- Alex Griffing (2015-2017)
+- Allan Haldane (2015-2021)
+- Travis Oliphant (project founder, 2005-2012)
+- Nathaniel Smith (2012-2021)
+- Julian Taylor (2013-2021)
+- Jaime Fernández del Río (2014-2021)
+- Pauli Virtanen (2008-2021)
+- Eric Wieser (2017-2025)
+- Stephan Hoyer (2017-2025)
+
+Para contactar con el Consejo Directivo de NumPy, por favor envía un correo electrónico a numpy-team@googlegroups.com.
+
+## Equipos
+
+The NumPy project leadership is actively working on diversifying contribution pathways to the project.
+NumPy currently has the following teams:
+
+- desarrollo
+- documentación
+- clasificación
+- página web
+- encuesta
+- traducción
+- mentores de sprints
+- optimización
+- financiación y subvenciones
+
+See the [Team](/teams) page for more info.
+
+## Subcomité NumFOCUS
+
+- Charles Harris
+- Ralf Gommers
+- Inessa Pawson
+- Sebastian Berg
+- Miembro externo: Thomas Caswell
+
+## Patrocinadores
+
+{{< sponsors >}}
+
+## Socios institucionales
+
+Los socios institucionales son organizaciones que apoyan al proyecto empleando a personas que contribuyen a NumPy como parte de su trabajo. Entre los actuales socios institucionales se encuentran:
+
+- UC Berkeley (Stéfan van der Walt)
+- Quansight (Nathan Goldbaum, Ralf Gommers, Matti Picus, Melissa Weber Mendonça)
+- NVIDIA (Sebastian Berg)
+
+{{< partners >}}
+
+## Donar
+
+Si has encontrado NumPy útil en tu trabajo, investigación o empresa, por favor considera una donación al proyecto proporcional a tus recursos. ¡Cualquier cantidad ayuda! Todas las donaciones se utilizarán estrictamente para financiar el desarrollo del software de código abierto, la documentación y la comunidad de NumPy.
+
+NumPy es un proyecto patrocinado por NumFOCUS, una organización benéfica sin fines de lucro 501(c)(3) de Estados Unidos. NumFOCUS proporciona a NumPy apoyo fiscal, legal y administrativo para ayudar a garantizar el bienestar y la sostenibilidad del proyecto. Visit [numfocus.org](https://numfocus.org) for more information.
+
+Donations to NumPy are managed by [NumFOCUS](https://numfocus.org). Para los donantes de Estados Unidos, su donación es deducible de impuestos en la medida prevista por la ley. Al igual que con cualquier donación, debes consultar a tu asesor de impuestos sobre tu situación fiscal particular.
+
+El Consejo Directivo de NumPy tomará las decisiones sobre el mejor uso de los fondos recibidos. Technical and infrastructure priorities are documented on the [NumPy Roadmap](https://www.numpy.org/neps/index.html#roadmap).
+
+{{
+
+La **computación con arreglos** está basada en los **arreglos** como estructura de datos. _Los arreglos_ son utilizados para organizar grandes cantidades de datos de manera que un conjunto de valores relacionados pueda ordenarse, buscarse, manipularse matemáticamente y transformarse con facilidad y rapidez.
+
+La computación con arreglos es _única_ ya que implica operar sobre todos los datos del arreglo _al mismo tiempo_. Esto significa que cualquier operación de arreglos se aplica a un conjunto completo de valores de una sola vez. Este enfoque vectorial proporciona velocidad y simplicidad, al permitir a los programadores codificar y operar sobre los datos agregados, sin tener que utilizar bucles de instrucciones escalares individuales.
diff --git a/content/es/case-studies/blackhole-image.md b/content/es/case-studies/blackhole-image.md
new file mode 100644
index 00000000..daa96318
--- /dev/null
+++ b/content/es/case-studies/blackhole-image.md
@@ -0,0 +1,83 @@
+---
+title: "Caso de estudio: La primera imagen de un Agujero Negro"
+sidebar: false
+---
+
+{{< figure
+ src='/images/content_images/cs/blackhole.jpg'
+ title='Black Hole M87'
+ alt='black hole image'
+ attribution='(Image Credits: Event Horizon Telescope Collaboration)'
+ attributionlink="https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg"
+>}}
+
+{{< blockquote
+ cite="https://www.youtube.com/watch?v=BIvezCVcsYshttps://www.youtube.com/watch?v=BIvezCVcsYs"
+ by=""
+>}}
+{{< /blockquote >}}
+
+## Un telescopio del tamaño de la Tierra
+
+El [ Telescopio Event Horizon (EHT) ](https://eventhorizontelescope.org), es un conjunto de ocho radiotelescopios terrestres que forman un telescopio computacional del tamaño de la Tierra, estudiando al universo con una sensibilidad y resolución sin precedente. El enorme telescopio virtual, que utiliza una técnica llamada Interferometría de línea de base muy larga (VLBI), tiene una resolución angular de [20 microsegundos de arco][resolution] — ¡suficiente para leer un periódico en Nueva York desde un café en la acera en París!
+
+[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
+
+### Objetivos y Resultados Clave
+
+- **Una nueva vista del universo:** El trabajo preliminar de la innovadora imagen de EHT se había establecido 100 años antes, cuando [Sir Arthur Eddington][eddington] dio el primer apoyo observacional a la teoría de la relatividad general de Einstein.
+
+- **El agujero negro:** EHT se entrenó en un enorme agujero negro supermasivo aproximadamente a 55 millones de años luz de la Tierra, situado en el centro de la galaxia Messier 87 (M87) en el cúmulo de galaxias Virgo. Su masa es 6.5 mil millones de veces la del sol. Se había estudiado por [más de 100 años](https://www.jpl.nasa.gov/news/news.php?feature=7385), pero nunca antes se había observado un agujero negro.
+
+- **Comparando las observaciones con la teoría:** A partir de la teoría general de la relatividad de Einstein, los científicos esperaban encontrar una región similar a una sombra causada por la flexión gravitacional y la captura de la luz. Los científicos pudieron utilizarla para medir la enorme masa del agujero negro.
+
+[eddington]: https://en.wikipedia.org/wiki/Eddington_experiment
+
+### Los Desafíos
+
+- **Escala computacional**
+
+ EHT plantea enormes desafíos de procesamiento de datos, incluyendo las rápidas fluctuaciones de fase atmosféricas, amplio ancho de banda de grabación, y telescopios que son ampliamente disímiles y geográficamente dispersos.
+
+- **Demasiada información**
+
+ Cada día, el EHT genera más de 350 terabytes de observaciones, almacenados en discos duros llenos de helio. Reducir el volumen y complejidad de estos datos es enormemente difícil.
+
+- **Hacia lo desconocido**
+
+ Cuando el objetivo es ver algo nunca antes visto, ¿cómo pueden los científicos estar seguros de que la imagen es correcta?
+
+{{< figure >}}
+{{< /figure >}}
+
+## El Rol de NumPy
+
+¿Qué pasa si hay un problema con los datos? O tal vez un algoritmo depende demasiado de una suposición en particular. ¿Cambiará drásticamente la imagen si se cambia un solo parámetro?
+
+La colaboración del EHT respondió a estos desafíos haciendo que los equipos independientes evaluaran los datos, utilizando técnicas de reconstrucción de imágenes ya establecidas y de vanguardia. Cuando los resultados se mostraron consistentes, se combinaron para producir la primera imagen de su tipo de un agujero negro.
+
+Su trabajo ilustra el rol que desempeña el ecosistema científico de Python en el avance de la ciencia a través del análisis de datos colaborativos.
+
+{{< figure >}}
+{{< /figure >}}
+
+Por ejemplo, el paquete de Python [`eht-imaging`][ehtim] proporciona herramientas para simular y realizar reconstrucción de imágenes en datos VLBI.
+NumPy está en el núcleo del procesamiento de datos de matrices utilizados en este paquete, como se muestra a continuación en el gráfico parcial de dependencias de software.
+
+{{< figure >}}
+{{< /figure >}}
+
+[ehtim]: https://github.com/achael/eht-imaging
+
+Además de NumPy, muchos otros paquetes, como [SciPy](https://scipy.org) y [Pandas](https://pandas.pydata.org), son parte del flujo de procesamiento de datos para fotografiar el agujero negro.
+Los formatos estándar de archivos astronómicos y transformaciones de tiempo/coordenadas fueron manejados por [Astropy][astropy], mientras que [Matplotlib][mpl] fue utilizado en la visualización de datos a través del flujo de análisis, incluyendo la generación de la imagen final del agujero negro.
+
+[astropy]: https://www.astropy.org/
+[mpl]: https://matplotlib.org/
+
+## Resumen
+
+El eficiente y adaptable arreglo n-dimensional que es la característica central de NumPy, permitió a los investigadores manipular grandes conjuntos de datos numéricos, proporcionando una base para la primera imagen de un agujero negro. Un momento histórico en la ciencia ofrece una impresionante evidencia visual de la teoría de Einstein. Este logro abarca no solo los avances tecnológicos sino también la colaboración internacional de más de 200 científicos y algunos de los mejores radio observatorios del mundo. Algoritmos innovadores y técnicas de procesamiento de datos, mejorando los modelos astronómicos existentes, ayudaron a desvelar un misterio del universo.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/es/case-studies/cricket-analytics.md b/content/es/case-studies/cricket-analytics.md
new file mode 100644
index 00000000..fd39d2f8
--- /dev/null
+++ b/content/es/case-studies/cricket-analytics.md
@@ -0,0 +1,78 @@
+---
+title: "Estudio de caso: Análisis de críquet, ¡el cambio radical!"
+sidebar: false
+---
+
+{{< figure
+ src='/images/content_images/cs/ipl-stadium.png'
+ >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="}} No juegas para el público, juegas para el país."
+ by="{{< blockquote cite="https://www.scoopwhoop.com/sports/ms-dhoni/" by="M S Dhoni, _Jugador Internacional de críquet, ex-capitán del equipo de India, juega para Chennai Super Kings en IPL_""
+>}}
+{{< /blockquote >}}
+
+## Acerca del críquet
+
+Sería una subestimación decir que a los indios les encanta el críquet. El juego se juega en casi todos los rincones de la India, rurales o urbanos, es popular entre los jóvenes y ancianos por igual, conectando miles de millones de personas en India como ningún otro deporte.
+El críquet disfruta de una gran atención mediática. Hay una cantidad importante de [dinero](https://www.statista.com/topics/4543/indian-premier-league-ipl/) y fama en juego. En los últimos años, la tecnología ha cambiado literalmente las reglas del juego. El público tiene muchas opciones para elegir entre streaming de medios, torneos,
+acceso asequible a la visualización de críquet en vivo desde dispositivos móviles y más.
+
+La Indian Premier League (IPL) es una liga profesional de críquet Twenty20, fundada en 2008. Es uno de los eventos de críquet más concurridos en el mundo, valorado en [$6.7 mil millones de dólares](https://en.wikipedia.org/wiki/Indian_Premier_League) en 2019.
+
+El críquet es un juego de números - las carreras anotadas por un bateador, los wickets tomados por un lanzador, los partidos ganados por un equipo de críquet, el número de veces que un bateador responde de cierta manera a un tipo de ataque de lanzamiento, etc. La capacidad de profundizar en los números del críquet tanto para mejorar el rendimiento como para estudiar las oportunidades de negocio, el mercado en general y la economía del cricket mediante potentes herramientas de análisis, impulsadas por software de computación numérica como NumPy, es algo muy importante. El análisis del críquet proporciona ideas interesantes sobre el juego e inteligencia predictiva respecto a los resultados del juego.
+
+Hoy en día, hay abundantes y casi infinitos tesoros de registros y estadísticas de juegos de críquet disponibles, por ejemplo, en [ESPN cricinfo](https://stats.espncricinfo.com/ci/engine/stats/index.html) y [cricsheet](https://cricsheet.org). Estas y muchas otras bases de datos de cricket se han utilizado para el [análisis de cricket](https://www.researchgate.net/publication/336886516_Data_visualization_and_toss_related_analysis_of_IPL_teams_and_batsmen_performances) utilizando los últimos algoritmos de aprendizaje automático y modelación predictiva.
+Las plataformas de medios y entretenimiento, junto con los organismos deportivos profesionales asociados con el juego, utilizan la tecnología y el análisis para determinar métricas clave que mejoren las posibilidades de ganar los partidos:
+
+- promedio móvil del rendimiento de bateo,
+- previsión del marcador,
+- obtener información sobre la condición física y el rendimiento de un jugador contra diferentes oponentes,
+- contribución del jugador a las victorias y derrotas para tomar decisiones estratégicas sobre la composición del equipo
+
+{{< figure >}}
+{{< /figure >}}
+
+### Objetivos Clave de Análisis de Datos
+
+- El análisis de datos deportivos se utiliza no solo en el críquet, sino en muchos [otros deportes](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx) para mejorar el rendimiento general del equipo y maximizar las posibilidades de ganar.
+- El análisis de datos en tiempo real puede ayudar a obtener información incluso durante el juego para cambiar tácticas por parte del equipo y de las empresas asociadas para beneficios económicos y crecimiento.
+- Además del análisis histórico, se aprovechan los modelos predictivos para determinar los posibles resultados de los partidos, lo cual requiere una cantidad significativa de procesamiento de datos y conocimientos de ciencia de datos, herramientas de visualización y la capacidad de incluir nuevas observaciones en el análisis.
+
+{{< figure >}}
+{{< /figure >}}
+
+### Los Desafíos
+
+- **Limpieza de datos y preprocesamiento**
+
+ La IPL ha expandido el críquet más allá del clásico formato de partido de prueba a una escala mucho más grande. El número de partidos jugados cada temporada a través de varios formatos ha incrementado y así también los datos, los algoritmos, las nuevas tecnologías de análisis de datos deportivos y modelos de simulación. El análisis de datos de críquet requiere mapeo del campo, seguimiento de jugadores, seguimiento de la pelota, análisis de tiros de los jugadores y varios otros aspectos relacionados con cómo se lanza la pelota, su ángulo, giro, velocidad y trayectoria. Todos estos factores juntos han incrementado la complejidad de la limpieza de datos y el preprocesamiento.
+
+- **Modelación Dinámica**
+
+ En el cricket, al igual que en cualquier otro deporte, puede haber una gran cantidad de variables relacionadas con el seguimiento de varios jugadores en el campo, sus atributos, la pelota y varias posibilidades de acciones potenciales. La complejidad del análisis de datos y la modelación es directamente proporcional al tipo de preguntas predictivas que se plantean durante el análisis y depende en gran medida de la representación de los datos y del modelo. Las cosas se vuelven aún más desafiantes en términos de cálculo y comparación de datos cuando se buscan predicciones dinámicas del juego de críquet, tal como habría sucedido si el bateador hubiera golpeado la bola a un ángulo o velocidad diferente.
+
+- **Complejidad de Análisis Predictivo**
+
+ Gran parte de la toma de decisiones en el críquet se basa en preguntas como "¿con qué frecuencia un bateador juega un cierto tipo de golpe si la entrega de la pelota es de un tipo particular?" o "¿cómo cambia un lanzador su línea y longitud si el bateador responde a su entrega de una cierta manera?".
+ Este tipo de consulta de análisis predictivo requiere una disponibilidad de un conjunto de datos altamente granular y la capacidad de sintetizar datos y crear modelos generativos que sean altamente precisos.
+
+## El Papel de NumPy en el Análisis del Críquet
+
+El análisis deportivo es un campo en desarrollo. Muchos investigadores y compañías [utilizan NumPy](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx) y otros paquetes de PyData como Scikit-learn, SciPy, Matplotlib y Jupyter, además de utilizar las últimas técnicas de aprendizaje automático e inteligencia artificial. NumPy se ha utilizado para varios tipos de análisis deportivos relacionados con el críquet tales como:
+
+- **Análisis Estadístico:** Las capacidades numéricas de NumPy ayudan a estimar la significancia estadística de los datos observacionales o de eventos de partidos en el contexto de varias tácticas de jugadores y de juego, estimando el resultado del juego mediante la comparación con un modelo generativo o estático.
+ El [análisis causal](https://amplitude.com/blog/2017/01/19/causation-correlation) y los [enfoques de big data](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996805/) se utilizan para el análisis táctico.
+
+- **Visualización de Datos:** La creación de gráficos y la [visualización de datos](https://towardsdatascience.com/advanced-sports-visualization-with-pandas-matplotlib-and-seaborn-9c16df80a81b) proporcionan información útil sobre la relación entre varios conjuntos de datos.
+
+## Resumen
+
+El análisis deportivo ha revolucionado la forma en que se juegan los partidos profesionales, especialmente en cuanto a la toma de decisiones estratégicas, que hasta hace poco se basaba principalmente en la "intuición" o en la adherencia a tradiciones pasadas. NumPy
+constituye una base sólida para un gran conjunto de paquetes de Python que brindan funciones de nivel superior relacionadas con análisis de datos, el aprendizaje automático y los algoritmos de IA.
+Estos paquetes están ampliamente desplegados para obtener información en tiempo real que ayudan en la toma de decisiones para resultados revolucionarios, tanto en el campo como para sacar conclusiones y hacer negocios alrededor del juego del críquet. Encontrar los parámetros ocultos, patrones y atributos que conducen al resultado de un partido de críquet ayuda a los interesados a tomar nota de la información del juego que de otra forma estarían ocultos en números y estadísticas.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/es/case-studies/deeplabcut-dnn.md b/content/es/case-studies/deeplabcut-dnn.md
new file mode 100644
index 00000000..2a92abd6
--- /dev/null
+++ b/content/es/case-studies/deeplabcut-dnn.md
@@ -0,0 +1,100 @@
+---
+title: "Caso de estudio: DeepLabCut Estimación de Postura 3D"
+sidebar: false
+---
+
+{{< figure >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="{{< blockquote cite="https://news.harvard.edu/gazette/story/newsplus/harvard-researchers-awarded-czi-open-source-award/" by="Alexander Mathis, _Profesor Asistente, Escuela Politécnica Federal de Lausana_ ([EPFL](https://www.epfl.ch/en/))""
+ by="Alexander Mathis, _Assistant Professor, École polytechnique fédérale de Lausanne_ ([EPFL](https://www.epfl.ch/en/))"
+>}}
+{{< /blockquote >}}
+
+## Acerca de DeepLabCut
+
+[DeepLabCut](https://github.com/DeepLabCut/DeepLabCut) es una caja de herramientas de código abierto que permite a los investigadores de cientos de instituciones de todo el mundo rastrear el comportamiento de animales de laboratorio, con muy pocos datos de entrenamiento, con una precisión de nivel humana. Con la tecnología DeepLabCut, los científicos pueden profundizar en la comprensión científica del control motriz y el comportamiento a través de especies animales y escalas temporales.
+
+Muchas áreas de investigación, incluyendo la neurociencia, la medicina y la biomecánica, utilizan datos para rastrear el movimiento animal. DeepLabCut ayuda a entender lo que los humanos y otros animales están haciendo, analizando las acciones que han sido grabadas en la filmación. Utilizando la automatización para tareas laboriosas de etiquetado y monitoreo, junto con el análisis de datos basado en redes neuronales profundas, DeepLabCut realiza estudios científicos que involucran la observación de animales, tales como primates, ratones, peces, moscas, etc. de manera mucho más rápida y precisa.
+
+{{< figure >}}
+{{< /figure >}}
+
+El rastreo del comportamiento no invasivo de animales de DeepLabCut por medio de la extracción de posturas de animales es crucial para propósitos científicos en dominios tales como la biomecánica, genética, etología y & neurociencia. Medir las poses de animales de manera no invasiva a partir de video - sin marcadores - en fondos que cambian dinámicamente es un desafío computacional, tanto técnicamente como en términos de necesidades de recursos y datos de entrenamiento requeridos.
+
+DeepLabCut permite a los investigadores estimar la postura del sujeto, permitiéndoles eficientemente cuantificar el comportamiento a través de una caja de herramientas de software basada en Python. Con DeepLabCut, los investigadores pueden identificar fotogramas distintos de videos, etiquetar digitalmente partes específicas del cuerpo en unas pocas docenas de fotogramas con una GUI personalizada, y luego las arquitecturas de estimación de posturas basadas en aprendizaje profundo en DeepLabCut aprenden a identificar esas mismas características en el resto del video y en otros videos similares de animales. Funciona en diferentes especies de animales, desde los animales de laboratorio comunes como moscas y ratones hasta animales más inusuales como los [guepardos][cheetah-movement].
+
+[cheetah-movement]: https://www.technologynetworks.com/neuroscience/articles/interview-a-deeper-cut-into-behavior-with-mackenzie-mathis-327618
+
+DeepLabCut utiliza un principio llamado [aprendizaje por transferencia](https://arxiv.org/pdf/1909.11229), que reduce considerablemente la cantidad de datos de entrenamiento requeridos y acelera la convergencia del período de entrenamiento. Dependiendo de las necesidades, los usuarios pueden seleccionar diferentes arquitecturas de red que proporcionan una inferencia más rápida (por ejemplo MobileNetV2), que también pueden combinarse con retroalimentación experimental en tiempo real. Dependiendo de las necesidades, los usuarios pueden seleccionar diferentes arquitecturas de red que proporcionan una inferencia más rápida (por ejemplo MobileNetV2), que también pueden combinarse con retroalimentación experimental en tiempo real. El paquete ahora ha sido significativamente modificado para incluir arquitecturas adicionales, métodos de aumento y una experiencia de usuario completa en el front-end. Además, para apoyar los experimentos biológicos a gran escala, DeepLabCut proporciona capacidades de aprendizaje activo para que los usuarios puedan aumentar el conjunto de entrenamiento a lo largo del tiempo para cubrir casos límite y hacer que su algoritmo de estimación de postura sea robusto dentro de un contexto específico.
+
+Recientemente, se presentó el [modelo zoo de DeepLabCut](https://deeplabcut.github.io/DeepLabCut/docs/ModelZoo.html) que proporciona modelos pre-entrenados para varias especies y condiciones experimentales, desde análisis facial en primates hasta posturas en caninos. Esto se puede ejecutar, por ejemplo, en la nube sin ningún etiquetado de datos nuevos o entrenamiento de redes neuronales, y no es necesaria ninguna experiencia de programación.
+
+### Objetivos y Resultados Clave
+
+- **Automatización del análisis de la postura animal para estudios científicos:**
+
+ El objetivo principal de la tecnología DeepLabCut es medir y rastrear la postura de los animales en diversos entornos. Estos datos se pueden utilizar, por ejemplo, en estudios de neurociencia para entender cómo el cerebro controla el movimiento, o para aclarar como interactúan socialmente los animales. Los investigadores han observado un [aumento de rendimiento diez veces mayor](https://www.biorxiv.org/content/10.1101/457242v1) con DeepLabCut. Las posturas se pueden inferir sin conexión hasta a 1200 fotogramas por segundo (FPS).
+
+- **Creación de un conjunto de herramientas de Python de fácil uso para la estimación de postura:**
+
+ DeepLabCut quería compartir su tecnología de estimación de postura animal en la forma de una herramienta de fácil uso que pueda ser adoptada fácilmente por los investigadores. Así que han creado un conjunto de herramientas de Python completo y de fácil uso, también con características de administración de proyectos. Estas permiten no solo la automatización de la estimación de postura, sino también administrar el proyecto de punta a punta ayudando al usuario del conjunto de herramientas de DeepLabCut desde la etapa de recolección del conjunto de datos para crear flujos de trabajo de análisis compartibles y reutilizables.
+
+ Su [conjunto de herramientas][DLCToolkit] ahora está disponible como código abierto.
+
+ En flujo de trabajo típico de DeepLabCut incluye:
+
+ - creación y refinamiento de los conjuntos de entrenamiento a través del aprendizaje activo
+ - creación de redes neuronales a la medida para animales y escenarios específicos
+ - código para inferencia a gran escala en videos
+ - graficar las inferencias utilizando herramientas de visualización integradas
+
+{{< figure >}}
+{{< /figure >}}
+
+[DLCToolkit]: https://github.com/DeepLabCut/DeepLabCut
+
+### Los Desafíos
+
+- **Velocidad**
+
+ Procesamiento rápido de videos de comportamiento animal para medir su comportamiento y al mismo tiempo hacer experimentos científicos más eficientes y precisos.
+ La extracción detallada de posturas del animal para experimentos de laboratorio, sin marcadores, en entornos dinámicamente cambiantes, puede ser un desafío tanto técnico como en términos de recursos necesarios y datos de entrenamiento requeridos.
+ Proponer una herramienta que sea fácil de usar sin necesidad de habilidades como experiencia en visión por computador que permita a los científicos hacer investigaciones en más contextos del mundo real, es un problema que no es trivial de resolver.
+
+- **Combinatoria**
+
+ La combinatoria involucra el armado e integración del movimiento de múltiples extremidades en el comportamiento animal individual. Ensamblar puntos clave y sus conexiones en movimientos individuales de animales y vincularlos a lo largo del tiempo es un proceso complejo que requiere un análisis numérico intensivo, especialmente en el caso del seguimiento de movimientos de múltiples animales en videos de experimentos.
+
+- **Procesamiento de Datos**
+
+ Por último, pero no menos importante, la manipulación de arreglos - procesamiento de grandes pilas de arreglos correspondientes a varias imágenes, tensores objetivo y puntos clave es bastante desafiante.
+
+{{< figure >}}
+{{< /figure >}}
+
+## El Papel de NumPy para afrontar los desafíos de la estimación de postura
+
+NumPy aborda la necesidad central de la tecnología de DeepLabCut de realizar cálculos numéricos a alta velocidad para el análisis del comportamiento. Además de NumPy, DeepLabCut emplea varios softwares de Python que utilizan NumPy en su núcleo, como [SciPy](https://www.scipy.org), [Pandas](https://pandas.pydata.org), [matplotlib](https://matplotlib.org), [Tensorpack](https://github.com/tensorpack/tensorpack), [imgaug](https://github.com/aleju/imgaug), [scikit-learn](https://scikit-learn.org/stable/), [scikit-image](https://scikit-image.org) y [Tensorflow](https://www.tensorflow.org).
+
+Las siguientes características de NumPy jugaron un papel clave en abordar el procesamiento de imágenes, los requisitos de combinatoria y la necesidad de cálculos rápidos en los algoritmos de estimación de posturas de DeepLabCut:
+
+- Vectorización
+- Operaciones con Arreglos Enmascarados
+- Álgebra lineal
+- Muestreo Aleatorio
+- Redimensionamiento de arreglos grandes
+
+DeepLabCut utiliza las capacidades de arreglos de NumPy a lo largo del flujo de trabajo ofrecido por el conjunto de herramientas. En particular, NumPy se utiliza para muestrear diferentes fotogramas para etiquetado de anotaciones humanas, y para escribir, editar y procesar datos de anotación. Dentro de TensorFlow, la red neuronal es entrenada por la tecnología DeepLabCut durante miles de iteraciones para predecir las anotaciones de referencia a partir de fotogramas. Para este propósito, se crean densidades objetivo (mapas de puntuación) para plantear la estimación de poses como un problema de traducción de imagen a imagen. Para hacer que las redes neuronales sean robustas, se emplea el aumento de datos, lo que requiere el cálculo de mapas de puntuación objetivo sujetos a varios pasos geométricos y de procesamiento de imágenes. Para hacer que el entrenamiento sea rápido, se aprovechan las capacidades de vectorización de NumPy. Para la inferencia, es necesario extraer las predicciones más probables de los mapas de puntuación objetivo y "vincular eficientemente las predicciones para ensamblar animales individuales".
+
+{{< figure >}}
+{{< /figure >}}
+
+## Resumen
+
+Observar y describir eficientemente el comportamiento es un punto central de la etología moderna, neurociencia, medicina y tecnología.
+Observar y describir eficientemente el comportamiento es un punto central de la etología moderna, neurociencia, medicina y tecnología. Con solo un pequeño conjunto de imágenes de entrenamiento, el conjunto de herramientas de Python de DeepLabCut permite entrenar una red neuronal con una precisión de etiquetado a nivel humano, expandiendo así su aplicación no solo al análisis del comportamiento en el laboratorio, sino también potencialmente en deportes, análisis de marcha, medicina y estudios de rehabilitación. Los desafíos de la combinatoria compleja y procesamiento de datos enfrentados por los algoritmos de DeepLabCut se abordan mediante el uso de las capacidades de manipulación de arreglos de NumPy.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/es/case-studies/gw-discov.md b/content/es/case-studies/gw-discov.md
new file mode 100644
index 00000000..acbf830b
--- /dev/null
+++ b/content/es/case-studies/gw-discov.md
@@ -0,0 +1,84 @@
+---
+title: "Estudio de Caso: Descubrimiento de Ondas Gravitacionales"
+sidebar: false
+---
+
+{{< figure >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="https://www.youtube.com/watch?v=BIvezCVcsYshttps://www.youtube.com/watch?v=BIvezCVcsYs"
+ by="David Shoemaker, _Colaboración científica LIGO_" >}}
+{{< /blockquote >}}
+
+## Acerca de [Ondas Gravitacionales](https://www.nationalgeographic.com/news/2017/10/what-are-gravitational-waves-ligo-astronomy-science/) y [LIGO](https://www.ligo.caltech.edu)
+
+Las ondas gravitacionales son ondulaciones en el tejido del espacio y el tiempo, generadas por
+cataclismos en el universo, tales como la colisión y fusión de dos agujeros
+negros o la coalescencia de estrellas binarias o supernovas. La observación de Ondas Gravitacionales no solo puede ayudar en el estudio de la gravedad, sino también en la comprensión de algunos de los fenómenos oscuros en el universo distante y su impacto.
+
+El [Observatorio de Ondas Gravitacionales por Interferometría Láser (LIGO)](https://www.ligo.caltech.edu) fue diseñado para abrir el campo de la astrofísica de ondas gravitacionales mediante la detección directa de las ondas gravitacionales predichas por la Teoría General de la Relatividad de Einstein. Comprende dos interferómetros ampliamente separados dentro de los Estados Unidos: uno en Hanford, Washington, y el otro en Livingston, Louisiana, operando al unísono para detectar ondas gravitacionales. Cada uno de ellos tiene
+detectores de ondas gravitacionales de escala de múltiples kilómetros que utilizan interferometría de láser. La Colaboración Científica de LIGO (LSC) es un grupo de más de 1000 científicos de universidades de los Estados Unidos y de otros 14 países, respaldados por más de 90 universidades e institutos de investigación; aproximadamente 250 estudiantes contribuyen activamente a la colaboración. El nuevo descubrimiento de LIGO es la primera observación de ondas gravitacionales, realizada midiendo las diminutas perturbaciones que las ondas generan en el espacio y el tiempo a medida que pasan a través de la Tierra. Ha abierto nuevas fronteras astrofísicas
+que exploran el lado deformado del universo: objetos y fenómenos que están
+hechos de espaciotiempo deformado.
+
+### Objetivos Clave
+
+- Aunque su [misión](https://www.ligo.caltech.edu/page/what-is-ligo) es detectar ondas gravitacionales de algunos de los procesos más violentos y energéticos del Universo, los datos que LIGO recopila pueden tener efectos de gran alcance en muchas áreas de la física, incluyendo gravitación, relatividad, astrofísica, cosmología, física de partículas y física nuclear.
+- Procesar los datos observados mediante cálculos de relatividad numéricos que implican matemáticas complejas para discernir la señal del ruido, filtrar la señal relevante y estimar estadísticamente la significancia de los datos observados
+- Visualización de datos para que los resultados binarios/numéricos puedan ser comprendidos.
+
+### Los Desafíos
+
+- **Cálculo**
+
+ Las Ondas Gravitacionales son difíciles de detectar, ya que producen un efecto muy pequeño y tienen una diminuta interacción con la materia. Procesar y analizar todos los datos de LIGO requiere una vasta infraestructura informática. Después de ocuparse del ruido, que es miles de millones de veces mayor que la señal, aún quedan ecuaciones de relatividad muy complejas y enormes cantidades de datos que suponen un desafío computacional: [se necesitan aproximadamente O(10^7) horas de CPU para los análisis de fusiones binarias](https://youtu.be/7mcHknWWzNI), distribuidas en 6 clústeres dedicados de LIGO
+
+- **Avalancha de Datos**
+
+ A medida que los dispositivos de observación se vuelven más sensibles y confiables, los desafíos planteados por la avalancha de datos y encontrar una aguja en un pajar aumentan exponencialmente.
+ ¡LIGO genera terabytes de datos cada día! Dar sentido a estos datos requiere de un esfuerzo enorme para todas y cada una de las detecciones. Por ejemplo, las señales recolectadas por LIGO deben ser comparadas por supercomputadoras contra cientos de miles de plantillas de posibles señales de ondas gravitacionales.
+
+- **Visualización**
+
+ Una vez superados los obstáculos relacionados con comprender suficientemente bien las ecuaciones de Einstein para resolverlas utilizando supercomputadoras, el siguiente gran desafío fue hacer que los datos fueran comprensibles para el cerebro humano. La modelación de simulación, así como la detección de señales, requieren técnicas de visualización efectivas. La visualización también desempeña un papel en otorgar más credibilidad a la relatividad numérica a los ojos de los aficionados a la ciencia pura, los cuales no le daban suficiente importancia a la relatividad numérica hasta que las imágenes y simulaciones facilitaron la comprensión de los resultados para un público más amplio.
+ La velocidad de los cálculos complejos y la renderización, así como la re-renderización de imágenes y simulaciones utilizando los últimos datos experimentales y conocimientos, puede ser una actividad que consume mucho tiempo y que representa un desafío para los investigadores en este campo.
+
+{{< figure >}}
+{{< /figure >}}
+
+## El Papel de NumPy en la Detección de Ondas Gravitacionales
+
+Las ondas gravitacionales emitidas por la fusión no pueden ser calculadas utilizando ninguna técnica excepto la relatividad numérica por fuerza bruta usando supercomputadoras.
+La cantidad de datos que LIGO recopila es tan incomprensiblemente grande como pequeñas son las señales de onda
+gravitacionales.
+
+NumPy, el paquete de análisis numérico estándar para Python, fue utilizado por
+el software empleado en varias tareas realizadas durante el proyecto de detección de Ondas Gravitacionales
+en LIGO. NumPy ayudó a resolver las matemáticas complejas y la manipulación de datos a alta velocidad. Aquí hay algunos ejemplos:
+
+- [Procesamiento de Señales](https://www.uv.es/virgogroup/Denoising_ROF.html): Detección de fallos, [Identificación de ruido y caracterización de datos](https://ep2016.europython.eu/media/conference/slides/pyhton-in-gravitational-waves-research-communities.pdf) (NumPy, scikit-learn, scipy, matplotlib, pandas, pyCharm)
+- Recuperación de datos: Decidir qué datos pueden ser analizados, y determinar si estos contienen una señal - aguja en un pajar
+- Análisis estadístico: estimar la significancia estadística de los datos observados, estimar los parámetros de señal (por ejemplo, masas de estrellas, velocidad de giro y distancia) en comparación con un modelo.
+- Visualización de datos
+ - Series de tiempo
+ - Espectrogramas
+- Cálculo de Correlaciones
+- [Software clave](https://github.com/lscsoft) desarrollado en análisis de datos de Ondas Gravitacionales como [GwPy](https://gwpy.github.io/docs/stable/overview.html) y [PyCBC](https://pycbc.org) utiliza NumPy y AstroPy bajo su cubierta para proporcionar interfaces basadas en objetos para utilidades, herramientas y métodos para el estudio de datos provenientes de detectores de ondas gravitacionales.
+
+{{< figure >}}
+{{< /figure >}}
+
+----
+
+{{< figure >}}
+{{< /figure >}}
+
+## Resumen
+
+La detección de ondas gravitacionales ha permitido a los investigadores descubrir fenómenos completamente inesperados, al tiempo que proporciona nuevos conocimientos sobre muchos de los fenómenos astrofísicos más profundos conocidos. El procesamiento de datos y la visualización de datos son pasos cruciales que ayudan a los científicos a obtener información a partir de los datos recopilados en las observaciones científicas y a comprender los resultados. Los cálculos son complejos y
+no pueden ser comprendidos por humanos, a menos que sean visualizados utilizando simulaciones
+por computador que se alimenten con datos observados reales y análisis. NumPy, junto con otros paquetes de Python como matplotlib, pandas y scikit-learn, está [permitiendo a los investigadores](https://www.gw-openscience.org/events/GW150914/) responder preguntas complejas y descubrir nuevos horizontes en nuestra comprensión del universo.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/es/citing-numpy.md b/content/es/citing-numpy.md
new file mode 100644
index 00000000..a6290120
--- /dev/null
+++ b/content/es/citing-numpy.md
@@ -0,0 +1,35 @@
+---
+title: Citando a NumPy
+sidebar: false
+---
+
+Si NumPy ha sido importante en tu investigación y deseas reconocer el proyecto en tu publicación académica, te sugerimos que cites el siguiente documento:
+
+- Harris, C.R., Millman, K.J., van der Walt, S.J. et al. _ Array programming with NumPy_. Nature 585, 357–362 (2020). DOI: [10.1038/s41586-020-2649-2](https://doi.org/10.1038/s41586-020-2649-2). ([Publisher link](https://www.nature.com/articles/s41586-020-2649-2)).
+
+_En formato BibTeX:_
+
+ ```
+ @Article{ harris2020array,
+ title = { Array programming with {NumPy}},
+ author = {Charles R. Harris and K. Jarrod Millman and St{\'{e}}fan J.
+ van der Walt and Ralf Gommers and Pauli Virtanen and David
+ Cournapeau and Eric Wieser and Julian Taylor and Sebastian
+ Berg and Nathaniel J. Smith and Robert Kern and Matti Picus
+ and Stephan Hoyer and Marten H. van Kerkwijk and Matthew
+ Brett and Allan Haldane and Jaime Fern{\'{a}}ndez del
+ R{\'{i}}o and Mark Wiebe and Pearu Peterson and Pierre
+ G{\'{e}}rard-Marchant and Kevin Sheppard and Tyler Reddy and
+ Warren Weckesser and Hameer Abbasi and Christoph Gohlke and
+ Travis E. Oliphant},
+ year = {2020},
+ month = sep,
+ journal = {Nature},
+ volume = {585},
+ number = {7825},
+ pages = {357--362},
+ doi = {10.1038/s41586-020-2649-2},
+ publisher = {Springer Science and Business Media {LLC}},
+ url = {https://doi.org/10.1038/s41586-020-2649-2}
+ }
+ ```
diff --git a/content/es/code-of-conduct.md b/content/es/code-of-conduct.md
new file mode 100644
index 00000000..3007bf60
--- /dev/null
+++ b/content/es/code-of-conduct.md
@@ -0,0 +1,83 @@
+---
+title: Código de conducta de NumPy
+sidebar: false
+aliases:
+ - /conduct.html
+---
+
+### Introducción
+
+Este Código de Conducta aplica en todos los espacios gestionados por el proyecto NumPy, incluyendo todas las listas de correo públicas y privadas, gestores de incidencias, wikis, blogs, X (antes llamado Twitter) y cualquier otro canal de comunicación utilizado por nuestra comunidad. El proyecto NumPy no organiza eventos en persona; sin embargo, los eventos relacionados con nuestra comunidad deben tener un código de conducta similar a este.
+
+Este Código de Conducta debe ser respetado por todos los que participan en la comunidad NumPy formalmente o informalmente, o reclaman cualquier afiliación con el proyecto, en cualquier actividad relacionada con el proyecto y especialmente cuando representan el proyecto de cualquier manera.
+
+Este código no es exhaustivo ni completo. Sirve para sintetizar nuestro entendimiento común de un entorno y unos objetivos compartidos y de colaboración. Por favor, intenta seguir este código tanto en el espíritu como en la letra, para crear un ambiente cordial y productivo que enriquezca a la comunidad circundante.
+
+### Directrices Específicas
+
+Nos esforzamos por:
+
+1. Ser abiertos. Invitamos a todas las personas a participar en nuestra comunidad. Preferimos utilizar métodos de comunicación públicos para los mensajes relacionados con el proyecto, a menos que se trate de algo delicado. Esto se aplica también a los mensajes de ayuda o soporte relacionados con el proyecto; no sólo es mucho más probable que una solicitud de soporte pública dé lugar a una respuesta a una pregunta, sino que también garantiza que cualquier error involuntario en la respuesta se detecte y corrija más fácilmente.
+2. Ser empáticos, cordiales, amables y pacientes. Trabajamos juntos para resolver los conflictos y asumimos que hay buenas intenciones. Todos podemos experimentar cierta frustración de vez en cuando, pero no permitimos que la frustración se convierta en un ataque personal. Una comunidad en la que la gente se siente incómoda o amenazada no es productiva.
+3. Ser colaborativos. Nuestro trabajo será utilizado por otras personas, y a su vez dependeremos del trabajo de otros. Cuando hacemos algo en beneficio del proyecto, estamos dispuestos a explicar a otros cómo funciona, de manera que puedan construir sobre este trabajo para hacerlo aún mejor. Cualquier decisión que tomemos afectará a usuarios y colegas, y nos tomamos en serio esas consecuencias a la hora de tomar decisiones.
+4. Ser curiosos. ¡Nadie lo sabe todo! Hacer preguntas tempranas evita muchos problemas posteriores, por lo que fomentamos las preguntas, aunque las podamos redirigir al foro adecuado. Nos esforzaremos por ser receptivos y útiles.
+5. Ser cuidadosos con las palabras que elegimos. Somos cuidadosos y respetuosos en nuestra comunicación, y asumimos la responsabilidad del lenguaje que utilizamos. Ser amables con los demás. No insultes ni menosprecies a los demás participantes. No aceptaremos el acoso ni otros comportamientos excluyentes, tales como:
+ - Amenazas o expresiones violentas dirigidas a otra persona.
+ - Bromas y lenguaje sexista, racista o discriminatorio.
+ - Publicar material sexualmente explícito o violento.
+ - Publicar (o amenazar con publicar) información de identificación personal de otras personas ("doxing").
+ - Compartir contenido privado, como correos electrónicos enviados de forma privada o no pública, o foros no registrados como el historial de canales IRC, sin el consentimiento del remitente.
+ - Insultos personales, especialmente aquellos que utilizan términos racistas o sexistas.
+ - Atención sexual no deseada.
+ - Uso excesivo de lenguaje inapropiado. Por favor, evite las palabras soeces; las personas difieren mucho en su sensibilidad a las malas palabras.
+ - Acoso reiterado a los demás. En general, si alguien le pide que se detenga, entonces deténgase.
+ - Abogar o alentar cualquiera de las conductas anteriormente mencionadas.
+
+### Declaración de Diversidad
+
+El proyecto NumPy acoge y fomenta la participación de todos. Estamos comprometidos a ser una comunidad de la que todo el mundo disfrute ser parte. Aunque puede que no siempre seamos capaces de satisfacer las preferencias de cada individuo, intentamos al máximo tratar a todos con amabilidad.
+
+No importa cómo te identifiques o cómo te perciban los demás: te damos la bienvenida. Aunque ninguna lista puede esperar ser exhaustiva, honramos explícitamente la diversidad en: edad, cultura, etnia, genotipo, identidad o expresión de género, lengua, origen nacional, neurotipo, fenotipo, creencias políticas, profesión, raza, religión, orientación sexual, estatus socioeconómico, subcultura y capacidad técnica, en la medida en que éstas no entren en conflicto con este código de conducta.
+
+Aunque aceptamos a personas con dominio de cualquier idioma, el desarrollo de NumPy se lleva a cabo en inglés.
+
+Los estándares de comportamiento en la comunidad NumPy se detallan en el Código de Conducta anterior. Los participantes de nuestra comunidad deben respetar estos estándares en todas sus interacciones y ayudar a los demás a hacer lo mismo (véase la siguiente sección).
+
+### Directrices Para La Presentación De Informes
+
+Sabemos que es dolorosamente común que la comunicación en Internet comience o se convierta en un abuso evidente y manifiesto. También reconocemos que a veces la gente puede tener un mal día, o no ser consciente de algunas de las directrices de este Código de Conducta. Por favor, tenga esto en cuenta a la hora de decidir cómo responder a una violación de este Código.
+
+En caso de infracciones claramente intencionadas, informe de éstas al Comité de Código de Conducta (ver más abajo). En caso de infracciones posiblemente involuntarias, puede responder a la persona y señalar este código de conducta (tanto en público como en privado, lo que sea más apropiado). Si prefiere no hacerlo, por favor siéntase libre de informar directamente al Comité de Código de Conducta o de pedirle consejo a éste de forma confidencial.
+
+Puede informar de los problemas al Comité de Código de Conducta de NumPy en numpy-conduct@googlegroups.com.
+
+Actualmente, el Comité está compuesto por:
+
+- Stefan van der Walt
+- Melissa Weber Mendonça
+- Rohit Goswami
+
+Si tu informe implica a algún miembro del Comité, o si éste considera que tiene un conflicto de intereses en su tramitación, se abstendrán de examinar tu denuncia. Alternativamente, si por cualquier razón usted se siente incómodo haciendo un informe al Comité, también puede ponerse en contacto con el personal senior de NumFOCUS en [conduct@numfocus.org](https://numfocus.org/code-of-conduct#persons-responsible).
+
+### Resolución de reporte de informes & aplicación del Código de Conducta
+
+_Esta sección resume los puntos más importantes, puede encontrar más detalles en el_ [Código de Conducta de NumPy - Cómo hacer seguimiento a un informe](report-handling-manual).
+
+Investigaremos y responderemos a todas las quejas. El Comité de Código de Conducta de NumPy y el Consejo Directivo de NumPy (en caso de estar involucrado) protegerán la identidad del denunciante y tratarán el contenido de las denuncias con carácter confidencial (a menos que el denunciante acuerde lo contrario).
+
+En caso de infracciones graves y evidentes, por ejemplo, amenaza personal o lenguaje violento, sexista o racista, desconectaremos inmediatamente al originador de los canales de comunicación de NumPy; por favor consulte el manual para obtener más detalles.
+
+En casos que no impliquen violaciones claras y graves u obvias de este Código de Conducta, el proceso de actuación sobre cualquier informe de violación del Código de Conducta recibido será:
+
+1. acusar recibo del informe,
+2. una discusión/retroalimentación razonable,
+3. mediación (si la retroalimentación no fue útil, y únicamente si tanto el denunciante como el denunciado están de acuerdo con ello),
+4. aplicación a través de una decisión transparente (ver [Resoluciones](report-handling-manual/#resolutions)) por parte del Comité de Código de conducta.
+
+El Comité responderá a cualquier informe lo antes posible y dentro de un plazo máximo de 72 horas.
+
+### Notas finales
+
+Damos las gracias a los grupos que están detrás de los siguientes documentos, de los que hemos sacado contenido e inspiración:
+
+- [El Código de Conducta de SciPy](https://docs.scipy.org/doc/scipy/dev/conduct/code_of_conduct.html)
diff --git a/content/es/community.md b/content/es/community.md
new file mode 100644
index 00000000..c14444f7
--- /dev/null
+++ b/content/es/community.md
@@ -0,0 +1,65 @@
+---
+title: Comunidad
+sidebar: false
+---
+
+NumPy es un proyecto de código abierto impulsado por la comunidad y desarrollado por un grupo diverso de [colaboradores](/teams/). El liderazgo de NumPy se ha comprometido firmemente a crear una comunidad abierta, inclusiva y positiva. Por favor, lee el [Código de Conducta de NumPy](/code-of-conduct) para obtener orientación sobre cómo interactuar con los demás de una manera que haga que la comunidad prospere.
+
+Ofrecemos varios canales de comunicación para aprender, compartir conocimientos y conectarse con otros dentro de la comunidad de NumPy.
+
+## Participa en línea
+
+Las siguientes son formas de relacionarse directamente con el proyecto y la comunidad de NumPy.
+_Ten en cuenta que animamos a los usuarios y a los miembros de la comunidad a apoyarse mutuamente por preguntas de uso - ver [Obtener ayuda](/gethelp)._
+
+### [Lista de correo de NumPy](https://mail.python.org/mailman/listinfo/numpy-discussion)
+
+Este es el foro principal para discusiones más extensas, como añadir nuevas características a NumPy, hacer cambios en el mapa de ruta de NumPy, y todo tipo de proceso de toma de decisiones sobre el proyecto.
+Aquí también se realizan los anuncios sobre NumPy, tales como lanzamientos, reuniones de desarrolladores, sprints o charlas en conferencias.
+
+En esta lista, por favor, utiliza el botón de envío inferior, responde a la lista (en lugar de a otro remitente) y no respondas a los resúmenes. El archivo de consulta de esta lista está disponible [aquí](https://mail.python.org/archives/list/numpy-discussion@python.org/).
+
+***
+
+### [Seguimiento de incidencias en GitHub](https://github.com/numpy/numpy/issues)
+
+- Para informes de error (por ejemplo, "`np.arange(3).shape` devuelve `(5,)`, cuando debería devolver `(3,)`");
+- problemas en la documentación (por ejemplo, "Esta sección me pareció poco clara");
+- y solicitudes de funcionalidades (por ejemplo, "Me gustaría tener un nuevo método de interpolación en `np.percentile`").
+
+_Ten en cuenta que GitHub no es el lugar adecuado para reportar una vulnerabilidad de seguridad. Si crees que has encontrado una vulnerabilidad de seguridad en NumPy, por favor repórtalo [aquí](https://tidelift.com/docs/security)._
+
+***
+
+### [Slack](https://numpy-team.slack.com)
+
+Una sala de chat en tiempo real para hacer preguntas sobre las _contribuciones_ a NumPy.
+Este es un espacio privado, destinado específicamente a las personas que no se atreven a plantear sus preguntas o ideas en la lista de correo pública o en GitHub.
+Por favor, visita [aquí](https://numpy.org/devdocs/dev/index.html#contributing-to-numpy) para más detalles, y sobre cómo obtener una invitación.
+
+## Grupos de Estudio y Reuniones
+
+Si desea encontrar un grupo de estudio o reunión local para aprender más sobre NumPy y el ecosistema más amplio de paquetes de Python para ciencia de datos y computación científica, te recomendamos que explores los [PyData meetups](https://www.meetup.com/pro/pydata/) (más de 150 reuniones, más de 100,000 miembros).
+
+NumPy también organiza ocasionalmente sprints presenciales para su equipo y colaboradores interesados. Estos normalmente se planifican con varios meses de anticipación y se anunciarán en la [lista de correo](https://mail.python.org/mailman/listinfo/numpy-discussion) y en [X (antes conocido como Twitter)](https://twitter.com/numpy_team).
+
+## Conferencias
+
+El proyecto NumPy no organiza sus propias conferencias. Las conferencias que tradicionalmente han sido más populares entre los responsables, colaboradores y usuarios de NumPy son la serie de conferencias de SciPy y PyData:
+
+- SciPy US
+- EuroSciPy
+- SciPy Latinoamérica
+- SciPy India
+- SciPyData Japan
+- Conferencias PyData (de 15 a 20 eventos al año, repartidos entre muchos países)
+
+Muchas de estas conferencias incluyen tutoriales y/o sprints que cubren NumPy, en donde puedes aprender cómo contribuir a Numpy o proyectos de código abierto relacionados.
+
+## Únete a la comunidad NumPy
+
+Para prosperar, el proyecto NumPy necesita tu experiencia y entusiasmo. ¿No sabes programar? ¡No es un problema! Hay muchas maneras de contribuir a NumPy.
+
+Si te interesa colaborar en NumPy (¡hurra!) te recomendamos que visites nuestra página [Contribuir](/contribute).
+
+No dudes en pasar a saludarnos en uno de nuestros encuentros de la comunidad. Para enterarte del próximo, consulta nuestro calendario de eventos [aquí](https://scientific-python.org/calendars/).
diff --git a/content/es/config.yaml b/content/es/config.yaml
new file mode 100644
index 00000000..06e8daaf
--- /dev/null
+++ b/content/es/config.yaml
@@ -0,0 +1,109 @@
+languageName: Inglés
+params:
+ description: '¿Por qué NumPy? Potentes arreglos n-dimensionales. Herramientas de cálculo numérico. Interoperabilidad. Rendimiento. Código abierto.'
+ navbarlogo:
+ image: logo.svg
+ text: NumPy
+ link: /
+ hero:
+ # Main hero title
+ title: NumPy
+ # Hero subtitle (optional)
+ subtitle: El paquete fundamental para la computación científica con Python
+ # Button text
+ buttontext: "Última versión: NumPy 2.0. Ver todas las versiones"
+ # Where the main hero button links to
+ buttonlink: "/news/#releases"
+ # Hero image (from static/images/___)
+ image: logo.svg
+ shell:
+ title: marcador
+ intro:
+ - title: Prueba NumPy
+ text: Utilice el terminal interactivo para probar NumPy en el navegador
+ docslink: No olvides echarle un ojo a la documentación.
+ casestudies:
+ title: CASOS DE ESTUDIO
+ features:
+ - title: Primera imagen de un Agujero Negro
+ text: Cómo NumPy, junto con bibliotecas como SciPy y Matplotlib que dependen de NumPy, permitió al Telescopio del Horizonte de Sucesos producir la primera imagen de un agujero negro
+ img: /images/content_images/case_studies/blackhole.png
+ alttext: Primera imagen de un agujero negro. Es un círculo anaranjado con fondo negro.
+ url: /case-studies/blackhole-image
+ - title: Detección de Ondas Gravitacionales
+ text: En 1916 Albert Einstein predijo las ondas gravitacionales; 100 años después se confirmó su existencia por científicos del LIGO, utilizando NumPy.
+ img: /images/content_images/case_studies/gravitional.png
+ alttext: Dos cuerpos orbitándose mutuamente. Estos desplazan la gravedad a su alrededor.
+ url: /case-studies/gw-discov
+ - title: Analíticas Deportivas
+ text: El Análisis de Críquet está cambiando el juego, mejorando el rendimiento de los jugadores y equipos mediante modelos estadísticos y análisis predictivos. NumPy permite realizar muchos de estos análisis.
+ img: /images/content_images/case_studies/sports.jpg
+ alttext: Bola de Cricket sobre un campo verde.
+ url: /case-studies/cricket-analytics
+ - title: Estimación de la pose mediante aprendizaje profundo
+ text: DeepLabCut utiliza NumPy para acelerar estudios científicos que implican la observación del comportamiento animal para una mejor comprensión del control motriz, a través de especies y escalas de tiempo.
+ img: /images/content_images/case_studies/deeplabcut.png
+ alttext: Análisis de la pose de un Guepardo
+ url: /case-studies/deeplabcut-dnn
+ tabs:
+ title: ECOSISTEMA
+ section5: false
+ navbar:
+ - title: Instalar
+ url: /install
+ - title: Documentación
+ url: https://numpy.org/doc/stable
+ - title: Aprende
+ url: /learn
+ - title: Comunidad
+ url: /community
+ - title: Quiénes somos
+ url: /about
+ - title: Noticias
+ url: /news
+ - title: Contribuye
+ url: /contribute
+ footer:
+ logo: logo.svg
+ socialmediatitle: ""
+ socialmedia:
+ - link: https://github.com/numpy/numpy
+ icon: github
+ - link: https://www.youtube.com/@NumPy_team
+ icon: youtube
+ quicklinks:
+ column1:
+ title: ""
+ links:
+ - text: Instalar
+ link: /install
+ - text: Documentación
+ link: https://numpy.org/doc/stable
+ - text: Aprende
+ link: /learn
+ - text: Citando a NumPy
+ link: /citing-numpy
+ - text: Mapa de ruta
+ link: https://numpy.org/neps/roadmap.html
+ column2:
+ links:
+ - text: Acerca de nosotros
+ link: /about
+ - text: Comunidad
+ link: /community
+ - text: Encuestas a usuarios
+ link: /user-surveys
+ - text: Contribuye
+ link: /contribute
+ - text: Código de Conducta
+ link: /code-of-conduct
+ column3:
+ links:
+ - text: Buscar ayuda
+ link: /gethelp
+ - text: Términos de uso
+ link: /terms
+ - text: Confidencialidad
+ link: /privacy
+ - text: Kit de prensa
+ link: /press-kit
diff --git a/content/es/contribute.md b/content/es/contribute.md
new file mode 100644
index 00000000..dd104ebd
--- /dev/null
+++ b/content/es/contribute.md
@@ -0,0 +1,78 @@
+---
+title: Contribuye a NumPy
+sidebar: false
+---
+
+¡El proyecto NumPy agradece tu experiencia y entusiasmo!
+Tus opciones no se limitan a la programación. Como puedes ver más abajo, existen muchas áreas en las que necesitamos **tu** ayuda.
+
+Si no estás seguro por dónde empezar o cómo encajan tus habilidades, _¡acércate!_ Puedes preguntar en la [lista de correos](https://mail.python.org/mailman/listinfo/numpy-discussion) o [GitHub](http://github.com/numpy/numpy) (abre una [propuesta](https://github.com/numpy/numpy/issues) o comenta en una relevante).
+
+Estos son nuestros canales preferidos (el código abierto es abierto por naturaleza), pero si prefieres hablar de manera privada, contacta a nuestros coordinadores de la comunidad en
También revisa nuestro [canal de YouTube](https://www.youtube.com/playlist?list=PLCK6zCrcN3GXBUUzDr9L4__LnXZVtaIzS) por consejos adicionales.
+
+### Revisando solicitudes de cambios
+
+El proyecto tiene más de 250 solicitudes de cambios abiertos, lo que significa muchas mejoras potenciales y muchos colaboradores de código abierto esperando retroalimentación. Si eres un desarrollador que conoce NumPy, puedes ayudar aunque no estés familiarizado con el código base. Puedes:
+
+- resumir un debate extenso
+- categorizar documentación de solicitudes de incorporación de cambios
+- probar los cambios propuestos
+
+### Creando material educativo
+
+La [Guía de usuario](https://numpy.org/devdocs) de NumPy está en proceso de rehabilitación.
+Necesitamos nuevos tutoriales, instrucciones y explicaciones detalladas, y la página necesita una reestructuración. Las oportunidades no se limitan a escritores. También ejemplos prácticos, notebooks y vídeos. La propuesta [NEP 44 - Reestructuración de la Documentación NumPy](https://numpy.org/neps/nep-0044-restructuring-numpy-docs.html) expone nuestras ideas -- y tal vez tú puedas tener otras.
+
+### Clasificación de propuestas
+
+El [rastreador de propuestas de NumPy](https://github.com/numpy/numpy/issues) tiene _muchos_ temas abiertos. Algunos ya no son válidos, otros deberían priorizarse y otros serían buenos temas para nuevos colaboradores. Puedes:
+
+- revisar si errores antiguos siguen presentes
+- encontrar problemas duplicados, y enlazar las relacionadas
+- añadir la forma de reproducir siempre el mismo problema
+- etiquetar correctamente los problemas (para ello es necesario tener derechos de categorización, solo necesitas preguntar)
+
+Por favor, solo sumérgete.
+
+### Desarrollo de la Página Web
+
+Acabamos de renovar nuestro sitio web, pero aún no hemos terminado. Si te gusta el desarrollo web, estas [incidencias](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign) enumeran algunas de nuestras necesidades insatisfechas -- y no dudes en compartir tus propias ideas.
+
+### Diseño gráfico
+
+Apenas podemos empezar a enumerar las aportaciones que puede hacer un diseñador gráfico.
+Nuestra documentación está sedienta de ilustraciones; nuestro sitio web, en pleno crecimiento, ansía imágenes... las oportunidades abundan.
+
+### Traduciendo el contenido de la página web
+
+Planeamos múltiples traducciones de [numpy.org](https://numpy.org) para hacer a NumPy accesible a los usuarios en su lengua materna. Los traductores voluntarios son el núcleo de este esfuerzo. Consulta [aquí](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n) para más información; comenta en [este tema de GitHub](https://github.com/numpy/numpy.org/issues/55) para inscribirte.
+
+### Coordinación y divulgación de la comunidad
+
+A través del contacto con la comunidad compartimos nuestro trabajo más ampliamente, y aprendemos en dónde nos estamos quedando cortos. Estamos ansiosos por conseguir más gente involucrada en esfuerzos como nuestra cuenta de [X (antes llamado Twitter)](https://twitter.com/numpy_team), organizando [code sprints](https://scisprints.github.io/) de NumPy, un boletín y quizás un blog.
+
+### Recaudación de fondos
+
+NumPy fue durante muchos años un proyecto voluntario, pero a medida que crecía su importancia se hizo evidente que necesitaríamos apoyo financiero para garantizar su estabilidad y crecimiento.
+NumPy fue durante muchos años un proyecto voluntario, pero a medida que crecía su importancia se hizo evidente que necesitaríamos apoyo financiero para garantizar su estabilidad y crecimiento. Como todo en el mundo sin ánimo de lucro, estamos constantemente en busca de subvenciones, patrocinios y otros tipos de ayuda. Tenemos varias ideas y, por supuesto, aceptamos más.
+La recaudación de fondos es una habilidad escasa aquí -- apreciaríamos tu ayuda.
+
+### Donar
+
+Si deseas contribuir a NumPy haciendo una donación, visita https://numpy.org/about/#donate.
+
+
diff --git a/content/es/gethelp.md b/content/es/gethelp.md
new file mode 100644
index 00000000..b875743d
--- /dev/null
+++ b/content/es/gethelp.md
@@ -0,0 +1,20 @@
+---
+title: Buscar Ayuda
+sidebar: false
+---
+
+**Problemas de desarrollo:** Para asuntos relacionados con el desarrollo de NumPy (por ejemplo, informes de errores), por favor consulte la sección de [Comunidad](/community).
+
+**Preguntas de los usuarios:** La mejor manera de obtener ayuda es publicar tu pregunta en un sitio como [StackOverflow](http://stackoverflow.com/questions/tagged/numpy) o [Reddit](https://www.reddit.com/r/Numpy/). Nos gustaría poder estar al tanto de estos sitios, o responder preguntas de manera directa, ¡pero el volumen es algo abrumador!
+
+### [StackOverflow](http://stackoverflow.com/questions/tagged/numpy)
+
+Un foro para hacer preguntas de uso, como por ejemplo: "¿Cómo hago X cosa en NumPy?". Por favor [usa la etiqueta `#numpy`](https://stackoverflow.com/help/tagging)
+
+***
+
+### [Reddit](https://www.reddit.com/r/Numpy/)
+
+Otro foro para hacer preguntas de uso.
+
+***
diff --git a/content/es/history.md b/content/es/history.md
new file mode 100644
index 00000000..09c70370
--- /dev/null
+++ b/content/es/history.md
@@ -0,0 +1,21 @@
+---
+title: Historia de NumPy
+sidebar: false
+---
+
+NumPy es una librería fundamental de Python que proporciona estructuras de datos de arreglos y rutinas numéricas rápidas relacionadas. Cuando se puso en marcha, la librería contaba con escasos fondos y la escribían principalmente estudiantes de posgrado, muchos de ellos sin formación en ciencias de la computación y, a menudo, sin la bendición de sus asesores. Imaginar siquiera que un pequeño grupo de estudiantes programadores "rebeldes" pudiera derribar el ecosistema de software de investigación, ya establecido y respaldado por millones en financiación y cientos de ingenieros altamente cualificados, era absurdo. Sin embargo, las motivaciones filosóficas detrás de la pila de herramientas totalmente abierta, en combinación con una comunidad entusiasta y amigable con un enfoque singular, han demostrado ser favorable a largo plazo. Hoy en día, científicos, ingenieros y muchos otros profesionales en todo el mundo confían en NumPy. Por ejemplo, los scripts publicados usados en el análisis de ondas gravitacionales importan NumPy, y el proyecto de imagen del agujero negro M87 cita directamente a NumPy.
+
+Para conocer en profundidad los hitos en el desarrollo de NumPy y las librerías relacionadas, consulta [arxiv.org](arxiv.org/abs/1907.10121).
+
+Si deseas obtener una copia de las librerías originales Numeric y Numarray, sigue los siguientes enlaces:
+
+[Página de Descarga de _Numeric_](https://sourceforge.net/projects/numpy/files/Old%20Numeric/)\*
+
+[Página de Descarga de _Numarray_](https://sourceforge.net/projects/numpy/files/Old%20Numarray/)\*
+
+\*Ten en cuenta que estos paquetes antiguos ya no se mantienen, y se recomienda encarecidamente a los usuarios que utilicen NumPy para cualquier propósito relacionado con arreglos o que refactoricen cualquier código preexistente para utilizar la librería NumPy.
+
+### Documentación Histórica
+
+[Descarga el Manual de _\`Numeric'_](static/numeric-manual.pdf)
+
diff --git a/content/es/install.md b/content/es/install.md
new file mode 100644
index 00000000..0587a1c0
--- /dev/null
+++ b/content/es/install.md
@@ -0,0 +1,136 @@
+---
+title: Instalando NumPy
+sidebar: false
+---
+
+{{< admonition >}}
+{{< /admonition >}}
+
+El método recomendado para instalar NumPy depende de tu flujo de trabajo preferido. A continuación, desglosamos los métodos de instalación en las siguientes categorías:
+
+- **Basado en proyectos** (por ejemplo, uv, pixi) _(recomendado para nuevos usuarios)_
+- **Basado en entornos** (por ejemplo, pip, conda) _(el flujo de trabajo tradicional)_
+- **Administradores de paquetes de sistema** _(no recomendado para la mayoría de usuarios)_
+- **Construir a partir del código fuente** _(para usuarios avanzados y para fines de desarrollo)_
+
+Elija el método que mejor se adapte a sus necesidades. Si tienes dudas, comienza con el método **basado en el entorno** usando `conda` o `pip`.
+
+{{< tabs >}}
+
+[[tab]]
+name = 'Basado en proyectos'
+contenido = '''
+
+Recomendado para usuarios que quieran un flujo de trabajo simplificado.
+
+- **uv:** Un gestor de paquetes de Python moderno diseñado para velocidad y simplicidad.
+ ```bash
+ uv pip install numpy
+ ```
+
+- **pixi:** Un administrador de paquetes multiplataforma para Python y otros lenguajes.
+ ```bash
+ pixi add numpy
+ ```
+
+'''
+
+Para usuarios que conocen, por preferencia personal o leyendo acerca de las diferencias principales entre conda y pip a continuación, y prefieren una solución basada en pip/PyPI, recomendamos:
+
+Las dos herramientas principales que instalan paquetes de Python son `pip` y `conda`. Sus funcionalidades se traslapan parcialmente (por ejemplo, ambas pueden instalar `numpy`); no obstante, también pueden trabajar conjuntamente. Para computación de alto rendimiento (HPC), Spack amerita ser considerado.
+
+La primera diferencia radica en que conda es multi-lenguaje y puede instalar Python, mientras que pip es instalado para una versión particular de Python en su sistema y solamente instala paquetes para esa misma versión de Python. Sus funcionalidades se traslapan parcialmente (por ejemplo, ambas pueden instalar numpy); no obstante, también pueden trabajar conjuntamente.
+
+La primera diferencia radica en que conda es multi-lenguaje y puede instalar Python, mientras que pip es instalado para una versión particular de Python en su sistema e instala paquetes para esa misma versión de Python solamente. Esto también significa que conda puede instalar librerías
+que no sean de Python y herramientas que usted pueda necesitar (por ejemplo, compiladores, CUDA, HDF5), mientras que
+pip no.
+
+La tercera diferencia consiste en que conda es una solución integrada para gestionar paquetes, dependencias y entornos; mientras que con pip, podrías necesitar otra herramienta (¡hay muchas!) para manejar entornos o dependencias complejas.
+
+- **Conda:** Si utilizas conda, puedes instalar NumPy desde los canales predeterminados o los de conda-forge:
+ ```bash
+ # La mejor práctica, utilizar un entorno en lugar de instalar en el entorno base
+ conda create -n my-env
+ conda activate my-env
+ # Si desea instalar desde conda-forge
+ conda config --env --add channels conda-forge
+ # El comando de instalación
+ conda install numpy
+ ```
+- **Pip:**
+ ```bash
+ pip install numpy
+ ```
+
+{{< admonition >}}
+{{< /admonition >}}
+
+ ```bash
+ python -m venv my-env
+ source my-env/bin/activate # macOS/Linux
+ my-env\Scripts\activate # Windows
+ pip install numpy
+ ```
+
+'''
+
+[[tab]]
+name = 'Administradores de paquetes de sistema'
+content = '''
+No recomendado para la mayoría de los usuarios, pero disponible por conveniencia.
+
+**macOS (Homebrew):**
+
+```bash
+# La mejor práctica, utilizar un entorno en lugar de instalar en el entorno base
+conda create -n my-env
+conda activate my-env
+# Si desea instalar desde conda-forge
+conda config --env --add channels conda-forge
+# El comando de instalación
+conda install numpy
+```
+
+**Linux (APT):**
+
+```bash
+
+```
+
+**Windows (Chocolatey):**
+
+```bash
+choco install numpy
+```
+
+'''
+
+[[tab]] name = 'Construir a partir del código fuente' content = ''' Para usuarios avanzados y desarrolladores que quieren personalizar o depurar **NumPy**.
+
+Una palabra de advertencia: construir Numpy a partir del código fuente puede ser un ejercicio no trivial.
+En su lugar, recomendamos usar binarios si estos están disponibles para su plataforma, a través de uno de los métodos anteriores.
+Para obtener más información sobre cómo construir desde el código fuente, revisa [la guía disponible en la documentación Numpy](https://numpy.org/devdocs/building/).
+
+{{< /tabs >}}
+
+## Recomendaciones
+
+Después de instalar NumPy, verifica la instalación ejecutando lo siguiente en una terminal o en un script de Python:
+
+```python
+import numpy as np
+print(np.__version__)
+```
+
+Esto debería imprimir la versión instalada de NumPy sin errores.
+
+## Resolución de problemas
+
+Si su instalación falla con el siguiente mensaje, revise el siguiente enlace [Resolución de problemas ImportError](https://numpy.org/doc/stable/user/troubleshooting-importerror.html).
+
+```
+¡IMPORTANTE: POR FAVOR LEA ESTO COMO SUGERENCIA PARA RESOLVER ESTE PROBLEMA!
+
+La importación de las extensiones-c de numpy falló. Este error puede ocurrir por varias razones, siendo frecuente debido a problemas con su configuración.
+```
+
diff --git a/content/es/learn.md b/content/es/learn.md
new file mode 100644
index 00000000..6133af92
--- /dev/null
+++ b/content/es/learn.md
@@ -0,0 +1,76 @@
+---
+title: Aprende
+sidebar: false
+---
+
+Para la **documentación oficial de NumPy** visita [numpy.org/doc/stable](https://numpy.org/doc/stable).
+
+***
+
+A continuación se muestra una colección de recursos educativos, tanto para el autoaprendizaje como para enseñar a otros, desarrollados por colaboradores de NumPy y aprobados por la comunidad.
+
+## Principiantes
+
+Hay un montón de información sobre NumPy allá afuera. Si eres nuevo, te recomendamos encarecidamente estos:
+
+ **Tutoriales**
+
+- [Tutorial de inicio rápido de NumPy](https://numpy.org/devdocs/user/quickstart.html)
+- [NumPy Tutorials](https://numpy.org/numpy-tutorials) Una colección de tutoriales y materiales educativos en formato de cuadernos Jupyter desarrollados y mantenidos por el equipo de documentación de NumPy. Para enviar tu propio contenido, visita el repositorio [numpy-tutorials en GitHub](https://github.com/numpy/numpy-tutorials).
+- [NumPy Illustrated: La Guía Visual de NumPy _por Lev Maximov_](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
+- [Scientific Python Lectures](https://scipy-lectures.org/) Además de cubrir NumPy, estas conferencias ofrecen una introducción más amplia al ecosistema científico de Python.
+- [NumPy: the absolute basics for beginners.](https://numpy.org/devdocs/user/absolute_beginners.html)
+- [NumPy tutorial _por Nicolas Rougier_](https://github.com/rougier/numpy-tutorial)
+- [Stanford CS231 _por Justin Johnson_](http://cs231n.github.io/python-numpy-tutorial/)
+- [NumPy User Guide.](https://numpy.org/devdocs)
+
+ **Libros**
+
+- [Guide to NumPy _por Travis E. Oliphant_](https://web.mit.edu/dvp/Public/numpybook.pdf) Ésta es una versión 1 gratuita de 2006. Para conseguir la última versión (2015) mira [aquí](https://www.barnesandnoble.com/w/guide-to-numpy-travis-e-oliphant-phd/1122853007).
+- [From Python to NumPy _por Nicolas P. Rougier_](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
+- [Elegant SciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877) _por Juan Nunez-Technesias, Stefan van der Walt, y Harriet Dashnow_
+
+También puedes echar un vistazo a esta [lista de Goodreads](https://www.goodreads.com/shelf/show/python-scipy) sobre el tema "Python+SciPy". La mayoría de esos libros son sobre el "ecosistema SciPy", que tiene NumPy en su núcleo.
+
+ **Videos**
+
+- [Introduction to Numerical Computing with NumPy](http://youtu.be/ZB7BZMhfPgk) _por Alex Chabot-Leclerc_
+
+***
+
+## Avanzado
+
+Pruebe estos recursos avanzados para comprender mejor los conceptos de NumPy como indexación avanzada, división, apilamiento, álgebra lineal y mucho más.
+
+ **Tutoriales**
+
+- [100 NumPy Exercises](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html) _por Nicolas P. Rougier_
+- [An Introduction to NumPy and Scipy](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf) _por M. Scott Shell_
+- [Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/) _por Stéfan van der Walt_
+- [NumPy Tutorials](https://numpy.org/numpy-tutorials) Una colección de tutoriales y materiales educativos en formato de cuadernos Jupyter desarrollados y mantenidos por el equipo de documentación de NumPy. Para enviar tu propio contenido, visita el repositorio [numpy-tutorials en GitHub](https://github.com/numpy/numpy-tutorials).
+
+ **Libros**
+
+- [Python Data Science Handbook](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1491912057) _por Jake Vanderplas_
+- [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-Ipython/dp/1491957662) _por Wes McKinney_
+- [Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) _por Robert Johansson_
+
+ **Videos**
+
+- [Advanced NumPy - broadcasting rules, strides, and advanced indexing](https://www.youtube.com/watch?v=cYugp9IN1-Q) _por Juan Nunez-Iglesias_
+
+***
+
+## Charlas de NumPy
+
+- [The Future of NumPy Indexing](https://www.youtube.com/watch?v=o0EacbIbf58) _por Jaime Fernández_ (2016)
+- Evolution of Array Computing in Python _por Ralf Gommers_ (2019)
+- [NumPy: what has changed and what is going to change?](https://www.youtube.com/watch?v=YFLVQFjRmPY) _por Matti Picus_ (2019)
+- [Inside NumPy](https://www.youtube.com/watch?v=dBTJD_FDVjU) _por Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stefan van der Walt, Charles Harris_ (2019)
+- [Brief Review of Array Computing in Python](https://www.youtube.com/watch?v=f176j2g2eNc) _por Travis Oliphant_ (2019)
+
+***
+
+## Citando a NumPy
+
+Si NumPy ha sido importante en tu investigación y deseas reconocer el proyecto en tu publicación académica, consulta esta [información de citado](/citing-numpy).
diff --git a/content/es/news.md b/content/es/news.md
new file mode 100644
index 00000000..d480550e
--- /dev/null
+++ b/content/es/news.md
@@ -0,0 +1,373 @@
+---
+title: Noticias
+sidebar: false
+newsHeader: ¡NumPy 2.2.0 ha sido lanzado!
+date: 2024-06-17
+---
+
+### Lanzamiento de NumPy 2.2.0
+
+_8 de diciembre de 2024_ -- NumPy 2.2.0 es una versión rápida que nos sincroniza con el ciclo usual de publicación dos veces al año. Ha habido varias pequeñas limpiezas, mejoras en el tipo StringDType y un mejor soporte para Python de hilos libres. Los puntos destacados son:
+
+- Nuevas funciones `matvec` y `vecmat`,
+- Muchas anotaciones mejoradas,
+- Mejor soporte para el nuevo StringDType,
+- Mejor soporte para Python libre de hilos
+- Correcciones para f2py.
+
+Esta versión es compatible con versiones de Python 3.10-3.13.
+
+### Lanzamiento de NumPy 2.1.0
+
+_18 de agosto 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and drops support for Python 3.9. Además de las habituales correcciones de errores y
+soporte actualizado de Python, ayuda a que NumPy vuelva a su ciclo de publicación habitual
+después del extenso desarrollo de 2.0. Los aspectos más destacados son:
+
+- Soporte para Python 3.13.
+- Soporte preliminar para Python 3.13 de hilos libres.
+- Compatibilidad con la norma array-api 2023.12.
+
+Esta versión es compatible con las versiones 3.10-3.13 de Python.
+
+### Lanzamiento de NumPy 2.0.0
+
+_16 de junio de 2024_ -- NumPy 2.0.0 es el primer lanzamiento importante desde 2006. Es el resultado
+de 11 meses de desarrollo desde el último lanzamiento de características y es el trabajo
+de 212 colaboradores distribuidos entre 1078 solicitudes de incorporación de cambios. Contiene un gran número de nuevas características interesantes, así como cambios en las APIs de Python y C. Incluye cambios importantes que no podrían producirse en un lanzamiento menor regular, como una ruptura de ABI, cambios en las reglas de promoción de tipos y cambios en la API que podrían no haber estado emitiendo advertencias de obsolescencia en la versión 1.26.x. Los documentos clave
+relacionados con cómo adaptarse a los cambios en NumPy 2.0 incluyen:
+
+- La [guía de migración a NumPy 2.0](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- Las [ notas del lanzamiento 2.0.0](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Emisión de anuncios para actualizaciones de estado: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+La publicación ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) cuenta un poco de la historia sobre cómo se llegó a este lanzamiento.
+
+### Fecha de lanzamiento de NumPy 2.0: 16 de junio
+
+_23 de mayo de 2024_ -- Estamos encantados de anunciar que NumPy 2.0 está previsto que sea lanzado el 16 de junio de 2024. Esta publicación lleva más de un año en proceso y
+es el primer lanzamiento importante desde 2006. Es importante destacar que, además de muchas nuevas características y mejoras en el rendimiento, contiene **cambios disruptivos** frente al ABI, como también a las APIs de Python y C. Es probable que los paquetes dependientes o downstream y código de usuario final necesiten ser adaptados - si puedes, por favor verifica que tu código funciona con NumPy `2.0.0rc2`. It is likely that downstream packages and
+end user code needs to be adapted - if you can, please verify whether your code
+works with NumPy `2.0.0rc2`. **Por favor, revisa lo siguiente para más detalles:**
+
+- La [guía de migración a NumPy 2.0](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- Las [ notas del lanzamiento 2.0.0](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Emisión de anuncios para actualizaciones de estado: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+### Recaudación de fondos de fin de año de NumFOCUS
+
+_19 de diciembre de 2023_ -- NumFOCUS se ha asociado con PyCharm durante su campaña de fin de año para ofrecer un 30% de descuento en licencias de primera vez de PyCharm. Todos los ingresos del primer año de las compras de PyCharm desde ahora hasta el 23 de diciembre de 2023 se destinarán directamente a los programas de NumFOCUS.
+
+Utiliza una URL única que te permitirá rastrear las compras https://lp.jetbrains.com/support-data-science/ o un código de cupón ISUPPORTDATASCIENCE
+
+### NumPy 1.26.0 ha sido lanzado
+
+_16 de septiembre de 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) ahora está disponible. Los aspectos más destacados del lanzamiento son:
+
+- Soporte de Python 3.12.0.
+- Compatibilidad con Cython 3.0.0.
+- Utilización del sistema de compilación Meson
+- Actualización del soporte de SIMD
+- Correcciones de f2py, meson y soporte de bind(x)
+- Soporte para la librería actualizada Accelerate BLAS/LAPACK
+
+La versión 1.26.0 de NumPy es la continuación de la serie 1.25.x que marca la transición al sistema de compilación Meson y que provee soporte para Cython 3.0.0.
+Un total de 20 personas contribuyeron a esta versión y 59 solicitudes de cambios fueron fusionadas.
+
+Las versiones de Python compatibles con esta versión son 3.9-3.12.
+
+### numpy.org ya está disponible en japonés y portugués
+
+_ 2 de agosto de 2023_ -- numpy.org ya está disponible en 2 idiomas adicionales: japonés y portugués. Esto no sería posible sin nuestros dedicados voluntarios:
+
+_Portugués:_
+
+- Melissa Weber Mendonça (melissawm)
+- Precios Ricardo (ricardoprins)
+- Getúlio Silva (getuliosilva)
+- Julio Batista Silva (jbsilva)
+- Alexandre de Siqueira (alexdesiqueira)
+- Alexandre B A Villares (villares)
+- Vini Salazar (vinisalazar)
+
+_Japonés:_
+
+- Atsushi Sakai (AtsushiSakai)
+- KKunai
+- Tom Kelly (TomKellyGenetics)
+- Yuji Kanagawa (kngwyu)
+- Tetsuo Koyama (tkoyama010)
+
+El trabajo sobre la infraestructura de traducción se apoya con fondos de CZI.
+
+De cara al futuro, nos encantaría traducir el sitio web a más idiomas.
+Si quieres ayudar, por favor pone en contacto con el equipo de traducciones de NumPy en Slack:
+https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
+(Busca el canal #translations) También estamos formando un equipo de traducciones que estará trabajando en la localización de la documentación y el contenido educativo a través de todo el ecosistema de Python científico. Si esto ha despertado tu interés, únete a nosotros en el Discord de Python científico: https://discord.gg/khWtqY6RKr. (Busca el canal #translations)
+
+### NumPy 1.25.0 ha sido lanzado
+
+_17 de junio de 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) ya está disponible. Los aspectos más destacados del lanzamiento son:
+
+- Soporte para MUSL, ahora hay ruedas MUSL.
+- Soporte para el compilador de Fujitsu C/C++.
+- Los arreglos de objetos ahora están soportadas en einsum.
+- Soporte para la multiplicación de matrices in situ (`@=`).
+
+NumPy 1.25. continúa el trabajo en curso para mejorar el manejo y
+promoción de dtypes, aumentar la velocidad de ejecución y clarificar la documentación. También se ha realizado trabajo preparatorio para el futuro NumPy 2.0.0, resultando en un gran número de nuevas y eliminadas obsolescencias.
+
+Un total de 148 personas contribuyeron a esta versión y 530 solicitudes de incorporación de cambios fueron aceptadas.
+
+Las versiones de Python soportadas por este lanzamiento son
+3.9-3.11.
+
+### Fomentar una Cultura Inclusiva: Convocatoria de Participación
+
+_10 de mayo de 2023_ -- Fomentar una Cultura Inclusiva: Convocatoria de Participación
+
+¿Cómo podemos ser mejores cuando se trata de diversidad e inclusión?
+Lee el informe y averigua cómo involucrarte [aquí](https://contributor-experience.org/docs/posts/dei-report/).
+
+### Transición en el liderazgo del equipo de documentación de NumPy
+
+_6 de enero de 2023_ –- Mukulika Pahari y Ross Barnowski son nombrados como los nuevos líderes del equipo de documentación de NumPy, reemplazando a Melissa Mendonça. Damos las gracias a Melissa por todas sus
+contribuciones a la documentación oficial de NumPy y materiales educativos,
+y a Mukulika y Ross por asumir este rol.
+
+### Lanzamiento de NumPy 1.24.0
+
+_18 de diciembre de 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) ya está disponible. Los aspectos más destacados del lanzamiento son:
+
+- Nuevas palabras clave "dtype" y "casting" para las funciones de apilamiento.
+- Nuevas características y correcciones de F2PY.
+- Muchas nuevas obsolescencias, revísalas.
+- Muchas obsolescencias caducadas,
+
+El lanzamiento de NumPy 1.24.0 continúa el trabajo en curso para mejorar el manejo y
+promoción de dtypes, aumentar la velocidad de ejecución y clarificar la documentación.
+Hay un gran número de obsolescencias nuevas y caducadas debido a los cambios en la limpieza y promoción de tipo dtype. Es el trabajo de 177 colaboradores distribuidos sobre
+444 solicitudes de incorporación de cambios. Las versiones Python soportadas son 3.8-3.11.
+
+### NumPy 1.23.0 ha sido lanzado
+
+_22 de junio de 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) ya está disponible. Los aspectos más destacados del lanzamiento son:
+
+- Implementación de `loadtxt` en C, mejorando enormemente su rendimiento.
+- Exposición de DLPack a nivel Python para facilitar el intercambio de datos.
+- Cambios a la promoción y comparación de dtypes estructurados.
+- Mejoras a f2py.
+
+El lanzamiento de NumPy 1.23.0 continúa el trabajo en curso para mejorar el manejo y
+promoción de dtypes, aumentar la velocidad de ejecución y clarificar la documentación, caducar viejas obsolescencias. Es el trabajo de 151 colaboradores distribuidos sobre
+494 solicitudes de incorporación de cambios. Las versiones de Python soportadas por este lanzamiento son
+3.8-3.10.
+Python 3.11 será soportado cuando alcance la etapa rc.
+
+### Estudio de investigación NumFOCUS DEI: llamado a participar
+
+_13 de abril de 2022_ -- NumPy está trabajando con [NumFOCUS](http://numfocus.org/) en un proyecto de investigación financiado por la Fundación Gordon & Betty Moore para entender las barreras de participación que enfrentan los colaboradores, especialmente aquellos de grupos históricamente subrepresentados, en la comunidad de software de código abierto. El equipo de investigación quisiera hablar con nuevos colaboradores, desarrolladores y mantenedores del proyecto, y con aquellos que han contribuido en el pasado acerca de
+sus experiencias uniéndose y contribuyendo a NumPy.
+
+**¿Estás interesado en compartir tus experiencias?**
+
+Por favor, completa este breve [formulario de "Interés del Participante"](https://numfocus.typeform.com/to/WBWVJSqe), que contiene información adicional sobre los objetivos de la investigación, la privacidad y las consideraciones de confidencialidad. Tu participación será valiosa para el crecimiento
+y la sostenibilidad de comunidades de software de código abierto diversas e inclusivas. Los participantes aceptados participarán en una entrevista de 30 minutos con un miembro del equipo de investigación.
+
+### Lanzamiento de NumPy 1.22.0
+
+_31 de diciembre de 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) ya está disponible. Los aspectos más destacados del lanzamiento son:
+
+- Las anotaciones de tipo del espacio de nombres principal están esencialmente completas. El repositorio principal (upstream) es un objetivo en movimiento, así que probablemente habrán más mejoras, pero el mayor trabajo ya está hecho. Esta es probablemente la mejora más visible para el usuario en esta versión.
+- Una versión preliminar del propuesto [Estándar API de Arreglos](https://data-apis.org/array-api/latest/) es suministrada (véase [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
+ Este es un paso en la creación de una colección estándar de funciones que pueden ser usadas a través de librerías como CuPy y JAX.
+- NumPy ahora tiene un backend de DLPack. DLPack proporciona un formato de intercambio común para datos de arreglos (tensor).
+- Nuevos métodos para `cuantil`, `percentil` y funciones relacionadas. Los nuevos métodos proporcionan un conjunto completo de los métodos comúnmente encontrados en la literatura.
+- Las funciones universales se han refactorizado para implementar la mayor parte de [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
+ Esto también desbloquea la capacidad de experimentar con la futura API DType.
+- Un nuevo asignador de memoria configurable para el uso de proyectos dependientes o downstream.
+
+NumPy 1.22.0 es un gran lanzamiento que contó con el trabajo de 153 colaboradores distribuidos
+sobre 609 solicitudes de incorporación de cambios. Las versiones de Python soportadas por este lanzamiento son
+3.8-3.10.
+
+### Promoviendo una cultura inclusiva en el ecosistema científico de Python
+
+_31 de agosto de 2021_ -- Nos complace anunciar que la Iniciativa Chan Zuckerberg ha [otorgado una subvención](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) para apoyar la incorporación, inclusión, y retención de personas de grupos históricamente marginados en proyectos científicos de Python y para mejorar estructuralmente la dinámica de la comunidad para NumPy, SciPy, Matplotlib y Pandas.
+
+Como parte del [Programa de Software Esencial de Código Abierto para la Ciencia de CZI](https://chanzuckerberg.com/eoss/), esta subvención suplementaria de [Diversidad &e Inclusión](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) apoyará la creación de posiciones dedicadas de Líder de Experiencia del Colaborador para identificar, documentar e implementar prácticas para fomentar comunidades inclusivas de código abierto. Este proyecto será liderado por Melissa Mendonça (NumPy), con mentoría y orientación adicionales por parte de Ralf Gommers (NumPy, SciPy),
+Hannah Aizenman y Thomas Caswell (Matplotlib), Matt Haberland (SciPy), y
+Joris Van den Bossche (Pandas).
+
+Este es un proyecto ambicioso destinado a descubrir e implementar actividades que
+deberían mejorar estructuralmente la dinámica comunitaria de nuestros proyectos. Al establecer estos nuevos roles entre proyectos, esperamos introducir un nuevo
+modelo de colaboración para las comunidades de Python Científico, permitiendo que el trabajo de construcción de comunidades dentro del ecosistema se realice de manera más eficiente y con mejores resultados. También esperamos desarrollar una idea más clara tanto de lo que funciona y lo que no en nuestros proyectos, para atraer y retener nuevos colaboradores, especialmente de grupos históricamente subrepresentados. Finalmente, planeamos producir informes detallados sobre las acciones ejecutadas, explicando cómo éstas han impactado nuestros proyectos en términos de representación e interacción con nuestras comunidades.
+
+Se espera que este proyecto, de dos años de duración, comience en noviembre de 2021, y estamos emocionados por ver los resultados de este trabajo!
+[Puedes leer la propuesta completa aquí](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### Encuesta de NumPy de 2021
+
+_12 de julio de 2021_ -- En NumPy creemos en el poder de nuestra comunidad. 1,236 usuarios de NumPy de 75 países participaron en nuestra encuesta inaugural el año pasado.
+Los resultados de la encuesta nos dieron una muy buena comprensión acerca de lo que debería ser nuestro enfoque durante los próximos 12 meses.
+
+Es hora de otra encuesta, y contamos contigo una vez más. Te tomará alrededor de 15 minutos de tu tiempo. Además de inglés, el cuestionario de la encuesta está disponible en 8 idiomas adicionales: Bangla, Francés, Hindi, Japonés, Mandarín, Portugués, Ruso y Español.
+
+Sigue el enlace para comenzar: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+### Lanzamiento de NumPy 1.21.0
+
+_23 de junio de 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) ya está disponible. Los aspectos más destacados del lanzamiento son:
+
+- trabajo SIMD continuo que cubre más funciones y plataformas,
+- trabajo inicial sobre la nueva infraestructura dtype y conversiones de tipo,
+- universal2 wheels para Python 3.8 y Python 3.9 en Mac,
+- documentación mejorada,
+- anotaciones mejoradas,
+- nuevo `PCG64DXSM` generador de bits para números aleatorios.
+
+Esta versión de NumPy es el resultado de 581 solicitudes de incorporación de cambios contribuidas por 175 personas. Las versiones de Python soportadas por este lanzamiento son las 3.7-3.9, se añadirá soporte para Python 3.10 después del lanzamiento de Python 3.10.
+
+### Resultados de la encuesta de NumPy de 2020
+
+_22 de junio de 2021_ -- En 2020, el equipo de encuestas de NumPy, en asociación con los estudiantes y profesores de la Universidad de Michigan y la Universidad de Maryland, realizó la primera encuesta oficial de la comunidad NumPy. Encuentra los resultados de la encuesta
+aquí: https://numpy.org/user-survey-2020/.
+
+### Lanzamiento de NumPy 1.20.0
+
+_30 de enero de 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) ya está disponible. Este es el lanzamiento de NumPy más grande hasta la fecha, gracias a los más de 180 colaboradores. Las dos nuevas características más importantes son:
+
+- Anotaciones de tipo para grandes partes de NumPy, y un nuevo submódulo `numpy.typing` que contiene los alias `ArralyLike` y `DtypeLike` que los usuarios y las librerías dependientes o downstream pueden usar al agregar anotaciones de tipo en su propio código.
+- Optimizaciones de compilador SIMD multiplataforma, con soporte para instrucciones x86 (SSE, AVX), ARM64 (Neon) y PowerPC (VSX). Esto produjo mejoras significativas de rendimiento para muchas funciones (ejemplos: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### Diversidad en el proyecto NumPy
+
+_20 de septiembre de 2020_ -- Escribimos una [declaración sobre el estado de, y discusión en redes sociales, alrededor de la diversidad e inclusión en el proyecto NumPy](/diversity_sep2020).
+
+### Primer artículo oficial de NumPy publicado en Nature!
+
+_16 de septiembre de 2020_ -- Nos complace anunciar la publicación del [primer artículo oficial sobre NumPy](https://www.nature.com/articles/s41586-020-2649-2) como artículo de revisión en Nature. Esto llega 14 años después de la publicación de NumPy 1.0.
+El documento cubre aplicaciones y conceptos fundamentales de programación de arreglos, el rico ecosistema científico de Python construido sobre NumPy, y los recientemente añadidos protocolos de arreglos que facilitan la interoperabilidad con librerías de arreglos y tensores externas, tales como CuPy, Dask y JAX.
+
+### Python 3.9 está por llegar, ¿cuándo lanzará NumPy ruedas binarias?
+
+_14 de septiembre de 2020_ -- Python 3.9 será lanzado dentro de unas pocas semanas. Si eres uno de los primeros en adoptar las más recientes versiones de Python, es posible que te sientas decepcionado al descubrir que NumPy (y otros paquetes binarios como SciPy) no tendrán ruedas binarias listas para el
+día del lanzamiento. Es un esfuerzo importante el adaptar la infraestructura de compilación a una versión
+nueva de Python y normalmente tarda unas cuantas semanas para que los paquetes aparezcan
+en PyPI y conda-forge. En preparación para este evento, por favor asegúrese de
+
+- actualizar su versión de `pip` al menos a la 20.1 para soportar `manylinux2010` y `manylinux2014`
+- utiliza [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) o `--only-binary=:all:` para evitar que `pip` intente compilar desde la fuente.
+
+### Lanzamiento de NumPy 1.19.2
+
+_10 de septiembre de 2020_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) ya está disponible.
+Este último lanzamiento de la serie 1.19 corrige varios errores, se prepara para el [lanzamiento próximo de Cython 3.x](http://docs.cython.org/en/latest/src/changes.html) y fija las versiones de setuptools para mantener distutils funcionando mientras las modificaciones hacia el repositorio principal continúan.
+Las wheels para aarch64 están construidas con la última versión de manylinux2014 que corrige
+el problema de diferentes tamaños de página utilizados por diferentes distribuciones de linux.
+
+### La encuesta inaugural de NumPy ya está disponible!
+
+_2 de julio de 2020_ -- Esta encuesta está destinada a guiar y establecer prioridades para la toma de decisiones sobre el desarrollo de NumPy como software y como comunidad.
+La encuesta está disponible en 8 idiomas adicionales además del Inglés:
+Bangla, Hindi, Japonés, Mandarín, Portugués, Ruso, Español y Francés.
+
+Por favor ayúdanos a mejorar NumPy diligenciando la encuesta: [aquí](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+### ¡NumPy tiene un nuevo logo!
+
+_24 de junio de 2020_ -- NumPy tiene ahora un nuevo logo:
+
+
+
+El logo es una versión moderna del anterior, con un diseño más limpio. Gracias a
+Isabela Presedo-Floyd por diseñar el nuevo logo, así como a Travis Vaught
+por el viejo logo que nos sirvió tanto durante más de 15 años.
+
+### Lanzamiento de NumPy 1.19.0
+
+_20 de junio de 2020_ -- NumPy 1.19.0 ya está disponible. Esta es el primer lanzamiento
+sin soporte para Python 2, por lo que fue una "versión de limpieza". La versión mínima
+soportada de Python es ahora Python 3.6. Una nueva característica importante es que
+la infraestructura de generación de números aleatorios que fue introducida en NumPy 1.17.0 es ahora accesible desde Cython.
+
+### Aceptación a Season of Docs
+
+_11 de mayo de 2020_ -- NumPy ha sido aceptado como una de las organizaciones mentoras para el programa Google Season of Docs. ¡Estamos entusiasmados de tener la oportunidad de trabajar con un redactor técnico para mejorar la documentación de NumPy una vez más! ¡Estamos entusiasmados de tener la oportunidad de trabajar con un redactor técnico para mejorar la documentación de NumPy una vez más!
+
+### Lanzamiento de NumPy 1.18.0
+
+_22 de diciembre de 2019_ -- NumPy 1.18.0 ya está disponible. Después de los grandes cambios en
+1.17.0, este es un lanzamiento de consolidación. Es el último lanzamiento menor que
+soportará Python 3.5. Los aspectos más destacados de la publicación incluyen la adición de la infraestructura básica para enlazar con las librerías BLAS de 64 bits y LAPACK, y un nuevo C-API para `numpy.random`.
+
+Por favor revise las [notas del lanzamiento](https://github.com/npm/npm/releases/tag/v2.11.0) para conocer más detalles.
+
+### NumPy recibe una subvención de la Iniciativa Chan Zuckerberg
+
+_15 de noviembre de 2019_ -- Nos complace anunciar que NumPy y OpenBLAS, una de las dependencias clave de NumPy, han recibido una subvención conjunta por $195,000 de la Iniciativa Chan Zuckerberg a través de su [programa Esencial de Software Abierto para la Ciencia](https://chanzuckerberg.com/eoss/) que apoya el mantenimiento de software, crecimiento, desarrollo y compromiso comunitario para herramientas de código abierto críticas para la ciencia.
+
+Esta subvención se utilizará para acelerar los esfuerzos en la mejora de la documentación de NumPy, rediseño del sitio web y desarrollo de la comunidad para servir mejor a nuestra amplia y creciente base de usuarios, y asegurar la sostenibilidad a largo plazo del proyecto. Mientras que el equipo de OpenBLAS se enfocará en abordar conjuntos de problemas técnicos clave, en particular la seguridad de los hilos, AVX-512, y problemas de almacenamiento local de hilos (TLS), así como mejoras algorítmicas en ReLAPACK (Recursive LAPACK) de las que depende OpenBLAS.
+
+Puede encontrar más detalles sobre nuestras iniciativas y entregables propuestos en la [propuesta completa de subvención](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). Está previsto que el trabajo comience el 1 de diciembre de 2019 y continúe durante los siguientes 12 meses.
+
+
+
+## Lanzamientos
+
+Esta es una lista de lanzamientos NumPy, con enlaces a notas de lanzamiento. Los lanzamientos de corrección de errores (solo cambia la `z` en el número de versión `x.y.z`) no tienen nuevas características; las versiones menores (aumenta la `y`) sí las tienen.
+
+- NumPy 2.2.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.5)) -- _19 Apr 2025_.
+- NumPy 2.2.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.4)) -- _16 Mar 2025_.
+- NumPy 2.2.2 ([notas de lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.2.2)) -- _18 Jan 2024_.
+- NumPy 2.2.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.2)) -- _18 Jan 2025_.
+- NumPy 2.2.1 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.2.1)) -- _21 de diciembre de 2024_.
+- NumPy 2.2.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 de diciembre de 2024_.
+- NumPy 2.1.3 ([notas de lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 de Nov 2024_.
+- NumPy 2.1.2 ([notas de lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 de octubre 2024_.
+- NumPy 2.1.1 ([notas de lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 de septiembre 2024_.
+- NumPy 2.0.2 ([notas de lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 de agosto 2024_.
+- NumPy 2.1.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 de agosto de 2024_.
+- NumPy 2.0.1 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 de julio de 2024_.
+- NumPy 2.0.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 de junio de 2024_.
+- NumPy 1.26.4 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 de febrero de 2024_.
+- NumPy 1.26.3 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 de enero de 2024_.
+- NumPy 1.26.2 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _12 de noviembre de 2023_.
+- NumPy 1.26.1 ([notas de publicación](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 de octubre de 2023_.
+- NumPy 1.26.0 ([notas de publicación](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 de septiembre de 2023_.
+- NumPy 1.25.2 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 de julio de 2023_.
+- NumPy 1.25.1 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 de julio de 2023_.
+- NumPy 1.24.4 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 de junio de 2023_.
+- NumPy 1.25.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 de junio de 2023_.
+- NumPy 1.24.3 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 de abril de 2023_.
+- NumPy 1.24.2 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 de febrero de 2023_.
+- NumPy 1.24.1 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 de diciembre de 2022_.
+- NumPy 1.24.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 de diciembre de 2022_.
+- NumPy 1.23.5 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _19 de noviembre de 2022_.
+- NumPy 1.23.4 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 de octubre de 2022_.
+- NumPy 1.23.3 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 de septiembre de 2022_.
+- NumPy 1.23.2 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 de agosto de 2022_.
+- NumPy 1.23.1 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 de julio de 2022_.
+- NumPy 1.23.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 de junio de 2022_.
+- NumPy 1.22.4 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 de mayo de 2022_.
+- NumPy 1.21.6 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 de abril de 2022_.
+- NumPy 1.22.3 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 de marzo de 2022_.
+- NumPy 1.22.2 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 de febrero de 2022_.
+- NumPy 1.22.1 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 de enero de 2022_.
+- NumPy 1.22.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 de diciembre de 2021_.
+- NumPy 1.21.5 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 de diciembre de 2021_.
+- NumPy 1.21.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 de junio de 2021_.
+- NumPy 1.20.3 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 de mayo de 2021_.
+- NumPy 1.20.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 de enero de 2021_.
+- NumPy 1.19.5 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 de enero de 2021_.
+- NumPy 1.19.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 de junio de 2020_.
+- NumPy 1.18.4 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 de mayo de 2020_.
+- NumPy 1.17.5 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 de enero de 2020_.
+- NumPy 1.18.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 de diciembre de 2019_.
+- NumPy 1.17.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 de julio de 2019_.
+- NumPy 1.16.0 ([notas de lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 de julio de 2018_.
+- NumPy 1.14.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 de enero de 2018_.
diff --git a/content/es/press-kit.md b/content/es/press-kit.md
new file mode 100644
index 00000000..9b66e3e6
--- /dev/null
+++ b/content/es/press-kit.md
@@ -0,0 +1,8 @@
+---
+title: Kit de prensa
+sidebar: false
+---
+
+Nos gustaría facilitarte el trabajo para incluir la identidad del proyecto NumPy en tu próximo documento académico, material de curso o presentación.
+
+[Aquí](https://github.com/numpy/numpy/tree/main/branding/logo) encontrarás varias versiones en alta resolución del logo de NumPy. Ten en cuenta que al utilizar los recursos de numpy.org, aceptas el [Código de Conducta de NumPy](/code-of-conduct).
diff --git a/content/es/privacy.md b/content/es/privacy.md
new file mode 100644
index 00000000..ab27618f
--- /dev/null
+++ b/content/es/privacy.md
@@ -0,0 +1,8 @@
+---
+title: Política de Privacidad
+sidebar: false
+---
+
+**numpy.org** está operado por [NumFOCUS, Inc.](https://numfocus.org), el patrocinador fiscal del proyecto NumPy. Para ver la Política de Privacidad de este sitio web, por favor dirígete a https://numfocus.org/privacy-policy.
+
+Si tienes alguna pregunta sobre la política o la recolección, uso y prácticas de divulgación de datos de NumFOCUS, por favor ponte en contacto con el personal de NumFOCUS en privacy@numfocus.org.
diff --git a/content/es/report-handling-manual.md b/content/es/report-handling-manual.md
new file mode 100644
index 00000000..37df39c1
--- /dev/null
+++ b/content/es/report-handling-manual.md
@@ -0,0 +1,89 @@
+---
+title: Código de Conducta de NumPy - Cómo hacer el seguimiento de un informe
+sidebar: false
+---
+
+Este es el manual que sigue el Comité de Código de Conducta de NumPy. Se utiliza cuando respondemos a un problema, para asegurarnos de que seamos consistentes y justos.
+
+Hacer cumplir el [Código de Conducta](/code-of-conduct) impacta a nuestra comunidad hoy y en el futuro. Es una acción que no tomamos a la ligera. Al revisar las medidas de cumplimiento, el Comité de Código de Conducta tendrá en cuenta los siguientes valores y directrices:
+
+- Actuar de manera personal en lugar de impersonal. El Comité puede involucrar a las partes para que comprendan la situación, respetando al mismo tiempo la privacidad y, en su caso, la confidencialidad de los informadores. Sin embargo, a veces es necesario comunicarse directamente con uno o más individuos: el objetivo del Comité es mejorar la salud de nuestra comunidad en lugar de solo producir una decisión formal.
+- Enfatizar la empatía hacia los individuos en lugar de juzgar el comportamiento, evitando etiquetas binarias de “bueno” y “malo/malvado”. Existen agresiones y acosos manifiestos y claros, y los abordaremos con firmeza. Pero en muchas circunstancias puede ser complejo resolver estas situaciones, sobre todo aquellas en las que desacuerdos normales se convierten en comportamientos inútiles o perjudiciales para las partes. Comprender el contexto completo y encontrar un camino que vuelva involucrar a todos es difícil, pero es en última instancia lo más productivo para nuestra comunidad.
+- Comprendemos que el correo electrónico es un medio difícil y puede aislarnos. Recibir críticas por medio de correo electrónico, sin ningún contacto personal, puede ser particularmente doloroso. Esto hace que sea especialmente importante mantener una ambiente de apertura y respeto hacia las opiniones de los demás. También significa que debemos ser transparentes en nuestro actuar, y que haremos todo lo que esté a nuestro alcance para asegurarnos de que todos nuestros miembros reciban un trato justo y comprensivo.
+- La discriminación puede ser sutil e inconsciente. Ésta puede manifestarse como injusticia y hostilidad en interacciones que, por todo lo demás, serían normales. Sabemos que esto ocurre, y nos ocuparemos de estar pendientes de esto. Nos gustaría mucho saber de usted si cree que ha sido tratado injustamente, y utilizaremos estos procedimientos para asegurarnos de que su queja sea escuchada y atendida.
+- Ayude a aumentar el compromiso con buenas prácticas de debate: trate de identificar los puntos en los que el debate puede haberse interrumpido y proporcione información práctica, sugerencias y recursos que puedan conducir a un cambio positivo en estos aspectos.
+- Sea consciente de las necesidades de los nuevos miembros: proporcióneles apoyo y consideración explícitos, con el objetivo de aumentar la participación, particularmente de grupos subrepresentados.
+- Las personas provienen de entornos culturales y lingüísticos diferentes. Intente identificar cualquier malentendido honesto causado por un hablante no nativo y ayúdele a entender el problema y lo que puede cambiar para evitar causar una ofensa. La discusión compleja en una lengua extranjera puede ser muy intimidante, y queremos aumentar nuestra diversidad también a través de nacionalidades y culturas.
+
+## Mediación
+
+La mediación informal voluntaria es una herramienta a nuestra disposición. En contextos tales como cuando dos o más partes han escalado hasta el punto de un comportamiento inapropiado (algo tristemente común en el conflicto humano), puede ser útil facilitar un proceso de mediación. Éste es sólo un ejemplo: el Comité puede considerar la mediación en cualquier caso, siendo consciente de que este proceso se entiende como estrictamente voluntario y que ninguna de las partes puede ser presionada a participar. Si el Comité sugiere la mediación, este debería:
+
+- Encontrar un candidato que pueda servir de mediador.
+- Obtener el acuerdo del informante(s). El informante(s) tienen total libertad para rechazar la propuesta de mediación o para proponer un mediador alternativo.
+- Obtener el acuerdo de la persona informante(s).
+- Acuerden el mediador: aunque las partes pueden proponer un mediador diferente al candidato sugerido, solo si se llega a un acuerdo común en todos los términos se puede avanzar en el proceso.
+- Establezca un marco de tiempo para completar la mediación, idealmente dentro de dos semanas.
+
+El mediador dialogará con todas las partes y buscará una decisión que sea satisfactoria para todos. Una vez concluido el proceso, el mediador proporcionará un informe (revisado por todas las partes del proceso) al Comité, con recomendaciones sobre pasos a seguir. El comité a su vez evaluará estos resultados (bien se haya logrado una decisión satisfactoria o no) y decidirá sobre cualquier acción que considere necesaria.
+
+## Cómo responderá el Comité a los informes
+
+Cuando el Comité (o uno de sus miembros) recibe un informe, primero determinará si éste se refiere a una violación clara y grave (como se define a continuación). En caso afirmativo, será necesario tomar medidas inmediatas adicionales al proceso de gestión de informe habitual.
+
+## Acciones violatorias claras y severas
+
+Sabemos que es dolorosamente común que la comunicación en Internet comience o se convierta en un abuso evidente y manifiesto. Nos ocuparemos rápidamente de violaciones claras y graves, tales como amenazas personales, lenguaje violento, sexista o racista.
+
+Cuando un miembro del Comité de Código de Conducta tenga conocimiento de una violación clara y grave, hará lo siguiente:
+
+- Desconectará inmediatamente al originador de todos los canales de comunicación de NumPy.
+- Responderá al informante que su informe ha sido recibido y que el autor ha sido desconectado.
+- En todo caso, el moderador deberá hacer un esfuerzo razonable por contactar al originador, y comunicarle específicamente cómo su lenguaje o sus acciones se constituyeron como "violación clara y grave". El moderador también debe decir que, si el originador cree que esto es injusto o desea reconectarse con NumPy, tiene el derecho a solicitar una revisión, como se indica a continuación, por el Comité de Código de Conducta. El moderador debería copiar esta explicación al Comité de Código de conducta.
+- El Comité de Código de conducta revisará y aprobará formalmente todos los casos en los que se haya aplicado este mecanismo, para asegurarse de que no se esté utilizando para controlar desacuerdos ordinarios acalorados.
+
+## Gestión de informes
+
+Cuando se envíe un informe al Comité, éste responderá inmediatamente al informante confirmando su recepción. Esta respuesta deberá enviarse dentro de un plazo de 72 horas, y el grupo deberá esforzarse por responder en un tiempo inferior.
+
+Si un informe no contiene suficiente información, el Comité obtendrá todos los datos relevantes antes de actuar. El Comité tiene la facultad de actuar en nombre del Consejo Directivo al contactar cualquier individuo implicado para obtener una descripción más completa de los hechos.
+
+El Comité procederá a revisar el incidente y determinará, en la medida de su capacidad:
+
+- Qué sucedió.
+- Si este evento constituye una violación del Código de Conducta.
+- Quiénes son las parte(s) responsables.
+- Si se trata de una situación en progreso y existe una amenaza para la seguridad física de cualquiera.
+
+Esta información se recopilará por escrito, y siempre que sea posible se registrarán y conservarán las deliberaciones del grupo (por ejemplo, transcripciones de chat, discusiones por correo electrónico, conferencias telefónicas grabadas, resúmenes de conversaciones de voz, etc.).
+
+Es importante conservar un archivo de todas las actividades de este Comité para asegurar consistencia en el comportamiento y proporcionar memoria institucional para el proyecto. Para ayudar en esto, el canal de discusión por defecto para este Comité será una lista de correo privada accesible a los miembros actuales y futuros del Comité, así como a los miembros del Consejo Directivo con previa solicitud justificada. Si el Comité considera necesario utilizar comunicaciones fuera de la lista (por ejemplo, para una respuesta temprana/rápida), deberá, en todos los casos, resumirlos y documentarlos de vuelta a la lista, de manera que se mantenga un buen registro del proceso.
+
+El Comité de Código de Conducta debería aspirar a que se acuerde una resolución en el plazo de dos semanas. Dado el caso de que no se pueda establecer una decisión dentro de dicho plazo, el Comité responderá al informante(s) con una actualización y duración estimada para la decisión.
+
+## Resoluciones
+
+El comité debe llegar a un acuerdo sobre una resolución por consenso. Si el grupo no puede alcanzar un consenso y permanece en un punto muerto durante más de una semana, le trasladará el asunto al Consejo Directivo para que lo resuelva.
+
+Las posibles respuestas pueden incluir:
+
+- No tomar más medidas:
+ - si determinamos que no se han producido violaciones;
+ - si el asunto se ha resuelto públicamente mientras que el Comité estaba estudiando las respuestas.
+- Coordinación de mediación voluntaria: si todas las partes implicadas están de acuerdo, el Comité podrá facilitar un proceso de mediación como se detalla arriba.
+- Recordar públicamente y señalar que algunos comportamientos/acciones/usos de lenguaje, han sido juzgados como inapropiados y por qué, bajo el contexto actual, pueden ser hirientes para algunas personas, solicitando a la comunidad que se autorregule.
+- Una amonestación privada por parte del Comité al individuo(s) involucrado(s). En este caso, el presidente del grupo entregará esa amonestación al (los) individuo(s) por correo electrónico, con copia al grupo.
+- Una amonestación pública. En este caso, el presidente del Comité entregará la amonestación por el mismo medio por el que se produjo la violación, dentro de los límites de lo posible. Por ejemplo, la lista de correo original para una violación de correo electrónico, pero para una discusión en una sala de chat, en la que la persona o el contexto pueden haber desaparecido, puede buscarse el contacto por otros medios. El grupo puede elegir publicar este mensaje en otro lugar con fines de documentación.
+- Una solicitud de disculpa pública o privada, asumiendo que el informante esté de acuerdo con esta idea: puede negarse, a su discreción, a continuar contacto con el infractor. El presidente entregará esta solicitud. El Comité puede, si así lo desea, adjuntar “condiciones” a esta petición: por ejemplo, el grupo puede solicitar a un infractor pedir disculpas para preservar su membresía en una lista de correo.
+- Un “acuerdo mutuo de suspensión” en el que el Comité solicita al individuo la abstención temporal de participación en la comunidad. Si el individuo decide no aceptar una suspensión temporal voluntariamente, el Comité puede emitir un “período obligatorio de reflexión”.
+- Una prohibición permanente o temporal de algunos o de todos los espacios de NumPy (listas de correo, gitter.im, etc.). El grupo mantendrá los registros de todas esas prohibiciones, para que puedan ser revisadas en el futuro o ser mantenidas en caso contrario.
+
+Una vez que se acuerda una resolución, pero antes de que se promulgue, el Comité se pondrá en contacto con el informante original y con cualquier otra parte afectada y explicará la resolución propuesta. El Comité preguntará si esta resolución es aceptable y deberá tomar nota de los comentarios para su registro.
+
+Finalmente, el Comité presentará un informe al Consejo Directivo de NumPy (así como al equipo central de NumPy en caso de una decisión en curso, tal como una prohibición).
+
+El Comité nunca debatirá públicamente el asunto; todas las declaraciones públicas serán realizadas por el presidente del Comité de Código de Conducta o el Consejo Directivo de NumPy.
+
+## Conflictos de intereses
+
+En caso de cualquier conflicto de intereses, el miembro del Comité deberá notificarlo inmediatamente a los demás miembros y excusarse en caso de ser necesario.
diff --git a/content/es/tabcontents.yaml b/content/es/tabcontents.yaml
new file mode 100644
index 00000000..026e8c37
--- /dev/null
+++ b/content/es/tabcontents.yaml
@@ -0,0 +1,275 @@
+params:
+ machinelearning:
+ paras:
+ - para1: NumPy constituye la base de potentes librerías de aprendizaje automático como [scikit-learn](https://scikit-learn.org) y [SciPy](https://www.scipy.org). A medida que crece el aprendizaje automático, también lo hace la lista de librerías basadas en NumPy. Las capacidades de aprendizaje profundo de [TensorFlow](https://www.tensorflow.org) tienen amplias aplicaciones— entre ellas el reconocimiento de voz e imágenes, las aplicaciones basadas en texto, el análisis de series de tiempo y la detección de vídeo. [PyTorch](https://pytorch.org), otra librería de aprendizaje profundo, es popular entre los investigadores de visión artificial y procesamiento del lenguaje natural.
+ para2: Las técnicas estadísticas denominadas métodos [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205), como binning, bagging, stacking y boosting, se encuentran entre los algoritmos de ML implementados por herramientas como [XGBoost](https://xgboost.readthedocs.io/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/) y [CatBoost](https://catboost.ai) — uno de los motores de inferencia más rápidos. [Yellowbrick](https://www.scikit-yb.org/en/latest/) y [Eli5](https://eli5.readthedocs.io/en/latest/) ofrecen visualizaciones de aprendizaje automático.
+ arraylibraries:
+ intro:
+ - text: La API de NumPy es el punto de partida cuando se escriben librerías para explotar hardware innovador, crear tipos de arreglos especializadas o añadir capacidades más allá de lo que NumPy proporciona.
+ headers:
+ - text: Librería de arreglos
+ - text: Capacidades y áreas de aplicación
+ libraries:
+ - title: Dask
+ text: Arreglos distribuidos y paralelismo avanzado para análisis, que permiten un rendimiento a escala.
+ img: /images/content_images/arlib/dask.png
+ alttext: Dask
+ url: https://dask.org/
+ - title: CuPy
+ text: Librería de arreglos compatible con NumPy para cálculo acelerado en la GPU con Python.
+ img: /images/content_images/arlib/cupy.png
+ alttext: CuPy
+ url: https://cupy.dev
+ - title: JAX
+ text: "Transformaciones componibles de programas NumPy: diferenciar, vectorizar, compilación justo-a-tiempo a GPU/TPU."
+ img: /images/content_images/arlib/jax_logo_250px.png
+ alttext: JAX
+ url: https://jax.readthedocs.io/
+ - title: Xarray
+ text: Arreglos multidimensionales indexados y etiquetados para análisis y visualización avanzados.
+ img: /images/content_images/arlib/xarray.png
+ alttext: xarray
+ url: https://xarray.pydata.org/en/stable/index.html
+ - title: Sparse
+ text: Librería de arreglos dispersos compatible con NumPy que se integra con el álgebra lineal dispersa de Dask y SciPy.
+ img: /images/content_images/arlib/sparse.png
+ alttext: sparse
+ url: https://sparse.pydata.org/en/latest/
+ - title: PyTorch
+ text: Marco de aprendizaje profundo que acelera el camino desde la creación de prototipos de investigación hasta la implantación en producción.
+ img: /images/content_images/arlib/pytorch-logo-dark.svg
+ alttext: PyTorch
+ url: https://pytorch.org/
+ - title: TensorFlow
+ text: Una plataforma integral de aprendizaje automático para crear y desplegar fácilmente aplicaciones basadas en ML.
+ img: /images/content_images/arlib/tensorflow-logo.svg
+ alttext: TensorFlow
+ url: https://www.tensorflow.org
+ - title: Arrow
+ text: Plataforma de desarrollo multilingüe para datos y análisis columnares en memoria.
+ img: /images/content_images/arlib/arrow.png
+ alttext: arrow
+ url: https://arrow.apache.org/
+ - title: xtensor
+ text: Arreglos multidimensionales con difusión y computación perezosa para análisis numérico.
+ img: /images/content_images/arlib/xtensor.png
+ alttext: xtensor
+ url: https://github.com/xtensor-stack/xtensor-python
+ - title: Awkward Array
+ text: Manipular datos similares a JSON con expresiones similares a NumPy.
+ img: /images/content_images/arlib/awkward.svg
+ alttext: awkward
+ url: https://awkward-array.org/
+ - title: uarray
+ text: Sistema de backend de Python que desacopla la API de la implementación; unumpy proporciona una API de NumPy.
+ img: /images/content_images/arlib/uarray.png
+ alttext: uarray
+ url: https://uarray.org/en/latest/
+ - title: tensorly
+ text: Aprendizaje tensorial, álgebra y backends para usar de manera fluida NumPy, PyTorch, TensorFlow o CuPy.
+ img: /images/content_images/arlib/tensorly.png
+ alttext: tensorly
+ url: http://tensorly.org/stable/home.html
+ scientificdomains:
+ intro:
+ - text: Casi todos los científicos que trabajan en Python recurren a la potencia de NumPy.
+ - text: "NumPy aporta la potencia de cálculo de lenguajes como C y Fortran a Python, un lenguaje mucho más fácil de aprender y utilizar. Con esta potencia viene la sencillez: una solución en NumPy suele ser clara y elegante."
+ libraries:
+ - title: Computación Cuántica
+ alttext: Un chip para computador.
+ img: /images/content_images/sc_dom_img/quantum_computing.svg
+ links:
+ - url: https://qutip.org
+ label: QuTiP
+ - url: https://pyquil-docs.rigetti.com/en/stable
+ label: PyQuil
+ - url: https://qiskit.org
+ label: Qiskit
+ - url: https://pennylane.ai
+ label: PennyLane
+ - title: Computación Estadística
+ alttext: Un gráfico lineal con la línea moviéndose hacia arriba.
+ img: /images/content_images/sc_dom_img/statistical_computing.svg
+ links:
+ - url: https://pandas.pydata.org/
+ label: Pandas
+ - url: https://www.statsmodels.org/
+ label: statsmodels
+ - url: https://xarray.pydata.org/en/stable/
+ label: Xarray
+ - url: https://seaborn.pydata.org/
+ label: Seaborn
+ - title: Procesamiento de Señales
+ alttext: Un gráfico de barras con valores positivos y negativos.
+ img: /images/content_images/sc_dom_img/signal_processing.svg
+ links:
+ - url: https://www.scipy.org/
+ label: SciPy
+ - url: https://pywavelets.readthedocs.io/
+ label: PyWavelets
+ - url: https://python-control.org/
+ label: python-control
+ - url: https://hyperspy.org/
+ label: HiperSpy
+ - title: Procesamiento de Imágenes
+ alttext: Una fotografía de las montañas.
+ img: /images/content_images/sc_dom_img/image_processing.svg
+ links:
+ - url: https://scikit-image.org/
+ label: Scikit-image
+ - url: https://opencv.org/
+ label: OpenCV
+ - url: https://mahotas.rtfd.io/
+ label: Mahotas
+ - title: Grafos y Redes
+ alttext: Un grafo simple.
+ img: /images/content_images/sc_dom_img/sd6.svg
+ links:
+ - url: https://networkx.org/
+ label: NetworkX
+ - url: https://graph-tool.skewed.de/
+ label: graph-tool
+ - url: https://igraph.org/python/
+ label: igraph
+ - url: https://pygsp.rtfd.io/
+ label: PyGSP
+ - title: Astronomía
+ alttext: Un telescopio.
+ img: /images/content_images/sc_dom_img/astronomy_processes.svg
+ links:
+ - url: https://www.astropy.org/
+ label: AstroPy
+ - url: https://sunpy.org/
+ label: SunPy
+ - url: https://spacepy.github.io/
+ label: SpacePy
+ - title: Psicología Cognitiva
+ alttext: Una cabeza humana con engranajes.
+ img: /images/content_images/sc_dom_img/cognitive_psychology.svg
+ links:
+ - url: https://www.psychopy.org/
+ label: PsychoPy
+ - title: Bioinformática
+ alttext: Una hebra de ADN.
+ img: /images/content_images/sc_dom_img/bioinformatics.svg
+ links:
+ - url: https://biopython.org/
+ label: BioPython
+ - url: http://scikit-bio.org/
+ label: Scikit-Bio
+ - url: https://github.com/openvax/pyensembl
+ label: PyEnsembl
+ - url: http://etetoolkit.org/
+ label: ETE
+ - title: Inferencia Bayesiana
+ alttext: Un gráfico con una curva en forma de campanas.
+ img: /images/content_images/sc_dom_img/bayesian_inference.svg
+ links:
+ - url: https://pystan.readthedocs.io/en/latest/
+ label: PyStan
+ - url: https://docs.pymc.io/
+ label: PyMC3
+ - url: https://arviz-devs.github.io/arviz/
+ label: ArviZ
+ - url: https://emcee.readthedocs.io/
+ label: emcee
+ - title: Análisis Matemático
+ alttext: Cuatro símbolos matemáticos.
+ img: /images/content_images/sc_dom_img/mathematical_analysis.svg
+ links:
+ - url: https://www.scipy.org/
+ label: SciPy
+ - url: https://www.sympy.org/
+ label: SymPy
+ - url: https://www.cvxpy.org/
+ label: cvxpy
+ - url: https://fenicsproject.org/
+ label: FEniCS
+ - title: Química
+ alttext: Un tubo de ensayo.
+ img: /images/content_images/sc_dom_img/chemistry.svg
+ links:
+ - url: https://cantera.org/
+ label: Cantera
+ - url: https://www.mdanalysis.org/
+ label: MDAnalysis
+ - url: https://github.com/rdkit/rdkit
+ label: RDKit
+ - url: https://www.pybamm.org/
+ label: PyBaMM
+ - title: Geociencia
+ alttext: La Tierra.
+ img: /images/content_images/sc_dom_img/geoscience.svg
+ links:
+ - url: https://pangeo.io/
+ label: Pangeo
+ - url: https://simpeg.xyz/
+ label: Simpeg
+ - url: https://github.com/obspy/obspy/wiki
+ label: ObsPy
+ - url: https://www.fatiando.org/
+ label: Fatiando a Terra
+ - title: Procesamiento Geográfico
+ alttext: Un mapa.
+ img: /images/content_images/sc_dom_img/GIS.svg
+ links:
+ - url: https://shapely.readthedocs.io/
+ label: Shapely
+ - url: https://geopandas.org/
+ label: GeoPandas
+ - url: https://python-visualization.github.io/folium
+ label: Folium
+ - title: Arquitectura e Ingeniería
+ alttext: Una placa de desarrollo de microprocesadores.
+ img: /images/content_images/sc_dom_img/robotics.svg
+ links:
+ - url: https://compas.dev/
+ label: COMPAS
+ - url: https://cityenergyanalyst.com/
+ label: City Energy Analyst - Analista de Energía de Ciudad
+ - url: https://nortikin.github.io/sverchok/
+ label: Sverchok
+ datascience:
+ intro: "NumPy es el núcleo de un rico ecosistema de librerías de ciencia de datos. Un flujo de trabajo exploratorio típico de ciencia de datos podría verse así:"
+ image1:
+ - img: /images/content_images/ds-landscape.png
+ alttext: Diagrama de las librerías de Python. Las cinco categorías son "Extraer, Transformar, Cargar", "Exploración de Datos", "Modelado de Datos", "Evaluación de Datos" y "Presentación de Datos".
+ image2:
+ - img: /images/content_images/data-science.png
+ alttext: Diagrama de tres círculos superpuestos. Los círculos se denominan "Matemáticas", "Ciencias de la Computación" y "Conocimientos Especializados". En el centro del diagrama, con los tres círculos superpuestos, hay un área denominada "Ciencia de datos".
+ examples:
+ - text: "Extraer, Transformar, Cargar: [Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor.readthedocs.io/)"
+ - text: "Análisis Exploratorio: [Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
+ - text: "Modelado y evaluación: [scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
+ - text: "Informes en un panel de control: [Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://github.com/voila-dashboards/voila)"
+ content:
+ - text: Para grandes volúmenes de datos, [Dask](https://dask.org) y [Ray](https://ray.io/) están diseñados para escalarse. Las implementaciones estables se basan en el versionado de datos ([DVC](https://dvc.org)), rastreo de experimentos ([MLFlow](https://mlflow.org)), y automatización del flujo de trabajo ([Airflow](https://airflow.apache.org), [Dagster](https://dagster.io) y [Prefect](https://www.prefect.io)).
+ visualization:
+ images:
+ - url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
+ img: /images/content_images/v_matplotlib.png
+ alttext: Un diagrama de flujo hecho en matplotlib
+ - url: https://github.com/yhat/ggpy
+ img: /images/content_images/v_ggpy.png
+ alttext: Un diagrama de dispersión hecho en ggpy
+ - url: https://www.journaldev.com/19692/python-plotly-tutorial
+ img: /images/content_images/v_plotly.png
+ alttext: Un diagrama de caja hecho en plotly
+ - url: https://altair-viz.github.io/gallery/streamgraph.html
+ img: /images/content_images/v_altair.png
+ alttext: Un diagrama de flujo hecho en altair
+ - url: https://seaborn.pydata.org
+ img: /images/content_images/v_seaborn.png
+ alttext: Un gráfico de pares de dos tipos de gráficos, un gráfico de trazado y un gráfico de frecuencias hecho en seaborn
+ - url: https://docs.pyvista.org/examples/index.html
+ img: /images/content_images/v_pyvista.png
+ alttext: Un renderizado de volumen 3D realizado en PyVista.
+ - url: https://napari.org
+ img: /images/content_images/v_napari.png
+ alttext: Una imagen multidimensional hecha en napari.
+ - url: https://vispy.org/gallery/index.html
+ img: /images/content_images/v_vispy.png
+ alttext: Un diagrama de Voronoi hecho en vispy.
+ content:
+ - text: NumPy es un componente esencial en el floreciente [panorama de visualización de Python](https://pyviz.org/overviews/index.html), que incluye [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://github.com/napari/napari), y [PyVista](https://github.com/pyvista/pyvista), por nombrar algunos.
+ - text: El procesamiento acelerado de arreglos de gran tamaño de NumPy permite a los investigadores visualizar conjuntos de datos mucho mayores a los que el Python nativo podría manejar.
diff --git a/content/es/teams/index.md b/content/es/teams/index.md
new file mode 100644
index 00000000..7b5f5a1a
--- /dev/null
+++ b/content/es/teams/index.md
@@ -0,0 +1,39 @@
+---
+title: Equipos de NumPy
+sidebar: false
+---
+
+Somos un equipo internacional en una misión para apoyar a las comunidades científicas y de investigaciones alrededor del mundo, mediante la construcción de software de código abierto de calidad.
+¡[Únete](/contribute)!
+
+### Mantenedores
+
+{{< grid file="maintainers.toml" columns="2 3 4 5" />}}
+
+### Equipo de documentación
+
+{{< grid file="docs-team.toml" columns="2 3 4 5" />}}
+
+### Equipo de la página web
+
+{{< grid file="web-team.toml" columns="2 3 4 5" />}}
+
+### Equipo de clasificación
+
+{{< grid file="triage-team.toml" columns="2 3 4 5" />}}
+
+### Equipo de encuestas
+
+{{< grid file="survey-team.toml" columns="2 3 4 5" />}}
+
+### Equipo de traducciones
+
+{{< grid file="translations-team.toml" columns="2 3 4 5" />}}
+
+### Mantenedores eméritos
+
+{{< grid file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
+
+# Gobernanza
+
+Para la lista de personas del Consejo Directivo, por favor ve [aquí](https://numpy.org/about/).
diff --git a/content/es/user-survey-2020.md b/content/es/user-survey-2020.md
new file mode 100644
index 00000000..dce67b47
--- /dev/null
+++ b/content/es/user-survey-2020.md
@@ -0,0 +1,16 @@
+---
+title: ENCUESTA DE LA COMUNIDAD NUMPY 2020
+sidebar: false
+---
+
+En 2020, el equipo de encuestas de NumPy, en asociación con estudiantes y profesores de un curso de Maestría en Metodología de Encuestas organizado conjuntamente por la Universidad de Michigan y la Universidad de Maryland, llevaron a cabo la primera encuesta oficial de la comunidad NumPy. Más de 1,200 usuarios de 75 países participaron para ayudarnos a proyectar un panorama de la comunidad NumPy y expresaron sus pensamientos sobre el futuro del proyecto.
+
+{{< figure >}}
+{{< /figure >}}
+
+**[Descarga el informe](/surveys/NumPy_usersurvey_2020_report.pdf)** para ver a detalle los resultados de la encuesta.
+
+Para los puntos destacados, echa un vistazo a **[esta infografía](https://github.com/numpy/numpy-surveys/blob/master/images/2020NumPysurveyresults_community_infographic.pdf)**.
+
+¿Listo para una inmersión profunda? Visita **https://numpy.org/user-survey-2020-details/**.
+
diff --git a/content/es/user-surveys.md b/content/es/user-surveys.md
new file mode 100644
index 00000000..48eaf43e
--- /dev/null
+++ b/content/es/user-surveys.md
@@ -0,0 +1,10 @@
+---
+title: ENCUESTAS DE USUARIOS DE NUMPY
+sidebar: false
+---
+
+**2020** El equipo de encuestas de NumPy, en asociación con estudiantes y profesores de la Universidad de Michigan y de la Universidad de Maryland, realizó la primera encuesta oficial de la comunidad de NumPy. Encuentra los resultados de la encuesta [aquí](https://numpy.org/user-survey-2020/).
+
+**2021** Los datos recolectados están siendo analizados actualmente.
+
+Si tienes alguna pregunta o sugerencia sobre las encuestas pasadas o futuras, por favor abre una propuesta [aquí](https://github.com/numpy/numpy-surveys/issues).
diff --git a/content/fa/404.md b/content/fa/404.md
new file mode 100644
index 00000000..7fe5d79a
--- /dev/null
+++ b/content/fa/404.md
@@ -0,0 +1,8 @@
+---
+title: 404
+sidebar: false
+---
+
+Oops! You've reached a dead end.
+
+If you think something should be here, you can [open an issue](https://github.com/numpy/numpy.org/issues) on GitHub.
diff --git a/content/fa/_index.md b/content/fa/_index.md
new file mode 100644
index 00000000..43b25e39
--- /dev/null
+++ b/content/fa/_index.md
@@ -0,0 +1,49 @@
+---
+title: NumPy
+---
+
+{{< grid columns="1 2 2 3" >}}
+
+[[item]]
+type = 'card'
+title = 'Powerful N-dimensional arrays'
+body = '''
+Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today.
+'''
+
+[[item]]
+type = 'card'
+title = 'Numerical computing tools'
+body = '''
+NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.
+'''
+
+[[item]]
+type = 'card'
+title = 'Open source'
+body = '''
+Distributed under a liberal [BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt), NumPy is developed and maintained [publicly on GitHub](https://github.com/numpy/numpy) by a vibrant, responsive, and diverse [community](/community).
+'''
+
+[[item]]
+type = 'card'
+title = 'Interoperable'
+body = '''
+NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.
+'''
+
+[[item]]
+type = 'card'
+title = 'Performant'
+body = '''
+The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code.
+'''
+
+[[item]]
+type = 'card'
+title = 'Easy to use'
+body = '''
+NumPy's high level syntax makes it accessible and productive for programmers from any background or experience level.
+'''
+
+{{< /grid>}}
diff --git a/content/fa/about.md b/content/fa/about.md
new file mode 100644
index 00000000..29e14c04
--- /dev/null
+++ b/content/fa/about.md
@@ -0,0 +1,88 @@
+---
+title: About Us
+sidebar: false
+---
+
+NumPy is an open source project that enables numerical computing with Python. It was created in 2005 building on the early work of the Numeric and Numarray libraries. NumPy will always be 100% open source software and free for all to use. It is released under the liberal terms of the [modified BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt).
+
+NumPy is developed in the open on GitHub, through the consensus of the NumPy and wider scientific Python community. For more information on our governance approach, please see our [Governance Document](https://www.numpy.org/devdocs/dev/governance/index.html).
+
+## Steering Council
+
+The NumPy Steering Council is the project's governing body. Its role is to ensure, through working with and serving the broader NumPy community, the long-term sustainability of the project, both as a software package and community. The NumPy Steering Council currently consists of the following members (in alphabetical order, by last name):
+
+- Sebastian Berg
+- Ralf Gommers
+- Charles Harris
+- Inessa Pawson
+- Matti Picus
+- Stéfan van der Walt
+- Melissa Weber Mendonça
+- Marten van Kerkwijk
+- Nathan Goldbaum
+
+Emeritus:
+
+- Alex Griffing (2015-2017)
+- Allan Haldane (2015-2021)
+- Travis Oliphant (project founder, 2005-2012)
+- Nathaniel Smith (2012-2021)
+- Julian Taylor (2013-2021)
+- Jaime Fernández del Río (2014-2021)
+- Pauli Virtanen (2008-2021)
+- Eric Wieser (2017-2025)
+- Stephan Hoyer (2017-2025)
+
+To contact the NumPy Steering Council, please email numpy-team@googlegroups.com.
+
+## Teams
+
+The NumPy project leadership is actively working on diversifying contribution pathways to the project.
+NumPy currently has the following teams:
+
+- development
+- documentation
+- triage
+- website
+- survey
+- translations
+- sprint mentors
+- optimization
+- funding and grants
+
+See the [Team](/teams) page for more info.
+
+## NumFOCUS Subcommittee
+
+- Charles Harris
+- Ralf Gommers
+- Inessa Pawson
+- Sebastian Berg
+- External member: Thomas Caswell
+
+## Sponsors
+
+{{< sponsors >}}
+
+## Institutional Partners
+
+Institutional Partners are organizations that support the project by employing people that contribute to NumPy as part of their job. Current Institutional Partners include:
+
+- UC Berkeley (Stéfan van der Walt)
+- Quansight (Nathan Goldbaum, Ralf Gommers, Matti Picus, Melissa Weber Mendonça, Mateusz Sokol, Rohit Goswami)
+- NVIDIA (Sebastian Berg)
+
+{{< partners >}}
+
+## Donate
+
+If you have found NumPy useful in your work, research, or company, please consider a donation to the project commensurate with your resources. Any amount helps! All donations will be used strictly to fund the development of NumPy’s open source software, documentation, and community.
+
+NumPy is a Sponsored Project of NumFOCUS, a 501(c)(3) nonprofit charity in the United States. NumFOCUS provides NumPy with fiscal, legal, and administrative support to help ensure the health and sustainability of the project. Visit [numfocus.org](https://numfocus.org) for more information.
+
+Donations to NumPy are managed by [NumFOCUS](https://numfocus.org). For donors in the United States, your gift is tax-deductible to the extent provided by law. As with any donation, you should consult with your tax advisor about your particular tax situation.
+
+NumPy's Steering Council will make the decisions on how to best use any funds received. Technical and infrastructure priorities are documented on the [NumPy Roadmap](https://www.numpy.org/neps/index.html#roadmap).
+
+{{
+
+**Array computing** is based on **arrays** data structures. _Arrays_ are used
+to organize vast amounts of data such that a related set of values can be easily
+sorted, searched, mathematically manipulated, and transformed easily and quickly.
+
+Array computing is _unique_ as it involves operating on the data array _at
+once_. What this means is that any array operation applies to an entire set of
+values in one shot. This vectorized approach provides speed and simplicity by
+enabling programmers to code and operate on aggregates of data, without having
+to use loops of individual scalar operations.
diff --git a/content/fa/case-studies/blackhole-image.md b/content/fa/case-studies/blackhole-image.md
new file mode 100644
index 00000000..ca6f4351
--- /dev/null
+++ b/content/fa/case-studies/blackhole-image.md
@@ -0,0 +1,127 @@
+---
+title: "Case Study: First Image of a Black Hole"
+sidebar: false
+---
+
+{{< figure
+ src='/images/content_images/cs/blackhole.jpg'
+ title='Black Hole M87'
+ alt='black hole image'
+ attribution='(Image Credits: Event Horizon Telescope Collaboration)'
+ attributionlink="https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg"
+>}}
+
+{{< blockquote
+ cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
+ by="Katie Bouman, _Assistant Professor, Computing & Mathematical Sciences, Caltech_"
+>}}
+{{< /blockquote >}}
+
+## A telescope the size of the earth
+
+The [Event Horizon telescope (EHT)](https://eventhorizontelescope.org) is an
+array of eight ground-based radio telescopes forming a computational telescope
+the size of the earth, studing the universe with unprecedented
+sensitivity and resolution. The huge virtual telescope, which uses a technique
+called very-long-baseline interferometry (VLBI), has an angular resolution of
+[20 micro-arcseconds][resolution] — enough to read a newspaper in New York
+from a sidewalk café in Paris!
+
+[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
+
+### Key Goals and Results
+
+- **A New View of the Universe:**
+ The groundwork for the EHT's groundbreaking image had been laid 100 years
+ earlier when [Sir Arthur Eddington][eddington] yielded the first
+ observational support of Einstein's theory of general relativity.
+
+- **The Black Hole:** EHT was trained on a supermassive black hole
+ approximately 55 million light-years from Earth, lying at the center
+ of the galaxy Messier 87 (M87) in the Virgo galaxy cluster. Its mass is
+ 6.5 billion times the Sun's. It had been studied for
+ [over 100 years](https://www.jpl.nasa.gov/news/news.php?feature=7385), but never before
+ had a black hole been visually observed.
+
+- **Comparing Observations to Theory:** From Einstein’s general theory of
+ relativity, scientists expected to find a shadow-like region caused by
+ gravitational bending and capture of light. Scientists could
+ use it to measure the black hole's enormous mass.
+
+[eddington]: https://en.wikipedia.org/wiki/Eddington_experiment
+
+### The Challenges
+
+- **Computational scale**
+
+ EHT poses massive data-processing challenges, including rapid atmospheric
+ phase fluctuations, large recording bandwidth, and telescopes that are
+ widely dissimilar and geographically dispersed.
+
+- **Too much information**
+
+ Each day EHT generates over 350 terabytes of observations, stored on
+ helium-filled hard drives. Reducing the volume and complexity of this much
+ data is enormously difficult.
+
+- **Into the unknown**
+
+ When the goal is to see something never before seen, how can scientists be
+ confident the image is correct?
+
+{{< figure >}}
+{{< /figure >}}
+
+## NumPy’s Role
+
+What if there's a problem with the data? Or perhaps an algorithm relies too
+heavily on a particular assumption. Will the image change drastically if a
+single parameter is changed?
+
+The EHT collaboration met these challenges by having independent teams
+evaluate the data, using both established and cutting-edge image reconstruction
+techniques. When results proved consistent, they were combined to yield the
+first-of-a-kind image of the black hole.
+
+Their work illustrates the role the scientific Python ecosystem plays in
+advancing science through collaborative data analysis.
+
+{{< figure >}}
+{{< /figure >}}
+
+For example, the [`eht-imaging`][ehtim] Python package provides tools for
+simulating and performing image reconstruction on VLBI data.
+NumPy is at the core of array data processing used
+in this package, as illustrated by the partial software
+dependency chart below.
+
+{{< figure >}}
+{{< /figure >}}
+
+[ehtim]: https://github.com/achael/eht-imaging
+
+Besides NumPy, many other packages, such as
+[SciPy](https://scipy.org) and [Pandas](https://pandas.pydata.org), are part of the
+data processing pipeline for imaging the black hole.
+The standard astronomical file formats and time/coordinate transformations
+were handled by [Astropy][astropy], while [Matplotlib][mpl] was used
+in visualizing data throughout the analysis pipeline, including the generation
+of the final image of the black hole.
+
+[astropy]: https://www.astropy.org/
+[mpl]: https://matplotlib.org/
+
+## Summary
+
+The efficient and adaptable n-dimensional array that is NumPy's central feature
+enabled researchers to manipulate large numerical datasets, providing a
+foundation for the first-ever image of a black hole. A landmark moment in
+science, it gives stunning visual evidence of Einstein’s theory. The
+achievement encompasses not only technological breakthroughs but also
+international collaboration among over 200 scientists and some of the world's
+best radio observatories. Innovative algorithms and data processing
+techniques, improving upon existing astronomical models, helped unfold a
+mystery of the universe.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/fa/case-studies/cricket-analytics.md b/content/fa/case-studies/cricket-analytics.md
new file mode 100644
index 00000000..ff64c20a
--- /dev/null
+++ b/content/fa/case-studies/cricket-analytics.md
@@ -0,0 +1,146 @@
+---
+title: "Case Study: Cricket Analytics, the game changer!"
+sidebar: false
+---
+
+{{< figure
+ src='/images/content_images/cs/ipl-stadium.png'
+ >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="https://www.scoopwhoop.com/sports/ms-dhoni/"
+ by="M S Dhoni, _International Cricket Player, ex-captain, Indian Team, plays for Chennai Super Kings in IPL_"
+>}}
+{{< /blockquote >}}
+
+## About Cricket
+
+It would be an understatement to state that Indians love cricket. The game is
+played in just about every nook and cranny of India, rural or urban, popular
+with the young and the old alike, connecting billions in India unlike any other sport.
+Cricket enjoys lots of media attention. There is a significant amount of
+[money](https://www.statista.com/topics/4543/indian-premier-league-ipl/) and
+fame at stake. Over the last several years, technology has literally been a game
+changer. Audiences are spoilt for choice with streaming media, tournaments,
+affordable access to mobile based live cricket watching, and more.
+
+The Indian Premier League (IPL) is a professional Twenty20 cricket
+league, founded in 2008. It is one of the most attended cricketing events in
+the world, valued at [$6.7 billion](https://en.wikipedia.org/wiki/Indian_Premier_League)
+in 2019.
+
+Cricket is a game of numbers - the runs scored by a batsman, the wickets taken
+by a bowler, the matches won by a cricket team, the number of times a batsman
+responds in a certain way to a kind of bowling attack, etc. The capability to
+dig into cricketing numbers for both improving performance and studying
+the business opportunities, overall market, and economics of cricket via powerful
+analytics tools, powered by numerical computing software such as NumPy, is a big
+deal. Cricket analytics provides interesting insights into the game and
+predictive intelligence regarding game outcomes.
+
+Today, there are rich and almost infinite troves of cricket game records and
+statistics available, e.g., ESPN
+cricinfo and
+[cricsheet](https://cricsheet.org). These and several such cricket databases
+have been used for cricket
+analysis
+using the latest machine learning and predictive modelling algorithms.
+Media and entertainment platforms along with professional sports bodies
+associated with the game use technology and analytics for determining key
+metrics for improving match winning chances:
+
+- batting performance moving average,
+- score forecasting,
+- gaining insights into fitness and performance of a player against different opposition,
+- player contribution to wins and losses for making strategic decisions on team composition
+
+{{< figure >}}
+{{< /figure >}}
+
+### Key Data Analytics Objectives
+
+- Sports data analytics are used not only in cricket but many other
+ sports for
+ improving the overall team performance and maximizing winning chances.
+- Real-time data analytics can help in gaining insights even during the game
+ for changing tactics by the team and by associated businesses for economic
+ benefits and growth.
+- Besides historical analysis, predictive models are
+ harnessed to determine the possible match outcomes that require significant
+ number crunching and data science know-how, visualization tools and capability
+ to include newer observations in the analysis.
+
+{{< figure >}}
+{{< /figure >}}
+
+### The Challenges
+
+- **Data Cleaning and preprocessing**
+
+ IPL has expanded cricket beyond the classic test match format to a much
+ larger scale. The number of matches played every season across various
+ formats has increased and so has the data, the algorithms, newer sports data
+ analysis technologies and simulation models. Cricket data analysis requires
+ field mapping, player tracking, ball tracking, player shot analysis, and
+ several other aspects involved in how the ball is delivered, its angle, spin,
+ velocity, and trajectory. All these factors together have increased the
+ complexity of data cleaning and preprocessing.
+
+- **Dynamic Modeling**
+
+ In cricket, just like any other sport,
+ there can be a large number of variables related to tracking various numbers
+ of players on the field, their attributes, the ball, and several possibilities
+ of potential actions. The complexity of data analytics and modeling is
+ directly proportional to the kind of predictive questions that are put forth
+ during analysis and are highly dependent on data representation and the
+ model. Things get even more challenging in terms of computation, data
+ comparisons when dynamic cricket play predictions are sought such as what
+ would have happened if the batsman had hit the ball at a different angle or
+ velocity.
+
+- **Predictive Analytics Complexity**
+
+ Much of the decision making in cricket is based on questions such as "how
+ often does a batsman play a certain kind of shot if the ball delivery is of a
+ particular type", or "how does a bowler change his line and length if the
+ batsman responds to his delivery in a certain way".
+ This kind of predictive analytics query requires highly granular dataset
+ availability and the capability to synthesize data and create generative
+ models that are highly accurate.
+
+## NumPy’s Role in Cricket Analytics
+
+Sports Analytics is a thriving field. Many researchers and companies
+[use NumPy](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx)
+and other PyData packages like Scikit-learn, SciPy, Matplotlib, and Jupyter,
+besides using the latest machine learning and AI techniques. NumPy has been used
+for various kinds of cricket related sporting analytics such as:
+
+- **Statistical Analysis:** NumPy's numerical capabilities help estimate the
+ statistical significance of observational data or match events in the context
+ of various player and game tactics, estimating the game outcome by comparison
+ with a generative or static model.
+ [Causal analysis](https://amplitude.com/blog/2017/01/19/causation-correlation)
+ and [big data approaches](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996805/)
+ are used for tactical analysis.
+
+- **Data Visualization:** Data graphing and visualization provide useful insights into relationship between various datasets.
+
+## Summary
+
+Sports Analytics is a game changer when it comes to how professional games are
+played, especially how strategic decision making happens, which until recently
+was primarily done based on “gut feeling" or adherence to past traditions. NumPy
+forms a solid foundation for a large set of Python packages which provide higher
+level functions related to data analytics, machine learning, and AI algorithms.
+These packages are widely deployed to gain real-time insights that help in
+decision making for game-changing outcomes, both on field as well as to draw
+inferences and drive business around the game of cricket. Finding out the
+hidden parameters, patterns, and attributes that lead to the outcome of a
+cricket match helps the stakeholders to take notice of game insights that are
+otherwise hidden in numbers and statistics.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/fa/case-studies/deeplabcut-dnn.md b/content/fa/case-studies/deeplabcut-dnn.md
new file mode 100644
index 00000000..60b48522
--- /dev/null
+++ b/content/fa/case-studies/deeplabcut-dnn.md
@@ -0,0 +1,154 @@
+---
+title: "Case Study: DeepLabCut 3D Pose Estimation"
+sidebar: false
+---
+
+{{< figure >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="https://news.harvard.edu/gazette/story/newsplus/harvard-researchers-awarded-czi-open-source-award/"
+ by="Alexander Mathis, _Assistant Professor, École polytechnique fédérale de Lausanne_ ([EPFL](https://www.epfl.ch/en/))"
+>}}
+{{< /blockquote >}}
+
+## About DeepLabCut
+
+[DeepLabCut](https://github.com/DeepLabCut/DeepLabCut) is an open source toolbox that empowers researchers at hundreds of institutions worldwide to track behaviour of laboratory animals, with very little training data, at human-level accuracy. With DeepLabCut technology, scientists can delve deeper into the scientific understanding of motor control and behavior across animal species and timescales.
+
+Several areas of research, including neuroscience, medicine, and biomechanics, use data from tracking animal movement. DeepLabCut helps in understanding what humans and other animals are doing by parsing actions that have been recorded on film. Using automation for laborious tasks of tagging and monitoring, along with deep neural network based data analysis, DeepLabCut makes scientific studies involving observing animals, such as primates, mice, fish, flies etc., much faster and more accurate.
+
+{{< figure >}}
+{{< /figure >}}
+
+DeepLabCut's non-invasive behavioral tracking of animals by extracting the poses of animals is crucial for scientific pursuits in domains such as biomechanics, genetics, ethology & neuroscience. Measuring animal poses non-invasively from video - without markers - in dynamically changing backgrounds is computationally challenging, both technically as well as in terms of resource needs and training data required.
+
+DeepLabCut allows researchers to estimate the pose of the subject, efficiently enabling them to quantify the behavior through a Python based software toolkit. With DeepLabCut, researchers can identify distinct frames from videos, digitally label specific body parts in a few dozen frames with a tailored GUI, and then the deep learning based pose estimation architectures in DeepLabCut learn how to pick out those same features in the rest of the video and in other similar videos of animals. It works across species of animals, from common laboratory animals such as flies and mice to more unusual animals like [cheetahs][cheetah-movement].
+
+[cheetah-movement]: https://www.technologynetworks.com/neuroscience/articles/interview-a-deeper-cut-into-behavior-with-mackenzie-mathis-327618
+
+DeepLabCut uses a principle called [transfer learning](https://arxiv.org/pdf/1909.11229), which greatly reduces the amount of training data required and speeds up the convergence of the training period. Depending on the needs, users can pick different network architectures that provide faster inference (e.g. MobileNetV2), which can also be combined with real-time experimental feedback. DeepLabCut originally used the feature detectors from a top-performing human pose estimation architecture, called [DeeperCut](https://arxiv.org/abs/1605.03170), which inspired the name. The package now has been significantly changed to include additional architectures, augmentation methods, and a full front-end user experience. Furthermore, to support large-scale biological experiments DeepLabCut provides active learning capabilities so that users can increase the training set over time to cover edge cases and make their pose estimation algorithm robust within the specific context.
+
+Recently, the [DeepLabCut model zoo](https://deeplabcut.github.io/DeepLabCut/docs/ModelZoo.html) was introduced, which provides pre-trained models for various species and experimental conditions from facial analysis in primates to dog posture. This can be run for instance in the cloud without any labeling of new data, or neural network training, and no programming experience is necessary.
+
+### Key Goals and Results
+
+- **Automation of animal pose analysis for scientific studies:**
+
+ The primary objective of DeepLabCut technology is to measure and track posture
+ of animals in a diverse settings. This data can be used, for example, in
+ neuroscience studies to understand how the brain controls movement, or to
+ elucidate how animals socially interact. Researchers have observed a
+ [tenfold performance boost](https://www.biorxiv.org/content/10.1101/457242v1)
+ with DeepLabCut. Poses can be inferred offline at up to 1200 frames per second
+ (FPS).
+
+- **Creation of an easy-to-use Python toolkit for pose estimation:**
+
+ DeepLabCut wanted to share their animal pose-estimation technology in the form
+ of an easy to use tool that can be adopted by researchers easily. So they have
+ created a complete, easy-to-use Python toolbox with project management features
+ as well. These enable not only automation of pose-estimation but also
+ managing the project end-to-end by helping the DeepLabCut Toolkit user right
+ from the dataset collection stage to creating shareable and reusable analysis
+ pipelines.
+
+ Their [toolkit][DLCToolkit] is now available as open source.
+
+ A typical DeepLabCut Workflow includes:
+
+ - creation and refining of training sets via active learning
+ - creation of tailored neural networks for specific animals and scenarios
+ - code for large-scale inference on videos
+ - draw inferences using integrated visualization tools
+
+{{< figure >}}
+{{< /figure >}}
+
+[DLCToolkit]: https://github.com/DeepLabCut/DeepLabCut
+
+### The Challenges
+
+- **Speed**
+
+ Fast processing of animal behavior videos in order to measure their behavior
+ and at the same time make scientific experiments more efficient, accurate.
+ Extracting detailed animal poses for laboratory experiments, without
+ markers, in dynamically changing backgrounds, can be challenging, both
+ technically as well as in terms of resource needs and training data required.
+ Coming up with a tool that is easy to use without the need for skills such
+ as computer vision expertise that enables scientists to do research in more
+ real-world contexts, is a non-trivial problem to solve.
+
+- **Combinatorics**
+
+ Combinatorics involves assembly and integration of movement of multiple
+ limbs into individual animal behavior. Assembling keypoints and their
+ connections into individual animal movements and linking them across time
+ is a complex process that requires heavy-duty numerical analysis, especially
+ in case of multi-animal movement tracking in experiment videos.
+
+- **Data Processing**
+
+ Last but not the least, array manipulation - processing large stacks of
+ arrays corresponding to various images, target tensors and keypoints is
+ fairly challenging.
+
+{{< figure >}}
+{{< /figure >}}
+
+## NumPy's Role in meeting Pose Estimation Challenges
+
+NumPy addresses DeepLabCut technology's core need of numerical computations at
+high speed for behavioural analytics. Besides NumPy, DeepLabCut employs
+various Python software that utilize NumPy at their core, such as
+[SciPy](https://www.scipy.org), [Pandas](https://pandas.pydata.org),
+[matplotlib](https://matplotlib.org),
+[Tensorpack](https://github.com/tensorpack/tensorpack),
+[imgaug](https://github.com/aleju/imgaug),
+[scikit-learn](https://scikit-learn.org/stable/),
+[scikit-image](https://scikit-image.org) and
+[Tensorflow](https://www.tensorflow.org).
+
+The following features of NumPy played a key role in addressing the image
+processing, combinatorics requirements and need for fast computation in
+DeepLabCut pose estimation algorithms:
+
+- Vectorization
+- Masked Array Operations
+- Linear Algebra
+- Random Sampling
+- Reshaping of large arrays
+
+DeepLabCut utilizes NumPy’s array capabilities throughout the workflow offered
+by the toolkit. In particular, NumPy is used for sampling distinct frames for
+human annotation labeling, and for writing, editing and processing annotation
+data. Within TensorFlow the neural network is trained by DeepLabCut technology
+over thousands of iterations to predict the ground truth annotations from
+frames. For this purpose, target densities (scoremaps) are created to cast pose
+estimation as a image-to-image translation problem. To make the neural networks
+robust, data augmentation is employed, which requires the calculation of target
+scoremaps subject to various geometric and image processing steps. To make
+training fast, NumPy’s vectorization capabilities are leveraged. For inference,
+the most likely predictions from target scoremaps need to extracted and one
+needs to efficiently “link predictions to assemble individual animals”.
+
+{{< figure >}}
+{{< /figure >}}
+
+## Summary
+
+Observing and efficiently describing behavior is a core tenant of modern
+ethology, neuroscience, medicine, and technology.
+[DeepLabCut](https://static1.squarespace.com/static/57f6d51c9f74566f55ecf271/t/5eab5ff7999bf94756b27481/1588289532243/NathMathis2019.pdf)
+allows researchers to estimate the pose of the subject, efficiently enabling
+them to quantify the behavior. With only a small set of training images,
+the DeepLabCut Python toolbox allows training a neural network to within human
+level labeling accuracy, thus expanding its application to not only behavior
+analysis in the laboratory, but to potentially also in sports, gait analysis,
+medicine and rehabilitation studies. Complex combinatorics, data processing
+challenges faced by DeepLabCut algorithms are addressed through the use of
+NumPy's array manipulation capabilities.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/fa/case-studies/gw-discov.md b/content/fa/case-studies/gw-discov.md
new file mode 100644
index 00000000..2ff32510
--- /dev/null
+++ b/content/fa/case-studies/gw-discov.md
@@ -0,0 +1,144 @@
+---
+title: "Case Study: Discovery of Gravitational Waves"
+sidebar: false
+---
+
+{{< figure >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
+ by="David Shoemaker, _LIGO Scientific Collaboration_" >}}
+{{< /blockquote >}}
+
+## About [Gravitational Waves](https://www.nationalgeographic.com/news/2017/10/what-are-gravitational-waves-ligo-astronomy-science/) and [LIGO](https://www.ligo.caltech.edu)
+
+Gravitational waves are ripples in the fabric of space and time, generated by
+cataclysmic events in the universe such as collision and merging of two black
+holes or coalescing binary stars or supernovae. Observing GW can not only help
+in studying gravity but also in understanding some of the obscure phenomena in
+the distant universe and its impact.
+
+The [Laser Interferometer Gravitational-Wave Observatory (LIGO)](https://www.ligo.caltech.edu)
+was designed to open the field of gravitational-wave astrophysics through the
+direct detection of gravitational waves predicted by Einstein’s General Theory
+of Relativity. It comprises two widely separated interferometers within the
+United States — one in Hanford, Washington and the other in Livingston,
+Louisiana — operated in unison to detect gravitational waves. Each of them has
+multi-kilometer-scale gravitational wave detectors that use laser
+interferometry. The LIGO Scientific Collaboration (LSC), is a group of more
+than 1000 scientists from universities around the United States and in 14
+other countries supported by more than 90 universities and research institutes;
+approximately 250 students actively contributing to the collaboration. The new
+LIGO discovery is the first observation of gravitational waves themselves,
+made by measuring the tiny disturbances the waves make to space and time as
+they pass through the earth. It has opened up new astrophysical frontiers
+that explore the warped side of the universe—objects and phenomena that are
+made from warped spacetime.
+
+### Key Objectives
+
+- Though its [mission](https://www.ligo.caltech.edu/page/what-is-ligo) is to
+ detect gravitational waves from some of the most violent and energetic
+ processes in the Universe, the data LIGO collects may have far-reaching
+ effects on many areas of physics including gravitation, relativity,
+ astrophysics, cosmology, particle physics, and nuclear physics.
+- Crunch observed data via numerical relativity computations that involves
+ complex maths in order to discern signal from noise, filter out relevant
+ signal and statistically estimate significance of observed data
+- Data visualization so that the binary / numerical results can be
+ comprehended.
+
+### The Challenges
+
+- **Computation**
+
+ Gravitational Waves are hard to detect as they produce a very small effect
+ and have tiny interaction with matter. Processing and analyzing all of
+ LIGO's data requires a vast computing infrastructure.After taking care of
+ noise, which is billions of times of the signal, there is still very
+ complex relativity equations and huge amounts of data which present a
+ computational challenge:
+ [O(10^7) CPU hrs needed for binary merger analyses](https://youtu.be/7mcHknWWzNI)
+ spread on 6 dedicated LIGO clusters
+
+- **Data Deluge**
+
+ As observational devices become more sensitive and reliable, the challenges
+ posed by data deluge and finding a needle in a haystack rise multi-fold.
+ LIGO generates terabytes of data every day! Making sense of this data
+ requires an enormous effort for each and every detection. For example, the
+ signals being collected by LIGO must be matched by supercomputers against
+ hundreds of thousands of templates of possible gravitational-wave signatures.
+
+- **Visualization**
+
+ Once the obstacles related to understanding Einstein’s equations well
+ enough to solve them using supercomputers are taken care of, the next big
+ challenge was making data comprehensible to the human brain. Simulation
+ modeling as well as signal detection requires effective visualization
+ techniques. Visualization also plays a role in lending more credibility
+ to numerical relativity in the eyes of pure science aficionados, who did
+ not give enough importance to numerical relativity until imaging and
+ simulations made it easier to comprehend results for a larger audience.
+ Speed of complex computations and rendering, re-rendering images and
+ simulations using latest experimental inputs and insights can be a time
+ consuming activity that challenges researchers in this domain.
+
+{{< figure >}}
+{{< /figure >}}
+
+## NumPy’s Role in the Detection of Gravitational Waves
+
+Gravitational waves emitted from the merger cannot be computed using any
+technique except brute force numerical relativity using supercomputers.
+The amount of data LIGO collects is as incomprehensibly large as gravitational
+wave signals are small.
+
+NumPy, the standard numerical analysis package for Python, was utilized by
+the software used for various tasks performed during the GW detection project
+at LIGO. NumPy helped in solving complex maths and data manipulation at high
+speed. Here are some examples:
+
+- [Signal Processing](https://www.uv.es/virgogroup/Denoising_ROF.html): Glitch
+ detection, [Noise identification and Data Characterization](https://ep2016.europython.eu/media/conference/slides/pyhton-in-gravitational-waves-research-communities.pdf)
+ (NumPy, scikit-learn, scipy, matplotlib, pandas, pyCharm)
+- Data retrieval: Deciding which data can be analyzed, figuring out whether it
+ contains a signal - needle in a haystack
+- Statistical analysis: estimate the statistical significance of observational
+ data, estimating the signal parameters (e.g. masses of stars, spin velocity,
+ and distance) by comparison with a model.
+- Visualization of data
+ - Time series
+ - Spectrograms
+- Compute Correlations
+- Key [Software](https://github.com/lscsoft) developed in GW data analysis
+ such as [GwPy](https://gwpy.github.io/docs/stable/overview.html) and
+ [PyCBC](https://pycbc.org) uses NumPy and AstroPy under the hood for
+ providing object based interfaces to utilities, tools, and methods for
+ studying data from gravitational-wave detectors.
+
+{{< figure >}}
+{{< /figure >}}
+
+----
+
+{{< figure >}}
+{{< /figure >}}
+
+## Summary
+
+GW detection has enabled researchers to discover entirely unexpected phenomena
+while providing new insight into many of the most profound astrophysical
+phenomena known. Number crunching and data visualization is a crucial step
+that helps scientists gain insights into data gathered from the scientific
+observations and understand the results. The computations are complex and
+cannot be comprehended by humans unless it is visualized using computer
+simulations that are fed with the real observed data and analysis. NumPy
+along with other Python packages such as matplotlib, pandas, and scikit-learn
+is [enabling researchers](https://www.gw-openscience.org/events/GW150914/) to
+answer complex questions and discover new horizons in our understanding of the
+universe.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/fa/citing-numpy.md b/content/fa/citing-numpy.md
new file mode 100644
index 00000000..60925013
--- /dev/null
+++ b/content/fa/citing-numpy.md
@@ -0,0 +1,35 @@
+---
+title: Citing NumPy
+sidebar: false
+---
+
+If NumPy has been significant in your research, and you would like to acknowledge the project in your academic publication, we suggest citing the following paper:
+
+- Harris, C.R., Millman, K.J., van der Walt, S.J. et al. _Array programming with NumPy_. Nature 585, 357–362 (2020). DOI: [10.1038/s41586-020-2649-2](https://doi.org/10.1038/s41586-020-2649-2). ([Publisher link](https://www.nature.com/articles/s41586-020-2649-2)).
+
+_In BibTeX format:_
+
+ ```
+ @Article{ harris2020array,
+ title = {Array programming with {NumPy}},
+ author = {Charles R. Harris and K. Jarrod Millman and St{\'{e}}fan J.
+ van der Walt and Ralf Gommers and Pauli Virtanen and David
+ Cournapeau and Eric Wieser and Julian Taylor and Sebastian
+ Berg and Nathaniel J. Smith and Robert Kern and Matti Picus
+ and Stephan Hoyer and Marten H. van Kerkwijk and Matthew
+ Brett and Allan Haldane and Jaime Fern{\'{a}}ndez del
+ R{\'{i}}o and Mark Wiebe and Pearu Peterson and Pierre
+ G{\'{e}}rard-Marchant and Kevin Sheppard and Tyler Reddy and
+ Warren Weckesser and Hameer Abbasi and Christoph Gohlke and
+ Travis E. Oliphant},
+ year = {2020},
+ month = sep,
+ journal = {Nature},
+ volume = {585},
+ number = {7825},
+ pages = {357--362},
+ doi = {10.1038/s41586-020-2649-2},
+ publisher = {Springer Science and Business Media {LLC}},
+ url = {https://doi.org/10.1038/s41586-020-2649-2}
+ }
+ ```
diff --git a/content/fa/code-of-conduct.md b/content/fa/code-of-conduct.md
new file mode 100644
index 00000000..d5819b62
--- /dev/null
+++ b/content/fa/code-of-conduct.md
@@ -0,0 +1,83 @@
+---
+title: NumPy Code of Conduct
+sidebar: false
+aliases:
+ - /conduct.html
+---
+
+### Introduction
+
+This Code of Conduct applies to all spaces managed by the NumPy project, including all public and private mailing lists, issue trackers, wikis, blogs, X, and any other communication channel used by our community. The NumPy project does not organise in-person events, however events related to our community should have a code of conduct similar in spirit to this one.
+
+This Code of Conduct should be honored by everyone who participates in the NumPy community formally or informally, or claims any affiliation with the project, in any project-related activities and especially when representing the project, in any role.
+
+This code is not exhaustive or complete. It serves to distill our common understanding of a collaborative, shared environment and goals. Please try to follow this code in spirit as much as in letter, to create a friendly and productive environment that enriches the surrounding community.
+
+### Specific Guidelines
+
+We strive to:
+
+1. Be open. We invite anyone to participate in our community. We prefer to use public methods of communication for project-related messages, unless discussing something sensitive. This applies to messages for help or project-related support, too; not only is a public support request much more likely to result in an answer to a question, it also ensures that any inadvertent mistakes in answering are more easily detected and corrected.
+2. Be empathetic, welcoming, friendly, and patient. We work together to resolve conflict, and assume good intentions. We may all experience some frustration from time to time, but we do not allow frustration to turn into a personal attack. A community where people feel uncomfortable or threatened is not a productive one.
+3. Be collaborative. Our work will be used by other people, and in turn we will depend on the work of others. When we make something for the benefit of the project, we are willing to explain to others how it works, so that they can build on the work to make it even better. Any decision we make will affect users and colleagues, and we take those consequences seriously when making decisions.
+4. Be inquisitive. Nobody knows everything! Asking questions early avoids many problems later, so we encourage questions, although we may direct them to the appropriate forum. We will try hard to be responsive and helpful.
+5. Be careful in the words that we choose. We are careful and respectful in our communication, and we take responsibility for our own speech. Be kind to others. Do not insult or put down other participants. We will not accept harassment or other exclusionary behaviour, such as:
+ - Violent threats or language directed against another person.
+ - Sexist, racist, or otherwise discriminatory jokes and language.
+ - Posting sexually explicit or violent material.
+ - Posting (or threatening to post) other people’s personally identifying information (“doxing”).
+ - Sharing private content, such as emails sent privately or non-publicly, or unlogged forums such as IRC channel history, without the sender’s consent.
+ - Personal insults, especially those using racist or sexist terms.
+ - Unwelcome sexual attention.
+ - Excessive profanity. Please avoid swearwords; people differ greatly in their sensitivity to swearing.
+ - Repeated harassment of others. In general, if someone asks you to stop, then stop.
+ - Advocating for, or encouraging, any of the above behaviour.
+
+### Diversity Statement
+
+The NumPy project welcomes and encourages participation by everyone. We are committed to being a community that everyone enjoys being part of. Although we may not always be able to accommodate each individual’s preferences, we try our best to treat everyone kindly.
+
+No matter how you identify yourself or how others perceive you: we welcome you. Though no list can hope to be comprehensive, we explicitly honour diversity in: age, culture, ethnicity, genotype, gender identity or expression, language, national origin, neurotype, phenotype, political beliefs, profession, race, religion, sexual orientation, socioeconomic status, subculture and technical ability, to the extent that these do not conflict with this code of conduct.
+
+Though we welcome people fluent in all languages, NumPy development is conducted in English.
+
+Standards for behaviour in the NumPy community are detailed in the Code of Conduct above. Participants in our community should uphold these standards in all their interactions and help others to do so as well (see next section).
+
+### Reporting Guidelines
+
+We know that it is painfully common for internet communication to start at or devolve into obvious and flagrant abuse. We also recognize that sometimes people may have a bad day, or be unaware of some of the guidelines in this Code of Conduct. Please keep this in mind when deciding on how to respond to a breach of this Code.
+
+For clearly intentional breaches, report those to the Code of Conduct Committee (see below). For possibly unintentional breaches, you may reply to the person and point out this code of conduct (either in public or in private, whatever is most appropriate). If you would prefer not to do that, please feel free to report to the Code of Conduct Committee directly, or ask the Committee for advice, in confidence.
+
+You can report issues to the NumPy Code of Conduct Committee at numpy-conduct@googlegroups.com.
+
+Currently, the Committee consists of:
+
+- Stefan van der Walt
+- Melissa Weber Mendonça
+- Rohit Goswami
+
+If your report involves any members of the Committee, or if they feel they have a conflict of interest in handling it, then they will recuse themselves from considering your report. Alternatively, if for any reason you feel uncomfortable making a report to the Committee, then you can also contact senior NumFOCUS staff at [conduct@numfocus.org](https://numfocus.org/code-of-conduct#persons-responsible).
+
+### Incident reporting resolution & Code of Conduct enforcement
+
+_This section summarizes the most important points, more details can be found in_ [NumPy Code of Conduct - How to follow up on a report](report-handling-manual).
+
+We will investigate and respond to all complaints. The NumPy Code of Conduct Committee and the NumPy Steering Committee (if involved) will protect the identity of the reporter, and treat the content of complaints as confidential (unless the reporter agrees otherwise).
+
+In case of severe and obvious breaches, e.g. personal threat or violent, sexist or racist language, we will immediately disconnect the originator from NumPy communication channels; please see the manual for details.
+
+In cases not involving clear severe and obvious breaches of this Code of Conduct the process for acting on any received Code of Conduct violation report will be:
+
+1. acknowledge report is received,
+2. reasonable discussion/feedback,
+3. mediation (if feedback didn’t help, and only if both reporter and reportee agree to this),
+4. enforcement via transparent decision (see [Resolutions](report-handling-manual/#resolutions)) by the Code of Conduct Committee.
+
+The Committee will respond to any report as soon as possible, and at most within 72 hours.
+
+### Endnotes
+
+We are thankful to the groups behind the following documents, from which we drew content and inspiration:
+
+- [The SciPy Code of Conduct](https://docs.scipy.org/doc/scipy/dev/conduct/code_of_conduct.html)
diff --git a/content/fa/community.md b/content/fa/community.md
new file mode 100644
index 00000000..6b0e5de4
--- /dev/null
+++ b/content/fa/community.md
@@ -0,0 +1,72 @@
+---
+title: Community
+sidebar: false
+---
+
+NumPy is a community-driven open source project developed by a diverse group of [contributors](/teams/). The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the [NumPy Code of Conduct](/code-of-conduct) for guidance on how to interact with others in a way that makes the community thrive.
+
+We offer several communication channels to learn, share your knowledge and connect with others within the NumPy community.
+
+## Participate online
+
+The following are ways to engage directly with the NumPy project and community.
+_Please note that we encourage users and community members to support each other
+for usage questions - see [Get Help](/gethelp)._
+
+### [NumPy mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion)
+
+This list is the main forum for longer-form discussions, like adding new features to NumPy, making changes to the NumPy Roadmap, and all kinds of project-wide decision making.
+Announcements about NumPy, such as for releases, developer meetings, sprints or
+conference talks are also made on this list.
+
+On this list please use bottom posting, reply to the list (rather than to
+another sender), and don't reply to digests. A searchable archive of this list
+is available [here](https://mail.python.org/archives/list/numpy-discussion@python.org/).
+
+***
+
+### [GitHub issue tracker](https://github.com/numpy/numpy/issues)
+
+- For bug reports (e.g. "`np.arange(3).shape` returns `(5,)`, when it should return `(3,)`");
+- documentation issues (e.g. "I found this section unclear");
+- and feature requests (e.g. "I would like to have a new interpolation method in `np.percentile`").
+
+_Please note that GitHub is not the right place to report a security vulnerability. If you think you have found a security vulnerability in NumPy, please report it [here](https://tidelift.com/docs/security)._
+
+***
+
+### [Slack](https://numpy-team.slack.com)
+
+A real-time chat room to ask questions about _contributing_ to NumPy.
+This is a private space, specifically meant for people who are hesitant to
+bring up their questions or ideas on a large public mailing list or GitHub.
+Please see
+[here](https://numpy.org/devdocs/dev/index.html#contributing-to-numpy) for more
+details and how to get an invite.
+
+## Study Groups and Meetups
+
+If you would like to find a local meetup or study group to learn more about NumPy and the wider ecosystem of Python packages for data science and scientific computing, we recommend exploring the [PyData meetups](https://www.meetup.com/pro/pydata/) (150+ meetups, 100,000+ members).
+
+NumPy also organizes in-person sprints for its team and interested contributors occasionally. These are typically planned several months in advance and will be announced on the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion).
+
+## Conferences
+
+The NumPy project doesn't organize its own conferences. The conferences that have traditionally been most popular with NumPy maintainers, contributors and users are the SciPy and PyData conference series:
+
+- SciPy US
+- EuroSciPy
+- SciPy Latin America
+- SciPy India
+- SciPyData Japan
+- PyData conferences (15-20 events a year spread over many countries)
+
+Many of these conferences include tutorial days that cover NumPy and/or sprints where you can learn how to contribute to NumPy or related open source projects.
+
+## Join the NumPy community
+
+To thrive, the NumPy project needs your expertise and enthusiasm. Not a coder? Not a problem! There are many ways to contribute to NumPy.
+
+If you are interested in becoming a NumPy contributor (yay!) we recommend checking out our [Contribute](/contribute) page.
+
+Also, feel free to stop by and say hi at one of our community meetings. To keep track of them, check out our events calendar [here](https://scientific-python.org/calendars/).
diff --git a/content/fa/config.yaml b/content/fa/config.yaml
new file mode 100644
index 00000000..f045713c
--- /dev/null
+++ b/content/fa/config.yaml
@@ -0,0 +1,109 @@
+languageName: English
+params:
+ description: Why NumPy? Powerful n-dimensional arrays. Numerical computing tools. Interoperable. Performant. Open source.
+ navbarlogo:
+ image: logo.svg
+ text: NumPy
+ link: /
+ hero:
+ # Main hero title
+ title: NumPy
+ # Hero subtitle (optional)
+ subtitle: The fundamental package for scientific computing with Python
+ # Button text
+ buttontext: "Latest release: NumPy 2.2. View all releases"
+ # Where the main hero button links to
+ buttonlink: "/news/#releases"
+ # Hero image (from static/images/___)
+ image: logo.svg
+ shell:
+ title: placeholder
+ intro:
+ - title: Try NumPy
+ text: Use the interactive shell to try NumPy in the browser
+ docslink: Don't forget to check out the docs.
+ casestudies:
+ title: CASE STUDIES
+ features:
+ - title: First Image of a Black Hole
+ text: How NumPy, together with libraries like SciPy and Matplotlib that depend on NumPy, enabled the Event Horizon Telescope to produce the first ever image of a black hole
+ img: /images/content_images/case_studies/blackhole.png
+ alttext: First image of a black hole. It is an orange circle in a black background.
+ url: /case-studies/blackhole-image
+ - title: Detection of Gravitational Waves
+ text: In 1916, Albert Einstein predicted gravitational waves; 100 years later their existence was confirmed by LIGO scientists using NumPy.
+ img: /images/content_images/case_studies/gravitional.png
+ alttext: Two orbs orbiting each other. They are displacing gravity around them.
+ url: /case-studies/gw-discov
+ - title: Sports Analytics
+ text: Cricket Analytics is changing the game by improving player and team performance through statistical modelling and predictive analytics. NumPy enables many of these analyses.
+ img: /images/content_images/case_studies/sports.jpg
+ alttext: Cricket ball on green field.
+ url: /case-studies/cricket-analytics
+ - title: Pose Estimation using deep learning
+ text: DeepLabCut uses NumPy for accelerating scientific studies that involve observing animal behavior for better understanding of motor control, across species and timescales.
+ img: /images/content_images/case_studies/deeplabcut.png
+ alttext: Cheetah pose analysis
+ url: /case-studies/deeplabcut-dnn
+ tabs:
+ title: ECOSYSTEM
+ section5: false
+ navbar:
+ - title: Install
+ url: /install
+ - title: Documentation
+ url: https://numpy.org/doc/stable
+ - title: Learn
+ url: /learn
+ - title: Community
+ url: /community
+ - title: About Us
+ url: /about
+ - title: News
+ url: /news
+ - title: Contribute
+ url: /contribute
+ footer:
+ logo: logo.svg
+ socialmediatitle: ""
+ socialmedia:
+ - link: https://github.com/numpy/numpy
+ icon: github
+ - link: https://www.youtube.com/@NumPy_team
+ icon: youtube
+ quicklinks:
+ column1:
+ title: ""
+ links:
+ - text: Install
+ link: /install
+ - text: Documentation
+ link: https://numpy.org/doc/stable
+ - text: Learn
+ link: /learn
+ - text: Citing NumPy
+ link: /citing-numpy
+ - text: Roadmap
+ link: https://numpy.org/neps/roadmap.html
+ column2:
+ links:
+ - text: About us
+ link: /about
+ - text: Community
+ link: /community
+ - text: User surveys
+ link: /user-surveys
+ - text: Contribute
+ link: /contribute
+ - text: Code of conduct
+ link: /code-of-conduct
+ column3:
+ links:
+ - text: Get help
+ link: /gethelp
+ - text: Terms of use
+ link: /terms
+ - text: Privacy
+ link: /privacy
+ - text: Press kit
+ link: /press-kit
diff --git a/content/fa/contribute.md b/content/fa/contribute.md
new file mode 100644
index 00000000..fdd8e223
--- /dev/null
+++ b/content/fa/contribute.md
@@ -0,0 +1,116 @@
+---
+title: Contribute to NumPy
+sidebar: false
+---
+
+The NumPy project welcomes your expertise and enthusiasm!
+Your choices aren't limited to programming, as you can
+see below there are many areas where we need **your** help.
+
+If you're unsure where to start or how your skills fit in, _reach out!_ You
+can ask on the mailing
+list or
+[GitHub](http://github.com/numpy/numpy) (open an
+[issue](https://github.com/numpy/numpy/issues) or comment on a relevant
+issue).
+
+Those are our preferred channels (open source is open by nature), but
+if you prefer to talk privately, contact our community coordinators at
+
Check out also our [YouTube channel](https://www.youtube.com/playlist?list=PLCK6zCrcN3GXBUUzDr9L4__LnXZVtaIzS) for additional advice.
+
+### Reviewing pull requests
+
+The project has more than 250 open pull requests -- meaning many potential
+improvements and many open-source contributors waiting for feedback. If you're
+a developer who knows NumPy, you can help even if you're not familiar with the
+codebase. You can:
+
+- summarize a long-running discussion
+- triage documentation PRs
+- test proposed changes
+
+### Developing educational materials
+
+NumPy's [User Guide](https://numpy.org/devdocs) is undergoing rehabilitation.
+We're in need of new tutorials, how-to's, and deep-dive explanations, and the
+site needs restructuring. Opportunities aren't limited to writers. We'd also
+welcome worked examples, notebooks, and videos. NEP 44 — Restructuring the
+NumPyDocumentation
+lays out our ideas -- and you may have others.
+
+### Issue triaging
+
+The [NumPy issue tracker](https://github.com/numpy/numpy/issues) has a _lot_
+of open issues. Some are no longer valid, some should be prioritized, and some
+would make good issues for new contributors. You can:
+
+- check if older bugs are still present
+- find duplicate issues and link related ones
+- add good self-contained reproducers to issues
+- label issues correctly (this requires triage rights -- just ask)
+
+Please just dive in.
+
+### Website development
+
+We've just revamped our website, but we're far from done. If you love web
+development, these
+[issues](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign)
+list some of our unmet needs -- and feel free to share your own ideas.
+
+### Graphic design
+
+We can barely begin to list the contributions a graphic designer can make here.
+Our docs are parched for illustration; our growing website craves images --
+opportunities abound.
+
+### Translating website content
+
+We plan multiple translations of [numpy.org](https://numpy.org) to make NumPy
+accessible to users in their native language. Volunteer translators are at the heart
+of this effort. See
+[here](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n)
+for background; comment on this GitHub
+issue to sign up.
+
+### Community coordination and outreach
+
+Through community contact we share our work more widely and learn where we're
+falling short. We're eager to get more people involved in efforts like organizing NumPy code
+sprints, a newsletter, and perhaps a blog.
+
+### Fundraising
+
+For many years, NumPy was maintained by dedicated volunteers, but as its importance grew it
+became clear that to ensure stability and growth we would need financial support.
+[This SciPy'19 talk](https://www.youtube.com/watch?v=dBTJD_FDVjU) explains how much difference
+that support has made. Like most nonprofits, we are constantly seeking grants, sponsorships,
+and other kinds of funding. We have a number of ideas and of course we welcome more.
+Fundraising is a scarce skill here -- we'd appreciate your help.
+
+### Donate
+
+If you'd like to contribute to NumPy by making a donation, visit [https://numpy.org/about/#donate](https://numpy.org/about/#donate).
+
+
diff --git a/content/fa/gethelp.md b/content/fa/gethelp.md
new file mode 100644
index 00000000..cce276b9
--- /dev/null
+++ b/content/fa/gethelp.md
@@ -0,0 +1,25 @@
+---
+title: Get Help
+sidebar: false
+---
+
+**Development issues:** For NumPy development-related matters (e.g., bug reports), please
+see [Community](/community).
+
+**User questions:** The best way to get help is to post your question to a site
+like [StackOverflow](http://stackoverflow.com/questions/tagged/numpy) or
+[Reddit](https://www.reddit.com/r/Numpy/). We wish we could keep an eye on
+these sites, or answer questions directly, but the volume is a little
+overwhelming!
+
+### [StackOverflow](http://stackoverflow.com/questions/tagged/numpy)
+
+A forum for asking usage questions, e.g. "How do I do X in NumPy?”. Please [use the `#numpy` tag](https://stackoverflow.com/help/tagging)
+
+***
+
+### [Reddit](https://www.reddit.com/r/Numpy/)
+
+Another forum for usage questions.
+
+***
diff --git a/content/fa/history.md b/content/fa/history.md
new file mode 100644
index 00000000..c02bb936
--- /dev/null
+++ b/content/fa/history.md
@@ -0,0 +1,21 @@
+---
+title: History of NumPy
+sidebar: false
+---
+
+NumPy is a foundational Python library that provides array data structures and related fast numerical routines. When started, the library had little funding, and was written mainly by graduate students—many of them without computer science education, and often without a blessing of their advisors. To even imagine that a small group of “rogue” student programmers could upend the already well-established ecosystem of research software—backed by millions in funding and many hundreds of highly qualified engineers — was preposterous. Yet, the philosophical motivations behind a fully open tool stack, in combination with the excited, friendly community with a singular focus, have proven auspicious in the long run. Nowadays, NumPy is relied upon by scientists, engineers, and many other professionals around the world. For example, the published scripts used in the analysis of gravitational waves import NumPy, and the M87 black hole imaging project directly cites NumPy.
+
+For the in-depth account on milestones in the development of NumPy and related libraries please see [arxiv.org](https://arxiv.org/abs/1907.10121).
+
+If you’d like to obtain a copy of the original Numeric and Numarray libraries, follow the links below:
+
+[Download Page for _Numeric_](https://sourceforge.net/projects/numpy/files/Old%20Numeric/)\*
+
+[Download Page for _Numarray_](https://sourceforge.net/projects/numpy/files/Old%20Numarray/)\*
+
+\*Please note that these older array packages are no longer maintained, and users are strongly advised to use NumPy for any array-related purposes or refactor any pre-existing code to utilize the NumPy library.
+
+### Historic Documentation
+
+[Download _\`Numeric'_ Manual](static/numeric-manual.pdf)
+
diff --git a/content/fa/install.md b/content/fa/install.md
new file mode 100644
index 00000000..2e3550b9
--- /dev/null
+++ b/content/fa/install.md
@@ -0,0 +1,131 @@
+---
+title: Installing NumPy
+sidebar: false
+---
+
+{{< admonition >}}
+{{< /admonition >}}
+
+The recommended method of installing NumPy depends on your preferred workflow. Below, we break down the installation methods into the following categories:
+
+- **Project-based** (e.g., uv, pixi) _(recommended for new users)_
+- **Environment-based** (e.g., pip, conda) _(the traditional workflow)_
+- **System package managers** _(not recommended for most users)_
+- **Building from source** _(for advanced users and development purposes)_
+
+Choose the method that best suits your needs. If you're unsure, start with the **Environment-based** method using `conda` or `pip`.
+
+{{< tabs >}}
+
+[[tab]]
+name = 'Project Based'
+content = '''
+
+Recommended for new users who want a streamlined workflow.
+
+- **uv:** A modern Python package manager designed for speed and simplicity.
+ ```bash
+ uv pip install numpy
+ ```
+
+- **pixi:** A cross-platform package manager for Python and other languages.
+ ```bash
+ pixi add numpy
+ ```
+
+'''
+
+[[tab]]
+name = 'Environment Based'
+content = '''
+
+The two main tools that install Python packages are `pip` and `conda`. Their functionality partially overlaps (e.g. both can install `numpy`), however, they can also work together. We’ll discuss the major differences between pip and conda here - this is important to understand if you want to manage packages effectively.
+
+The first difference is that conda is cross-language and it can install Python, while pip is installed for a particular Python on your system and installs other packages to that same Python install only. This also means conda can install non-Python libraries and tools you may need (e.g. compilers, CUDA, HDF5), while pip can’t.
+
+The second difference is that pip installs from the Python Packaging Index (PyPI), while conda installs from its own channels (typically “defaults” or “conda-forge”). PyPI is the largest collection of packages by far, however, all popular packages are available for conda as well.
+
+The third difference is that conda is an integrated solution for managing packages, dependencies and environments, while with pip you may need another tool (there are many!) for dealing with environments or complex dependencies.
+
+- **Conda:** If you use conda, you can install NumPy from the defaults or conda-forge channels:
+ ```bash
+ conda create -n my-env
+ conda activate my-env
+ conda install numpy
+ ```
+- **Pip:**
+ ```bash
+ pip install numpy
+ ```
+
+{{< admonition >}}
+{{< /admonition >}}
+
+ ```bash
+ python -m venv my-env
+ source my-env/bin/activate # macOS/Linux
+ my-env\Scripts\activate # Windows
+ pip install numpy
+ ```
+
+'''
+
+[[tab]]
+name = 'System Package Managers'
+content = '''
+Not recommended for most users, but available for convenience.
+
+**macOS (Homebrew):**
+
+```bash
+brew install numpy
+```
+
+**Linux (APT):**
+
+```bash
+sudo apt install python3-numpy
+```
+
+**Windows (Chocolatey):**
+
+```bash
+choco install numpy
+```
+
+'''
+
+[[tab]]
+name = 'Building from Source'
+content = '''
+For advanced users and developers who want to customize or debug **NumPy**.
+
+A word of warning: building Numpy from source can be a nontrivial exercise.
+We recommend using binaries instead if those are available for your platform via one of the above methods.
+For details on how to build from source, see [the building from source guide in the Numpy docs](https://numpy.org/devdocs/building/).
+
+{{< /tabs >}}
+
+## Verifying the Installation
+
+After installing NumPy, verify the installation by running the following in a Python shell or script:
+
+```python
+import numpy as np
+print(np.__version__)
+```
+
+This should print the installed version of NumPy without errors.
+
+## Troubleshooting
+
+If your installation fails with the message below, see Troubleshooting
+ImportError.
+
+```
+IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
+
+Importing the numpy c-extensions failed. This error can happen for
+different reasons, often due to issues with your setup.
+```
+
diff --git a/content/fa/learn.md b/content/fa/learn.md
new file mode 100644
index 00000000..ca13a1c2
--- /dev/null
+++ b/content/fa/learn.md
@@ -0,0 +1,76 @@
+---
+title: Learn
+sidebar: false
+---
+
+For the **official NumPy documentation** visit [numpy.org/doc/stable](https://numpy.org/doc/stable).
+
+***
+
+Below is a curated collection of educational resources, both for self-learning and teaching others, developed by NumPy contributors and vetted by the community.
+
+## Beginners
+
+There's a ton of information about NumPy out there. If you are just starting, we'd strongly recommend the following:
+
+ **Tutorials**
+
+- [NumPy Quickstart Tutorial](https://numpy.org/devdocs/user/quickstart.html)
+- [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
+- [NumPy Illustrated: The Visual Guide to NumPy _by Lev Maximov_](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
+- [Scientific Python Lectures](https://lectures.scientific-python.org/) Besides covering NumPy, these lectures offer a broader introduction to the scientific Python ecosystem.
+- [NumPy: the absolute basics for beginners](https://numpy.org/devdocs/user/absolute_beginners.html)
+- [NumPy tutorial _by Nicolas Rougier_](https://github.com/rougier/numpy-tutorial)
+- [Stanford CS231 _by Justin Johnson_](http://cs231n.github.io/python-numpy-tutorial/)
+- [NumPy User Guide](https://numpy.org/devdocs)
+
+ **Books**
+
+- [Guide to NumPy _by Travis E. Oliphant_](https://web.mit.edu/dvp/Public/numpybook.pdf) This is a free version 1 from 2006. For the latest copy (2015) see [here](https://dl.acm.org/doi/10.5555/2886196).
+- [From Python to NumPy _by Nicolas P. Rougier_](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
+- [Elegant SciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877) _by Juan Nunez-Iglesias, Stefan van der Walt, and Harriet Dashnow_
+
+You may also want to check out the [Goodreads list](https://www.goodreads.com/shelf/show/python-scipy) on the subject of "Python+SciPy." Most books there are about the "SciPy ecosystem," which has NumPy at its core.
+
+ **Videos**
+
+- [Introduction to Numerical Computing with NumPy](http://youtu.be/ZB7BZMhfPgk) _by Alex Chabot-Leclerc_
+
+***
+
+## Advanced
+
+Try these advanced resources for a better understanding of NumPy concepts like advanced indexing, splitting, stacking, linear algebra, and more.
+
+ **Tutorials**
+
+- [100 NumPy Exercises](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html) _by Nicolas P. Rougier_
+- [An Introduction to NumPy and Scipy](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf) _by M. Scott Shell_
+- [Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/) _by Stéfan van der Walt_
+- [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
+
+ **Books**
+
+- [Python Data Science Handbook](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1098121228) _by Jake Vanderplas_
+- [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-Jupyter/dp/109810403X) _by Wes McKinney_
+- [Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) _by Robert Johansson_
+
+ **Videos**
+
+- [Advanced NumPy - broadcasting rules, strides, and advanced indexing](https://www.youtube.com/watch?v=cYugp9IN1-Q) _by Juan Nunez-Iglesias_
+
+***
+
+## NumPy Talks
+
+- [The Future of NumPy Indexing](https://www.youtube.com/watch?v=o0EacbIbf58) _by Jaime Fernández_ (2016)
+- Evolution of Array Computing in Python _by Ralf Gommers_ (2019)
+- [NumPy: what has changed and what is going to change?](https://www.youtube.com/watch?v=YFLVQFjRmPY) _by Matti Picus_ (2019)
+- [Inside NumPy](https://www.youtube.com/watch?v=dBTJD_FDVjU) _by Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stefan van der Walt, Charles Harris_ (2019)
+- [Brief Review of Array Computing in Python](https://www.youtube.com/watch?v=f176j2g2eNc) _by Travis Oliphant_ (2019)
+
+***
+
+## Citing NumPy
+
+If NumPy has been significant in your research, and you would like to acknowledge the project in your academic publication, please see [this citation information](/citing-numpy).
diff --git a/content/fa/news.md b/content/fa/news.md
new file mode 100644
index 00000000..8448d825
--- /dev/null
+++ b/content/fa/news.md
@@ -0,0 +1,485 @@
+---
+title: News
+sidebar: false
+newsHeader: NumPy 2.2.0 released!
+date: 2024-12-08
+---
+
+### NumPy 2.2.0 released
+
+_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back
+into sync with the usual twice yearly release cycle. There have been a number
+of small cleanups, improvements to the StringDType, and better support for free
+threaded Python. Highlights are:
+
+- New functions `matvec` and `vecmat`,
+- Many improved annotations,
+- Improved support for the new StringDType,
+- Improved support for free threaded Python,
+- Fixes for f2py.
+
+This release supports Python versions 3.10-3.13.
+
+### NumPy 2.1.0 released
+
+_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
+drops support for Python 3.9. In addition to the usual bug fixes and
+updated Python support, it helps get NumPy back to its usual release
+cycle after the extended development of 2.0. The highlights for this
+release are:
+
+- Support for Python 3.13.
+- Preliminary support for free threaded Python 3.13.
+- Support for the array-api 2023.12 standard.
+
+Python versions 3.10-3.13 are supported by this release.
+
+### NumPy 2.0.0 released
+
+_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
+result of 11 months of development since the last feature release and is the
+work of 212 contributors spread over 1078 pull requests. It contains a large
+number of exciting new features as well as changes to both the Python and C
+APIs. It includes breaking changes that could not happen in a regular minor
+release - including an ABI break, changes to type promotion rules, and API
+changes which may not have been emitting deprecation warnings in 1.26.x. Key
+documents related to how to adapt to changes in NumPy 2.0 include:
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
+tells a bit of the story about how this release came together.
+
+### NumPy 2.0 release date: June 16
+
+_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
+released on June 16, 2024. This release has been over a year in the making, and
+is the first major release since 2006. Importantly, in addition to many new
+features and performance improvement, it contains **breaking changes** to the
+ABI as well as the Python and C APIs. It is likely that downstream packages and
+end user code needs to be adapted - if you can, please verify whether your code
+works with NumPy `2.0.0rc2`. **Please see the following for more details:**
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+### NumFOCUS end of the year fundraiser
+
+_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
+on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
+until December 23rd, 2023 will go directly to the NumFOCUS programs.
+
+Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
+or a coupon code ISUPPORTDATASCIENCE
+
+### NumPy 1.26.0 released
+
+_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
+is now available. The highlights of the release are:
+
+- Python 3.12.0 support.
+- Cython 3.0.0 compatibility.
+- Use of the Meson build system
+- Updated SIMD support
+- f2py fixes, meson and bind(x) support
+- Support for the updated Accelerate BLAS/LAPACK library
+
+The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
+transition to the Meson build system and provision of support for Cython 3.0.0.
+A total of 20 people contributed to this release and 59 pull requests were
+merged.
+
+The Python versions supported by this release are 3.9-3.12.
+
+### numpy.org is now available in Japanese and Portuguese
+
+_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
+Japanese and Portuguese. This wouldn’t be possible without our dedicated volunteers:
+
+_Portuguese:_
+
+- Melissa Weber Mendonça (melissawm)
+- Ricardo Prins (ricardoprins)
+- Getúlio Silva (getuliosilva)
+- Julio Batista Silva (jbsilva)
+- Alexandre de Siqueira (alexdesiqueira)
+- Alexandre B A Villares (villares)
+- Vini Salazar (vinisalazar)
+
+_Japanese:_
+
+- Atsushi Sakai (AtsushiSakai)
+- KKunai
+- Tom Kelly (TomKellyGenetics)
+- Yuji Kanagawa (kngwyu)
+- Tetsuo Koyama (tkoyama010)
+
+The work on the translation infrastructure is supported with funding from CZI.
+
+Looking ahead, we’d love to translate the website into more languages.
+If you’d like to help, please connect with the NumPy Translations Team on Slack:
+https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
+(Look for the #translations channel.) We are also building a Translations Team who will be
+working on localizing documentation and educational content across the Scientific Python
+ecosystem. If this piqued your interest, join us on the Scientific Python
+Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
+
+### NumPy 1.25.0 released
+
+_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
+is now available. The highlights of the release are:
+
+- Support for MUSL, there are now MUSL wheels.
+- Support for the Fujitsu C/C++ compiler.
+- Object arrays are now supported in einsum.
+- Support for the inplace matrix multiplication (`@=`).
+
+The NumPy 1.25.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase the execution speed, and clarify the
+documentation. There has also been preparatory work for the future NumPy 2.0.0,
+resulting in a large number of new and expired deprecations.
+
+A total of 148 people contributed to this release and 530 pull requests were
+merged.
+
+The Python versions supported by this release are 3.9-3.11.
+
+### Fostering an Inclusive Culture: Call for Participation
+
+_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
+
+How can we be better when it comes to diversity and inclusion?
+Read the report and find out how to get involved
+[here](https://contributor-experience.org/docs/posts/dei-report/).
+
+### NumPy documentation team leadership transition
+
+_Jan 6, 2023_ –- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
+documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
+contributions to the NumPy official documentation and educational materials,
+and Mukulika and Ross for stepping up.
+
+### NumPy 1.24.0 released
+
+_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
+is now available. The highlights of the release are:
+
+- New "dtype" and "casting" keywords for stacking functions.
+- New F2PY features and fixes.
+- Many new deprecations, check them out.
+- Many expired deprecations,
+
+The NumPy 1.24.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase execution speed, and clarify the documentation.
+There are a large number of new and expired deprecations due to changes in
+dtype promotion and cleanups. It is the work of 177 contributors spread over
+444 pull requests. The supported Python versions are 3.8-3.11.
+
+### Numpy 1.23.0 released
+
+_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
+is now available. The highlights of the release are:
+
+- Implementation of `loadtxt` in C, greatly improving its performance.
+- Exposure of DLPack at the Python level for easy data exchange.
+- Changes to the promotion and comparisons of structured dtypes.
+- Improvements to f2py.
+
+The NumPy 1.23.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase the execution speed, clarify the documentation,
+and expire old deprecations. It is the work of 151 contributors spread over
+494 pull requests. The Python versions supported by this release 3.8-3.10.
+Python 3.11 will be supported when it reaches the rc stage.
+
+### NumFOCUS DEI research study: call for participation
+
+_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
+research project
+funded by the Gordon & Betty Moore Foundation to
+understand the barriers to participation that contributors, particularly those
+from historically underrepresented groups, face in the open-source software
+community. The research team would like to talk to new contributors, project
+developers and maintainers, and those who have contributed in the past about
+their experiences joining and contributing to NumPy.
+
+**Interested in sharing your experiences?**
+
+Please complete this brief [“Participant Interest” form](https://numfocus.typeform.com/to/WBWVJSqe)
+which contains additional information on the research goals, privacy, and
+confidentiality considerations. Your participation will be valuable to the
+growth and sustainability of diverse and inclusive open-source software
+communities. Accepted participants will participate in a 30-minute interview
+with a research team member.
+
+### Numpy 1.22.0 release
+
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
+is now available. The highlights of the release are:
+
+- Type annotations of the main namespace are essentially complete. Upstream is
+ a moving target, so there will likely be further improvements, but the major
+ work is done. This is probably the most user visible enhancement in this
+ release.
+- A preliminary version of the proposed
+ [array API Standard](https://data-apis.org/array-api/latest/) is provided
+ (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
+ This is a step in creating a standard collection of functions that can be
+ used across libraries such as CuPy and JAX.
+- NumPy now has a DLPack backend. DLPack provides a common interchange format
+ for array (tensor) data.
+- New methods for `quantile`, `percentile`, and related functions. The new
+ methods provide a complete set of the methods commonly found in the
+ literature.
+- The universal functions have been refactored to implement most of
+ [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
+ This also unlocks the ability to experiment with the future DType API.
+- A new configurable memory allocator for use by downstream projects.
+
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
+over 609 pull requests. The Python versions supported by this release are
+3.8-3.10.
+
+### Advancing an inclusive culture in the scientific Python ecosystem
+
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
+[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
+to support the onboarding, inclusion, and retention of people from historically
+marginalized groups on scientific Python projects, and to structurally improve
+the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
+
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
+this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
+will support the creation of dedicated Contributor Experience Lead positions to
+identify, document, and implement practices to foster inclusive open-source
+communities. This project will be led by Melissa Mendonça (NumPy), with
+additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
+Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
+Joris Van den Bossche (Pandas).
+
+This is an ambitious project aiming to discover and implement activities that
+should structurally improve the community dynamics of our projects. By
+establishing these new cross-project roles, we hope to introduce a new
+collaboration model to the Scientific Python communities, allowing
+community-building work within the ecosystem to be done more efficiently and
+with greater outcomes. We also expect to develop a clearer picture of what
+works and what doesn't in our projects to engage and retain new contributors,
+especially from historically underrepresented groups. Finally, we plan on
+producing detailed reports on the actions executed, explaining how they have
+impacted our projects in terms of representation and interaction with our
+communities.
+
+The two-year project is expected to start by November 2021, and we are excited
+to see the results from this work!
+[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### 2021 NumPy survey
+
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
+NumPy users from 75 countries participated in our inaugural survey last year.
+The survey findings gave us a very good understanding of what we should focus
+on for the next 12 months.
+
+It’s time for another survey, and we are counting on you once again. It will
+take about 15 minutes of your time. Besides English, the survey questionnaire
+is available in 8 additional languages: Bangla, French, Hindi, Japanese,
+Mandarin, Portuguese, Russian, and Spanish.
+
+Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+### Numpy 1.21.0 release
+
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
+is now available. The highlights of the release are:
+
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- improved documentation,
+- improved annotations,
+- new `PCG64DXSM` bitgenerator for random numbers.
+
+This NumPy release is the result of 581 merged pull requests contributed by 175
+people. The Python versions supported for this release are 3.7-3.9, support
+for Python 3.10 will be added after Python 3.10 is released.
+
+### 2020 NumPy survey results
+
+_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
+and faculty from the University of Michigan and the University of Maryland
+conducted the first official NumPy community survey. Find the survey results
+here: https://numpy.org/user-survey-2020/.
+
+### Numpy 1.20.0 release
+
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
+is now available. This is the largest NumPy release to date, thanks to 180+
+contributors. The two most exciting new features are:
+
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
+ containing `ArrayLike` and `DtypeLike` aliases that users and downstream
+ libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
+ AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
+ performance improvements for many functions (examples:
+ [sin/cos](https://github.com/numpy/numpy/pull/17587),
+ [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### Diversity in the NumPy project
+
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
+
+### First official NumPy paper published in Nature!
+
+_Sep 16, 2020_ -- We are pleased to announce the publication of
+[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
+as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
+The paper covers applications and fundamental concepts of array programming,
+the rich scientific Python ecosystem built on top of NumPy, and the recently added
+array protocols to facilitate interoperability with external array and tensor
+libraries like CuPy, Dask, and JAX.
+
+### Python 3.9 is coming, when will NumPy release binary wheels?
+
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
+early adopter of Python versions, you may be dissapointed to find that NumPy
+(and other binary packages like SciPy) will not have binary wheels ready on the
+day of the release. It is a major effort to adapt the build infrastructure to a
+new Python version and it typically takes a few weeks for the packages to appear
+on PyPI and conda-forge. In preparation for this event, please make sure to
+
+- update your `pip` to version 20.1 at least to support `manylinux2010` and
+ `manylinux2014`
+- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
+ trying to build from source.
+
+### Numpy 1.19.2 release
+
+_Sep 10, 2020_ -- NumPy
+1.19.2 is now available.
+This latest release in the 1.19 series fixes several bugs, prepares for the
+upcoming Cython 3.x
+release and pins
+setuptools to keep distutils working while upstream modifications are ongoing.
+The aarch64 wheels are built with the latest manylinux2014 release that fixes
+the problem of differing page sizes used by different linux distros.
+
+### The inaugural NumPy survey is live!
+
+_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
+decision-making about the development of NumPy as software and as a community.
+The survey is available in 8 additional languages besides English:
+Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
+
+Please help us make NumPy better and take the survey
+[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+### NumPy has a new logo!
+
+_Jun 24, 2020_ -- NumPy now has a new logo:
+
+
+
+The logo is a modern take on the old one, with a cleaner design. Thanks to
+Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
+for the old logo that served us well for 15+ years.
+
+### NumPy 1.19.0 release
+
+_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
+without Python 2 support, hence it was a "clean-up release". The minimum
+supported Python version is now Python 3.6. An important new feature is that
+the random number generation infrastructure that was introduced in NumPy 1.17.0
+is now accessible from Cython.
+
+### Season of Docs acceptance
+
+_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
+the Google Season of Docs program. We are excited about the opportunity to
+work with a technical writer to improve NumPy's documentation once again! For more
+details, please see
+[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
+[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
+
+### NumPy 1.18.0 release
+
+_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
+1.17.0, this is a consolidation release. It is the last minor release that will
+support Python 3.5. Highlights of the release includes the addition of basic
+infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
+
+Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
+
+### NumPy receives a grant from the Chan Zuckerberg Initiative
+
+_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
+
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
+
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
+
+
+
+## Releases
+
+Here is a list of NumPy releases, with links to release notes. Bugfix
+releases (only the `z` changes in the `x.y.z` version number) have no new
+features; minor releases (the `y` increases) do.
+
+- NumPy 2.2.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.5)) -- _19 Apr 2025_.
+- NumPy 2.2.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.4)) -- _16 Mar 2025_.
+- NumPy 2.2.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.3)) -- _13 Feb 2025_.
+- NumPy 2.2.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.2)) -- _18 Jan 2025_.
+- NumPy 2.2.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.1)) -- _21 Dec 2024_.
+- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
+- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
+- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
+- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
+- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
+- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
+- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
+- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
+- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
+- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
+- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
+- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
+- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
+- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
+- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
+- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
+- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
+- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
+- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
+- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
+- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
+- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
+- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
+- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
+- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
+- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
+- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
+- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
+- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
+- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
+- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
+- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
+- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
+- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
+- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
+- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
+- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
+- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
+- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
+- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
+- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
+- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
+- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
+- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
+- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
diff --git a/content/fa/press-kit.md b/content/fa/press-kit.md
new file mode 100644
index 00000000..2c8970bb
--- /dev/null
+++ b/content/fa/press-kit.md
@@ -0,0 +1,8 @@
+---
+title: Press kit
+sidebar: false
+---
+
+We would like to make it easy for you to include the NumPy project identity in your next academic paper, course materials, or presentation.
+
+You will find several high-resolution versions of the NumPy logo [here](https://github.com/numpy/numpy/tree/main/branding/logo). Note that by using the numpy.org resources, you accept the [NumPy Code of Conduct](/code-of-conduct).
diff --git a/content/fa/privacy.md b/content/fa/privacy.md
new file mode 100644
index 00000000..6064e4c4
--- /dev/null
+++ b/content/fa/privacy.md
@@ -0,0 +1,8 @@
+---
+title: Privacy Policy
+sidebar: false
+---
+
+**numpy.org** is operated by [NumFOCUS, Inc.](https://numfocus.org), the fiscal sponsor of the NumPy project. For the Privacy Policy of this website please refer to https://numfocus.org/privacy-policy.
+
+If you have any questions about the policy or NumFOCUS’s data collection, use, and disclosure practices, please contact the NumFOCUS staff at privacy@numfocus.org.
diff --git a/content/fa/report-handling-manual.md b/content/fa/report-handling-manual.md
new file mode 100644
index 00000000..161757fe
--- /dev/null
+++ b/content/fa/report-handling-manual.md
@@ -0,0 +1,89 @@
+---
+title: NumPy Code of Conduct - How to follow up on a report
+sidebar: false
+---
+
+This is the manual followed by NumPy’s Code of Conduct Committee. It’s used when we respond to an issue to make sure we’re consistent and fair.
+
+Enforcing the [Code of Conduct](/code-of-conduct) impacts our community today and for the future. It’s an action that we do not take lightly. When reviewing enforcement measures, the Code of Conduct Committee will keep the following values and guidelines in mind:
+
+- Act in a personal manner rather than impersonal. The Committee can engage the parties to understand the situation while respecting the privacy and any necessary confidentiality of reporters. However, sometimes it is necessary to communicate with one or more individuals directly: the Committee’s goal is to improve the health of our community rather than only produce a formal decision.
+- Emphasize empathy for individuals rather than judging behavior, avoiding binary labels of “good” and “bad/evil”. Overt, clear-cut aggression and harassment exist, and we will address them firmly. But many scenarios that can prove challenging to resolve are those where normal disagreements devolve into unhelpful or harmful behavior from multiple parties. Understanding the full context and finding a path that re-engages all is hard, but ultimately the most productive for our community.
+- We understand that email is a difficult medium and can be isolating. Receiving criticism over email, without personal contact, can be particularly painful. This makes it especially important to keep an atmosphere of open-minded respect for the views of others. It also means that we must be transparent in our actions, and that we will do everything in our power to make sure that all our members are treated fairly and with sympathy.
+- Discrimination can be subtle and it can be unconscious. It can show itself as unfairness and hostility in otherwise ordinary interactions. We know that this does occur, and we will take care to look out for it. We would very much like to hear from you if you feel you have been treated unfairly, and we will use these procedures to make sure that your complaint is heard and addressed.
+- Help increase engagement in good discussion practice: try to identify where discussion may have broken down, and provide actionable information, pointers, and resources that can lead to positive change on these points.
+- Be mindful of the needs of new members: provide them with explicit support and consideration, with the aim of increasing participation from underrepresented groups in particular.
+- Individuals come from different cultural backgrounds and native languages. Try to identify any honest misunderstandings caused by a non-native speaker and help them understand the issue and what they can change to avoid causing offence. Complex discussion in a foreign language can be very intimidating, and we want to grow our diversity also across nationalities and cultures.
+
+## Mediation
+
+Voluntary informal mediation is a tool at our disposal. In contexts such as when two or more parties have all escalated to the point of inappropriate behavior (something sadly common in human conflict), it may be useful to facilitate a mediation process. This is only an example: the Committee can consider mediation in any case, mindful that the process is meant to be strictly voluntary and no party can be pressured to participate. If the Committee suggests mediation, it should:
+
+- Find a candidate who can serve as a mediator.
+- Obtain the agreement of the reporter(s). The reporter(s) have complete freedom to decline the mediation idea or to propose an alternate mediator.
+- Obtain the agreement of the reported person(s).
+- Settle on the mediator: while parties can propose a different mediator than the suggested candidate, only if a common agreement is reached on all terms can the process move forward.
+- Establish a timeline for mediation to complete, ideally within two weeks.
+
+The mediator will engage with all the parties and seek a resolution that is satisfactory to all. Upon completion, the mediator will provide a report (vetted by all parties to the process) to the Committee, with recommendations on further steps. The Committee will then evaluate these results (whether a satisfactory resolution was achieved or not) and decide on any additional action deemed necessary.
+
+## How the Committee will respond to reports
+
+When the Committee (or a Committee member) receives a report, they will first determine whether the report is about a clear and severe breach (as defined below). If so, immediate action needs to be taken in addition to the regular report handling process.
+
+## Clear and severe breach actions
+
+We know that it is painfully common for internet communication to start at or devolve into obvious and flagrant abuse. We will deal quickly with clear and severe breaches like personal threats, violent, sexist or racist language.
+
+When a member of the Code of Conduct Committee becomes aware of a clear and severe breach, they will do the following:
+
+- Immediately disconnect the originator from all NumPy communication channels.
+- Reply to the reporter that their report has been received and that the originator has been disconnected.
+- In every case, the moderator should make a reasonable effort to contact the originator, and tell them specifically how their language or actions qualify as a “clear and severe breach”. The moderator should also say that, if the originator believes this is unfair or they want to be reconnected to NumPy, they have the right to ask for a review, as below, by the Code of Conduct Committee. The moderator should copy this explanation to the Code of Conduct Committee.
+- The Code of Conduct Committee will formally review and sign off on all cases where this mechanism has been applied to make sure it is not being used to control ordinary heated disagreement.
+
+## Report handling
+
+When a report is sent to the Committee they will immediately reply to the reporter to confirm receipt. This reply must be sent within 72 hours, and the group should strive to respond much quicker than that.
+
+If a report doesn’t contain enough information, the Committee will obtain all relevant data before acting. The Committee is empowered to act on the Steering Council’s behalf in contacting any individuals involved to get a more complete account of events.
+
+The Committee will then review the incident and determine, to the best of their ability:
+
+- What happened.
+- Whether this event constitutes a Code of Conduct violation.
+- Who are the responsible party(ies).
+- Whether this is an ongoing situation, and there is a threat to anyone’s physical safety.
+
+This information will be collected in writing, and whenever possible the group’s deliberations will be recorded and retained (i.e. chat transcripts, email discussions, recorded conference calls, summaries of voice conversations, etc).
+
+It is important to retain an archive of all activities of this Committee to ensure consistency in behavior and provide institutional memory for the project. To assist in this, the default channel of discussion for this Committee will be a private mailing list accessible to current and future members of the Committee as well as members of the Steering Council upon justified request. If the Committee finds the need to use off-list communications (e.g. phone calls for early/rapid response), it should in all cases summarize these back to the list so there’s a good record of the process.
+
+The Code of Conduct Committee should aim to have a resolution agreed upon within two weeks. In the event that a resolution can’t be determined in that time, the Committee will respond to the reporter(s) with an update and projected timeline for resolution.
+
+## Resolutions
+
+The Committee must agree on a resolution by consensus. If the group cannot reach consensus and deadlocks for over a week, the group will turn the matter over to the Steering Council for resolution.
+
+Possible responses may include:
+
+- Taking no further action:
+ - if we determine no violations have occurred;
+ - if the matter has been resolved publicly while the Committee was considering responses.
+- Coordinating voluntary mediation: if all involved parties agree, the Committee may facilitate a mediation process as detailed above.
+- Remind publicly, and point out that some behavior/actions/language have been judged inappropriate and why in the current context, or can but hurtful to some people, requesting the community to self-adjust.
+- A private reprimand from the Committee to the individual(s) involved. In this case, the group chair will deliver that reprimand to the individual(s) over email, cc’ing the group.
+- A public reprimand. In this case, the Committee chair will deliver that reprimand in the same venue that the violation occurred, within the limits of practicality. E.g., the original mailing list for an email violation, but for a chat room discussion where the person/context may be gone, they can be reached by other means. The group may choose to publish this message elsewhere for documentation purposes.
+- A request for a public or private apology, assuming the reporter agrees to this idea: they may at their discretion refuse further contact with the violator. The chair will deliver this request. The Committee may, if it chooses, attach “strings” to this request: for example, the group may ask a violator to apologize in order to retain one’s membership on a mailing list.
+- A “mutually agreed upon hiatus” where the Committee asks the individual to temporarily refrain from community participation. If the individual chooses not to take a temporary break voluntarily, the Committee may issue a “mandatory cooling off period”.
+- A permanent or temporary ban from some or all NumPy spaces (mailing lists, gitter.im, etc.). The group will maintain records of all such bans so that they may be reviewed in the future or otherwise maintained.
+
+Once a resolution is agreed upon, but before it is enacted, the Committee will contact the original reporter and any other affected parties and explain the proposed resolution. The Committee will ask if this resolution is acceptable, and must note feedback for the record.
+
+Finally, the Committee will make a report to the NumPy Steering Council (as well as the NumPy core team in the event of an ongoing resolution, such as a ban).
+
+The Committee will never publicly discuss the issue; all public statements will be made by the chair of the Code of Conduct Committee or the NumPy Steering Council.
+
+## Conflicts of Interest
+
+In the event of any conflict of interest, a Committee member must immediately notify the other members, and recuse themselves if necessary.
diff --git a/content/fa/tabcontents.yaml b/content/fa/tabcontents.yaml
new file mode 100644
index 00000000..ecfce140
--- /dev/null
+++ b/content/fa/tabcontents.yaml
@@ -0,0 +1,275 @@
+params:
+ machinelearning:
+ paras:
+ - para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlow’s](https://www.tensorflow.org) deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing.
+ para2: Statistical techniques called [ensemble methods](https://scikit-learn.org/stable/modules/ensemble.html) such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://xgboost.readthedocs.io/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) — one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
+ arraylibraries:
+ intro:
+ - text: NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.
+ headers:
+ - text: Array Library
+ - text: Capabilities & Application areas
+ libraries:
+ - title: Dask
+ text: Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
+ img: /images/content_images/arlib/dask.png
+ alttext: Dask
+ url: https://dask.org/
+ - title: CuPy
+ text: NumPy-compatible array library for GPU-accelerated computing with Python.
+ img: /images/content_images/arlib/cupy.png
+ alttext: CuPy
+ url: https://cupy.dev
+ - title: JAX
+ text: "Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU."
+ img: /images/content_images/arlib/jax_logo_250px.png
+ alttext: JAX
+ url: https://jax.readthedocs.io/
+ - title: Xarray
+ text: Labeled, indexed multi-dimensional arrays for advanced analytics and visualization.
+ img: /images/content_images/arlib/xarray.png
+ alttext: xarray
+ url: https://xarray.pydata.org/en/stable/index.html
+ - title: Sparse
+ text: NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
+ img: /images/content_images/arlib/sparse.png
+ alttext: sparse
+ url: https://sparse.pydata.org/en/latest/
+ - title: PyTorch
+ text: Deep learning framework that accelerates the path from research prototyping to production deployment.
+ img: /images/content_images/arlib/pytorch-logo-dark.svg
+ alttext: PyTorch
+ url: https://pytorch.org/
+ - title: TensorFlow
+ text: An end-to-end platform for machine learning to easily build and deploy ML powered applications.
+ img: /images/content_images/arlib/tensorflow-logo.svg
+ alttext: TensorFlow
+ url: https://www.tensorflow.org
+ - title: Arrow
+ text: A cross-language development platform for columnar in-memory data and analytics.
+ img: /images/content_images/arlib/arrow.png
+ alttext: arrow
+ url: https://arrow.apache.org/
+ - title: xtensor
+ text: Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
+ img: /images/content_images/arlib/xtensor.png
+ alttext: xtensor
+ url: https://github.com/xtensor-stack/xtensor-python
+ - title: Awkward Array
+ text: Manipulate JSON-like data with NumPy-like idioms.
+ img: /images/content_images/arlib/awkward.svg
+ alttext: awkward
+ url: https://awkward-array.org/
+ - title: uarray
+ text: Python backend system that decouples API from implementation; unumpy provides a NumPy API.
+ img: /images/content_images/arlib/uarray.png
+ alttext: uarray
+ url: https://uarray.org/en/latest/
+ - title: tensorly
+ text: Tensor learning, algebra and backends to seamlessly use NumPy, PyTorch, TensorFlow or CuPy.
+ img: /images/content_images/arlib/tensorly.png
+ alttext: tensorly
+ url: http://tensorly.org/stable/home.html
+ scientificdomains:
+ intro:
+ - text: Nearly every scientist working in Python draws on the power of NumPy.
+ - text: "NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant."
+ libraries:
+ - title: Quantum Computing
+ alttext: A computer chip.
+ img: /images/content_images/sc_dom_img/quantum_computing.svg
+ links:
+ - url: https://qutip.org
+ label: QuTiP
+ - url: https://pyquil-docs.rigetti.com/en/stable
+ label: PyQuil
+ - url: https://qiskit.org
+ label: Qiskit
+ - url: https://pennylane.ai
+ label: PennyLane
+ - title: Statistical Computing
+ alttext: A line graph with the line moving up.
+ img: /images/content_images/sc_dom_img/statistical_computing.svg
+ links:
+ - url: https://pandas.pydata.org/
+ label: Pandas
+ - url: https://www.statsmodels.org/
+ label: statsmodels
+ - url: https://xarray.pydata.org/en/stable/
+ label: Xarray
+ - url: https://seaborn.pydata.org/
+ label: Seaborn
+ - title: Signal Processing
+ alttext: A bar chart with positive and negative values.
+ img: /images/content_images/sc_dom_img/signal_processing.svg
+ links:
+ - url: https://www.scipy.org/
+ label: SciPy
+ - url: https://pywavelets.readthedocs.io/
+ label: PyWavelets
+ - url: https://python-control.org/
+ label: python-control
+ - url: https://hyperspy.org/
+ label: HyperSpy
+ - title: Image Processing
+ alttext: An photograph of the mountains.
+ img: /images/content_images/sc_dom_img/image_processing.svg
+ links:
+ - url: https://scikit-image.org/
+ label: Scikit-image
+ - url: https://opencv.org/
+ label: OpenCV
+ - url: https://mahotas.rtfd.io/
+ label: Mahotas
+ - title: Graphs and Networks
+ alttext: A simple graph.
+ img: /images/content_images/sc_dom_img/sd6.svg
+ links:
+ - url: https://networkx.org/
+ label: NetworkX
+ - url: https://graph-tool.skewed.de/
+ label: graph-tool
+ - url: https://igraph.org/python/
+ label: igraph
+ - url: https://pygsp.rtfd.io/
+ label: PyGSP
+ - title: Astronomy
+ alttext: A telescope.
+ img: /images/content_images/sc_dom_img/astronomy_processes.svg
+ links:
+ - url: https://www.astropy.org/
+ label: AstroPy
+ - url: https://sunpy.org/
+ label: SunPy
+ - url: https://spacepy.github.io/
+ label: SpacePy
+ - title: Cognitive Psychology
+ alttext: A human head with gears.
+ img: /images/content_images/sc_dom_img/cognitive_psychology.svg
+ links:
+ - url: https://www.psychopy.org/
+ label: PsychoPy
+ - title: Bioinformatics
+ alttext: A strand of DNA.
+ img: /images/content_images/sc_dom_img/bioinformatics.svg
+ links:
+ - url: https://biopython.org/
+ label: BioPython
+ - url: http://scikit-bio.org/
+ label: Scikit-Bio
+ - url: https://github.com/openvax/pyensembl
+ label: PyEnsembl
+ - url: http://etetoolkit.org/
+ label: ETE
+ - title: Bayesian Inference
+ alttext: A graph with a bell-shaped curve.
+ img: /images/content_images/sc_dom_img/bayesian_inference.svg
+ links:
+ - url: https://pystan.readthedocs.io/en/latest/
+ label: PyStan
+ - url: https://docs.pymc.io/
+ label: PyMC
+ - url: https://arviz-devs.github.io/arviz/
+ label: ArviZ
+ - url: https://emcee.readthedocs.io/
+ label: emcee
+ - title: Mathematical Analysis
+ alttext: Four mathematical symbols.
+ img: /images/content_images/sc_dom_img/mathematical_analysis.svg
+ links:
+ - url: https://www.scipy.org/
+ label: SciPy
+ - url: https://www.sympy.org/
+ label: SymPy
+ - url: https://www.cvxpy.org/
+ label: cvxpy
+ - url: https://fenicsproject.org/
+ label: FEniCS
+ - title: Chemistry
+ alttext: A test tube.
+ img: /images/content_images/sc_dom_img/chemistry.svg
+ links:
+ - url: https://cantera.org/
+ label: Cantera
+ - url: https://www.mdanalysis.org/
+ label: MDAnalysis
+ - url: https://github.com/rdkit/rdkit
+ label: RDKit
+ - url: https://www.pybamm.org/
+ label: PyBaMM
+ - title: Geoscience
+ alttext: The Earth.
+ img: /images/content_images/sc_dom_img/geoscience.svg
+ links:
+ - url: https://pangeo.io/
+ label: Pangeo
+ - url: https://simpeg.xyz/
+ label: Simpeg
+ - url: https://github.com/obspy/obspy/wiki
+ label: ObsPy
+ - url: https://www.fatiando.org/
+ label: Fatiando a Terra
+ - title: Geographic Processing
+ alttext: A map.
+ img: /images/content_images/sc_dom_img/GIS.svg
+ links:
+ - url: https://shapely.readthedocs.io/
+ label: Shapely
+ - url: https://geopandas.org/
+ label: GeoPandas
+ - url: https://python-visualization.github.io/folium
+ label: Folium
+ - title: Architecture & Engineering
+ alttext: A microprocessor development board.
+ img: /images/content_images/sc_dom_img/robotics.svg
+ links:
+ - url: https://compas.dev/
+ label: COMPAS
+ - url: https://cityenergyanalyst.com/
+ label: City Energy Analyst
+ - url: https://nortikin.github.io/sverchok/
+ label: Sverchok
+ datascience:
+ intro: "NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:"
+ image1:
+ - img: /images/content_images/ds-landscape.png
+ alttext: Diagram of Python Libraries. The five catagories are 'Extract, Transform, Load', 'Data Exploration', 'Data Modeling', 'Data Evaluation' and 'Data Presentation'.
+ image2:
+ - img: /images/content_images/data-science.png
+ alttext: Diagram of three overlapping circles. The circles are labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
+ examples:
+ - text: "Extract, Transform, Load: [Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor-devs.github.io/pyjanitor/)"
+ - text: "Exploratory analysis: [Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
+ - text: "Model and evaluate: [scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC](https://docs.pymc.io), [spaCy](https://spacy.io)"
+ - text: "Report in a dashboard: [Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://voila.readthedocs.io/)"
+ content:
+ - text: For high data volumes, [Dask](https://dask.org) and [Ray](https://ray.io/) are designed to scale. Stable deployments rely on data versioning ([DVC](https://dvc.org)), experiment tracking ([MLFlow](https://mlflow.org)), and workflow automation ([Airflow](https://airflow.apache.org), [Dagster](https://dagster.io) and [Prefect](https://www.prefect.io)).
+ visualization:
+ images:
+ - url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
+ img: /images/content_images/v_matplotlib.png
+ alttext: A streamplot made in matplotlib
+ - url: https://github.com/yhat/ggpy
+ img: /images/content_images/v_ggpy.png
+ alttext: A scatter-plot graph made in ggpy
+ - url: https://www.journaldev.com/19692/python-plotly-tutorial
+ img: /images/content_images/v_plotly.png
+ alttext: A box-plot made in plotly
+ - url: https://altair-viz.github.io/gallery/streamgraph.html
+ img: /images/content_images/v_altair.png
+ alttext: A streamgraph made in altair
+ - url: https://seaborn.pydata.org
+ img: /images/content_images/v_seaborn.png
+ alttext: A pairplot of two types of graph, a plot-graph and a frequency graph made in seaborn"
+ - url: https://docs.pyvista.org/
+ img: /images/content_images/v_pyvista.png
+ alttext: A 3D volume rendering made in PyVista.
+ - url: https://napari.org
+ img: /images/content_images/v_napari.png
+ alttext: A multi-dimensionan image made in napari.
+ - url: https://vispy.org/gallery/index.html
+ img: /images/content_images/v_vispy.png
+ alttext: A Voronoi diagram made in vispy.
+ content:
+ - text: NumPy is an essential component in the burgeoning [Python visualization landscape](https://pyviz.org/overviews/index.html), which includes [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://napari.org/), and [PyVista](https://docs.pyvista.org/), to name a few.
+ - text: NumPy's accelerated processing of large arrays allows researchers to visualize datasets far larger than native Python could handle.
diff --git a/content/fa/teams/index.md b/content/fa/teams/index.md
new file mode 100644
index 00000000..f5be9dfd
--- /dev/null
+++ b/content/fa/teams/index.md
@@ -0,0 +1,40 @@
+---
+title: NumPy Teams
+sidebar: false
+---
+
+We are an international team on a mission to support scientific and research
+communities worldwide by building quality, open-source software.
+[Join us](/contribute)!
+
+### Maintainers
+
+{{< grid file="maintainers.toml" columns="2 3 4 5" />}}
+
+### Docs team
+
+{{< grid file="docs-team.toml" columns="2 3 4 5" />}}
+
+### Web team
+
+{{< grid file="web-team.toml" columns="2 3 4 5" />}}
+
+### Triage team
+
+{{< grid file="triage-team.toml" columns="2 3 4 5" />}}
+
+### Survey team
+
+{{< grid file="survey-team.toml" columns="2 3 4 5" />}}
+
+### Translations team
+
+{{< grid file="translations-team.toml" columns="2 3 4 5" />}}
+
+### Emeritus maintainers
+
+{{< grid file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
+
+# Governance
+
+For the list of the Steering Council members, please see [here](https://numpy.org/about/).
diff --git a/content/fa/user-survey-2020.md b/content/fa/user-survey-2020.md
new file mode 100644
index 00000000..e822c661
--- /dev/null
+++ b/content/fa/user-survey-2020.md
@@ -0,0 +1,23 @@
+---
+title: 2020 NUMPY COMMUNITY SURVEY
+sidebar: false
+---
+
+In 2020, the NumPy survey team in partnership with students and faculty from a
+Master’s course in Survey Methodology jointly hosted by the University of
+Michigan and the University of Maryland conducted the first official NumPy
+community survey. Over 1,200 users from 75 countries participated to help us
+map out a landscape of the NumPy community and voiced their thoughts about the
+future of the project.
+
+{{< figure >}}
+{{< /figure >}}
+
+**[Download the report](/surveys/NumPy_usersurvey_2020_report.pdf)**
+to take a closer look at the survey findings.
+
+For the highlights, check out
+**[this infographic](https://github.com/numpy/numpy-surveys/blob/master/images/2020NumPysurveyresults_community_infographic.pdf)**.
+
+Ready for a deep dive? Visit **https://numpy.org/user-survey-2020-details/**.
+
diff --git a/content/fa/user-surveys.md b/content/fa/user-surveys.md
new file mode 100644
index 00000000..529a6c1e
--- /dev/null
+++ b/content/fa/user-surveys.md
@@ -0,0 +1,11 @@
+---
+title: NUMPY USER SURVEYS
+sidebar: false
+---
+
+**2020**
+The NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results [here](https://numpy.org/user-survey-2020/).
+
+**2021** The collected data is currently being analyzed.
+
+If you have any questions or suggestions for the past or future surveys, please open an issue [here](https://github.com/numpy/numpy-surveys/issues).
diff --git a/content/fr/404.md b/content/fr/404.md
new file mode 100644
index 00000000..7fe5d79a
--- /dev/null
+++ b/content/fr/404.md
@@ -0,0 +1,8 @@
+---
+title: 404
+sidebar: false
+---
+
+Oops! You've reached a dead end.
+
+If you think something should be here, you can [open an issue](https://github.com/numpy/numpy.org/issues) on GitHub.
diff --git a/content/fr/_index.md b/content/fr/_index.md
new file mode 100644
index 00000000..a89b79ce
--- /dev/null
+++ b/content/fr/_index.md
@@ -0,0 +1,49 @@
+---
+title: NumPy
+---
+
+{{< grid columns="1 2 2 3" >}}
+
+[[item]]
+type = 'card'
+title = 'Puissant Tableaux à N dimension'
+corps = '''
+Rapide et polyvalent, les concepts de vectorisation, d'indexation et de diffusion de NumPy sont les normes actuelles en matière de calcul de tableaux.
+'''
+
+[[item]]
+type = 'card'
+title = 'Outils de calcul numériques'
+corps = '''
+NumPy offre des fonctions mathématiques élaborées, des générateurs de nombres aléatoires, des routines d'algèbre linéaire, des transformées de Fourier, et bien plus encore.
+'''
+
+[[item]]
+type = 'card'
+title = 'Open source'
+body = '''
+Distribué sous une [licence BSD libérale](https://github.com/numpy/numpy/blob/main/LICENSE.txt), NumPy est développé et maintenu [publiquement sur GitHub](https://github.com/numpy/numpy) par un [communauté](/community) dynamique, réactive et diversifiée.
+'''
+
+[[item]]
+type = 'card'
+title = 'Interopérable'
+body = '''
+NumPy supporte un large éventail de plates-formes matérielles et informatiques, et fonctionne bien avec les bibliothèques distribuées, les GPU et matrices creuses.
+'''
+
+[[item]]
+type = 'card'
+title = 'Performant'
+body = '''
+Le cœur de NumPy est du code C bien optimisé. Profitez de la flexibilité de Python avec la vitesse de code compilé.
+'''
+
+[[item]]
+type = 'card'
+title = 'Facile à utiliser'
+corps = '''
+La syntaxe de haut niveau de NumPy la rend accessible et productive pour les programmeurs de tous niveaux ou d'expériences.
+'''
+
+{{< /grid>}}
diff --git a/content/fr/about.md b/content/fr/about.md
new file mode 100644
index 00000000..29e14c04
--- /dev/null
+++ b/content/fr/about.md
@@ -0,0 +1,88 @@
+---
+title: About Us
+sidebar: false
+---
+
+NumPy is an open source project that enables numerical computing with Python. It was created in 2005 building on the early work of the Numeric and Numarray libraries. NumPy will always be 100% open source software and free for all to use. It is released under the liberal terms of the [modified BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt).
+
+NumPy is developed in the open on GitHub, through the consensus of the NumPy and wider scientific Python community. For more information on our governance approach, please see our [Governance Document](https://www.numpy.org/devdocs/dev/governance/index.html).
+
+## Steering Council
+
+The NumPy Steering Council is the project's governing body. Its role is to ensure, through working with and serving the broader NumPy community, the long-term sustainability of the project, both as a software package and community. The NumPy Steering Council currently consists of the following members (in alphabetical order, by last name):
+
+- Sebastian Berg
+- Ralf Gommers
+- Charles Harris
+- Inessa Pawson
+- Matti Picus
+- Stéfan van der Walt
+- Melissa Weber Mendonça
+- Marten van Kerkwijk
+- Nathan Goldbaum
+
+Emeritus:
+
+- Alex Griffing (2015-2017)
+- Allan Haldane (2015-2021)
+- Travis Oliphant (project founder, 2005-2012)
+- Nathaniel Smith (2012-2021)
+- Julian Taylor (2013-2021)
+- Jaime Fernández del Río (2014-2021)
+- Pauli Virtanen (2008-2021)
+- Eric Wieser (2017-2025)
+- Stephan Hoyer (2017-2025)
+
+To contact the NumPy Steering Council, please email numpy-team@googlegroups.com.
+
+## Teams
+
+The NumPy project leadership is actively working on diversifying contribution pathways to the project.
+NumPy currently has the following teams:
+
+- development
+- documentation
+- triage
+- website
+- survey
+- translations
+- sprint mentors
+- optimization
+- funding and grants
+
+See the [Team](/teams) page for more info.
+
+## NumFOCUS Subcommittee
+
+- Charles Harris
+- Ralf Gommers
+- Inessa Pawson
+- Sebastian Berg
+- External member: Thomas Caswell
+
+## Sponsors
+
+{{< sponsors >}}
+
+## Institutional Partners
+
+Institutional Partners are organizations that support the project by employing people that contribute to NumPy as part of their job. Current Institutional Partners include:
+
+- UC Berkeley (Stéfan van der Walt)
+- Quansight (Nathan Goldbaum, Ralf Gommers, Matti Picus, Melissa Weber Mendonça, Mateusz Sokol, Rohit Goswami)
+- NVIDIA (Sebastian Berg)
+
+{{< partners >}}
+
+## Donate
+
+If you have found NumPy useful in your work, research, or company, please consider a donation to the project commensurate with your resources. Any amount helps! All donations will be used strictly to fund the development of NumPy’s open source software, documentation, and community.
+
+NumPy is a Sponsored Project of NumFOCUS, a 501(c)(3) nonprofit charity in the United States. NumFOCUS provides NumPy with fiscal, legal, and administrative support to help ensure the health and sustainability of the project. Visit [numfocus.org](https://numfocus.org) for more information.
+
+Donations to NumPy are managed by [NumFOCUS](https://numfocus.org). For donors in the United States, your gift is tax-deductible to the extent provided by law. As with any donation, you should consult with your tax advisor about your particular tax situation.
+
+NumPy's Steering Council will make the decisions on how to best use any funds received. Technical and infrastructure priorities are documented on the [NumPy Roadmap](https://www.numpy.org/neps/index.html#roadmap).
+
+{{
+
+**Array computing** is based on **arrays** data structures. _Arrays_ are used
+to organize vast amounts of data such that a related set of values can be easily
+sorted, searched, mathematically manipulated, and transformed easily and quickly.
+
+Array computing is _unique_ as it involves operating on the data array _at
+once_. What this means is that any array operation applies to an entire set of
+values in one shot. This vectorized approach provides speed and simplicity by
+enabling programmers to code and operate on aggregates of data, without having
+to use loops of individual scalar operations.
diff --git a/content/fr/case-studies/blackhole-image.md b/content/fr/case-studies/blackhole-image.md
new file mode 100644
index 00000000..ca6f4351
--- /dev/null
+++ b/content/fr/case-studies/blackhole-image.md
@@ -0,0 +1,127 @@
+---
+title: "Case Study: First Image of a Black Hole"
+sidebar: false
+---
+
+{{< figure
+ src='/images/content_images/cs/blackhole.jpg'
+ title='Black Hole M87'
+ alt='black hole image'
+ attribution='(Image Credits: Event Horizon Telescope Collaboration)'
+ attributionlink="https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg"
+>}}
+
+{{< blockquote
+ cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
+ by="Katie Bouman, _Assistant Professor, Computing & Mathematical Sciences, Caltech_"
+>}}
+{{< /blockquote >}}
+
+## A telescope the size of the earth
+
+The [Event Horizon telescope (EHT)](https://eventhorizontelescope.org) is an
+array of eight ground-based radio telescopes forming a computational telescope
+the size of the earth, studing the universe with unprecedented
+sensitivity and resolution. The huge virtual telescope, which uses a technique
+called very-long-baseline interferometry (VLBI), has an angular resolution of
+[20 micro-arcseconds][resolution] — enough to read a newspaper in New York
+from a sidewalk café in Paris!
+
+[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
+
+### Key Goals and Results
+
+- **A New View of the Universe:**
+ The groundwork for the EHT's groundbreaking image had been laid 100 years
+ earlier when [Sir Arthur Eddington][eddington] yielded the first
+ observational support of Einstein's theory of general relativity.
+
+- **The Black Hole:** EHT was trained on a supermassive black hole
+ approximately 55 million light-years from Earth, lying at the center
+ of the galaxy Messier 87 (M87) in the Virgo galaxy cluster. Its mass is
+ 6.5 billion times the Sun's. It had been studied for
+ [over 100 years](https://www.jpl.nasa.gov/news/news.php?feature=7385), but never before
+ had a black hole been visually observed.
+
+- **Comparing Observations to Theory:** From Einstein’s general theory of
+ relativity, scientists expected to find a shadow-like region caused by
+ gravitational bending and capture of light. Scientists could
+ use it to measure the black hole's enormous mass.
+
+[eddington]: https://en.wikipedia.org/wiki/Eddington_experiment
+
+### The Challenges
+
+- **Computational scale**
+
+ EHT poses massive data-processing challenges, including rapid atmospheric
+ phase fluctuations, large recording bandwidth, and telescopes that are
+ widely dissimilar and geographically dispersed.
+
+- **Too much information**
+
+ Each day EHT generates over 350 terabytes of observations, stored on
+ helium-filled hard drives. Reducing the volume and complexity of this much
+ data is enormously difficult.
+
+- **Into the unknown**
+
+ When the goal is to see something never before seen, how can scientists be
+ confident the image is correct?
+
+{{< figure >}}
+{{< /figure >}}
+
+## NumPy’s Role
+
+What if there's a problem with the data? Or perhaps an algorithm relies too
+heavily on a particular assumption. Will the image change drastically if a
+single parameter is changed?
+
+The EHT collaboration met these challenges by having independent teams
+evaluate the data, using both established and cutting-edge image reconstruction
+techniques. When results proved consistent, they were combined to yield the
+first-of-a-kind image of the black hole.
+
+Their work illustrates the role the scientific Python ecosystem plays in
+advancing science through collaborative data analysis.
+
+{{< figure >}}
+{{< /figure >}}
+
+For example, the [`eht-imaging`][ehtim] Python package provides tools for
+simulating and performing image reconstruction on VLBI data.
+NumPy is at the core of array data processing used
+in this package, as illustrated by the partial software
+dependency chart below.
+
+{{< figure >}}
+{{< /figure >}}
+
+[ehtim]: https://github.com/achael/eht-imaging
+
+Besides NumPy, many other packages, such as
+[SciPy](https://scipy.org) and [Pandas](https://pandas.pydata.org), are part of the
+data processing pipeline for imaging the black hole.
+The standard astronomical file formats and time/coordinate transformations
+were handled by [Astropy][astropy], while [Matplotlib][mpl] was used
+in visualizing data throughout the analysis pipeline, including the generation
+of the final image of the black hole.
+
+[astropy]: https://www.astropy.org/
+[mpl]: https://matplotlib.org/
+
+## Summary
+
+The efficient and adaptable n-dimensional array that is NumPy's central feature
+enabled researchers to manipulate large numerical datasets, providing a
+foundation for the first-ever image of a black hole. A landmark moment in
+science, it gives stunning visual evidence of Einstein’s theory. The
+achievement encompasses not only technological breakthroughs but also
+international collaboration among over 200 scientists and some of the world's
+best radio observatories. Innovative algorithms and data processing
+techniques, improving upon existing astronomical models, helped unfold a
+mystery of the universe.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/fr/case-studies/cricket-analytics.md b/content/fr/case-studies/cricket-analytics.md
new file mode 100644
index 00000000..ff64c20a
--- /dev/null
+++ b/content/fr/case-studies/cricket-analytics.md
@@ -0,0 +1,146 @@
+---
+title: "Case Study: Cricket Analytics, the game changer!"
+sidebar: false
+---
+
+{{< figure
+ src='/images/content_images/cs/ipl-stadium.png'
+ >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="https://www.scoopwhoop.com/sports/ms-dhoni/"
+ by="M S Dhoni, _International Cricket Player, ex-captain, Indian Team, plays for Chennai Super Kings in IPL_"
+>}}
+{{< /blockquote >}}
+
+## About Cricket
+
+It would be an understatement to state that Indians love cricket. The game is
+played in just about every nook and cranny of India, rural or urban, popular
+with the young and the old alike, connecting billions in India unlike any other sport.
+Cricket enjoys lots of media attention. There is a significant amount of
+[money](https://www.statista.com/topics/4543/indian-premier-league-ipl/) and
+fame at stake. Over the last several years, technology has literally been a game
+changer. Audiences are spoilt for choice with streaming media, tournaments,
+affordable access to mobile based live cricket watching, and more.
+
+The Indian Premier League (IPL) is a professional Twenty20 cricket
+league, founded in 2008. It is one of the most attended cricketing events in
+the world, valued at [$6.7 billion](https://en.wikipedia.org/wiki/Indian_Premier_League)
+in 2019.
+
+Cricket is a game of numbers - the runs scored by a batsman, the wickets taken
+by a bowler, the matches won by a cricket team, the number of times a batsman
+responds in a certain way to a kind of bowling attack, etc. The capability to
+dig into cricketing numbers for both improving performance and studying
+the business opportunities, overall market, and economics of cricket via powerful
+analytics tools, powered by numerical computing software such as NumPy, is a big
+deal. Cricket analytics provides interesting insights into the game and
+predictive intelligence regarding game outcomes.
+
+Today, there are rich and almost infinite troves of cricket game records and
+statistics available, e.g., ESPN
+cricinfo and
+[cricsheet](https://cricsheet.org). These and several such cricket databases
+have been used for cricket
+analysis
+using the latest machine learning and predictive modelling algorithms.
+Media and entertainment platforms along with professional sports bodies
+associated with the game use technology and analytics for determining key
+metrics for improving match winning chances:
+
+- batting performance moving average,
+- score forecasting,
+- gaining insights into fitness and performance of a player against different opposition,
+- player contribution to wins and losses for making strategic decisions on team composition
+
+{{< figure >}}
+{{< /figure >}}
+
+### Key Data Analytics Objectives
+
+- Sports data analytics are used not only in cricket but many other
+ sports for
+ improving the overall team performance and maximizing winning chances.
+- Real-time data analytics can help in gaining insights even during the game
+ for changing tactics by the team and by associated businesses for economic
+ benefits and growth.
+- Besides historical analysis, predictive models are
+ harnessed to determine the possible match outcomes that require significant
+ number crunching and data science know-how, visualization tools and capability
+ to include newer observations in the analysis.
+
+{{< figure >}}
+{{< /figure >}}
+
+### The Challenges
+
+- **Data Cleaning and preprocessing**
+
+ IPL has expanded cricket beyond the classic test match format to a much
+ larger scale. The number of matches played every season across various
+ formats has increased and so has the data, the algorithms, newer sports data
+ analysis technologies and simulation models. Cricket data analysis requires
+ field mapping, player tracking, ball tracking, player shot analysis, and
+ several other aspects involved in how the ball is delivered, its angle, spin,
+ velocity, and trajectory. All these factors together have increased the
+ complexity of data cleaning and preprocessing.
+
+- **Dynamic Modeling**
+
+ In cricket, just like any other sport,
+ there can be a large number of variables related to tracking various numbers
+ of players on the field, their attributes, the ball, and several possibilities
+ of potential actions. The complexity of data analytics and modeling is
+ directly proportional to the kind of predictive questions that are put forth
+ during analysis and are highly dependent on data representation and the
+ model. Things get even more challenging in terms of computation, data
+ comparisons when dynamic cricket play predictions are sought such as what
+ would have happened if the batsman had hit the ball at a different angle or
+ velocity.
+
+- **Predictive Analytics Complexity**
+
+ Much of the decision making in cricket is based on questions such as "how
+ often does a batsman play a certain kind of shot if the ball delivery is of a
+ particular type", or "how does a bowler change his line and length if the
+ batsman responds to his delivery in a certain way".
+ This kind of predictive analytics query requires highly granular dataset
+ availability and the capability to synthesize data and create generative
+ models that are highly accurate.
+
+## NumPy’s Role in Cricket Analytics
+
+Sports Analytics is a thriving field. Many researchers and companies
+[use NumPy](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx)
+and other PyData packages like Scikit-learn, SciPy, Matplotlib, and Jupyter,
+besides using the latest machine learning and AI techniques. NumPy has been used
+for various kinds of cricket related sporting analytics such as:
+
+- **Statistical Analysis:** NumPy's numerical capabilities help estimate the
+ statistical significance of observational data or match events in the context
+ of various player and game tactics, estimating the game outcome by comparison
+ with a generative or static model.
+ [Causal analysis](https://amplitude.com/blog/2017/01/19/causation-correlation)
+ and [big data approaches](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996805/)
+ are used for tactical analysis.
+
+- **Data Visualization:** Data graphing and visualization provide useful insights into relationship between various datasets.
+
+## Summary
+
+Sports Analytics is a game changer when it comes to how professional games are
+played, especially how strategic decision making happens, which until recently
+was primarily done based on “gut feeling" or adherence to past traditions. NumPy
+forms a solid foundation for a large set of Python packages which provide higher
+level functions related to data analytics, machine learning, and AI algorithms.
+These packages are widely deployed to gain real-time insights that help in
+decision making for game-changing outcomes, both on field as well as to draw
+inferences and drive business around the game of cricket. Finding out the
+hidden parameters, patterns, and attributes that lead to the outcome of a
+cricket match helps the stakeholders to take notice of game insights that are
+otherwise hidden in numbers and statistics.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/fr/case-studies/deeplabcut-dnn.md b/content/fr/case-studies/deeplabcut-dnn.md
new file mode 100644
index 00000000..60b48522
--- /dev/null
+++ b/content/fr/case-studies/deeplabcut-dnn.md
@@ -0,0 +1,154 @@
+---
+title: "Case Study: DeepLabCut 3D Pose Estimation"
+sidebar: false
+---
+
+{{< figure >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="https://news.harvard.edu/gazette/story/newsplus/harvard-researchers-awarded-czi-open-source-award/"
+ by="Alexander Mathis, _Assistant Professor, École polytechnique fédérale de Lausanne_ ([EPFL](https://www.epfl.ch/en/))"
+>}}
+{{< /blockquote >}}
+
+## About DeepLabCut
+
+[DeepLabCut](https://github.com/DeepLabCut/DeepLabCut) is an open source toolbox that empowers researchers at hundreds of institutions worldwide to track behaviour of laboratory animals, with very little training data, at human-level accuracy. With DeepLabCut technology, scientists can delve deeper into the scientific understanding of motor control and behavior across animal species and timescales.
+
+Several areas of research, including neuroscience, medicine, and biomechanics, use data from tracking animal movement. DeepLabCut helps in understanding what humans and other animals are doing by parsing actions that have been recorded on film. Using automation for laborious tasks of tagging and monitoring, along with deep neural network based data analysis, DeepLabCut makes scientific studies involving observing animals, such as primates, mice, fish, flies etc., much faster and more accurate.
+
+{{< figure >}}
+{{< /figure >}}
+
+DeepLabCut's non-invasive behavioral tracking of animals by extracting the poses of animals is crucial for scientific pursuits in domains such as biomechanics, genetics, ethology & neuroscience. Measuring animal poses non-invasively from video - without markers - in dynamically changing backgrounds is computationally challenging, both technically as well as in terms of resource needs and training data required.
+
+DeepLabCut allows researchers to estimate the pose of the subject, efficiently enabling them to quantify the behavior through a Python based software toolkit. With DeepLabCut, researchers can identify distinct frames from videos, digitally label specific body parts in a few dozen frames with a tailored GUI, and then the deep learning based pose estimation architectures in DeepLabCut learn how to pick out those same features in the rest of the video and in other similar videos of animals. It works across species of animals, from common laboratory animals such as flies and mice to more unusual animals like [cheetahs][cheetah-movement].
+
+[cheetah-movement]: https://www.technologynetworks.com/neuroscience/articles/interview-a-deeper-cut-into-behavior-with-mackenzie-mathis-327618
+
+DeepLabCut uses a principle called [transfer learning](https://arxiv.org/pdf/1909.11229), which greatly reduces the amount of training data required and speeds up the convergence of the training period. Depending on the needs, users can pick different network architectures that provide faster inference (e.g. MobileNetV2), which can also be combined with real-time experimental feedback. DeepLabCut originally used the feature detectors from a top-performing human pose estimation architecture, called [DeeperCut](https://arxiv.org/abs/1605.03170), which inspired the name. The package now has been significantly changed to include additional architectures, augmentation methods, and a full front-end user experience. Furthermore, to support large-scale biological experiments DeepLabCut provides active learning capabilities so that users can increase the training set over time to cover edge cases and make their pose estimation algorithm robust within the specific context.
+
+Recently, the [DeepLabCut model zoo](https://deeplabcut.github.io/DeepLabCut/docs/ModelZoo.html) was introduced, which provides pre-trained models for various species and experimental conditions from facial analysis in primates to dog posture. This can be run for instance in the cloud without any labeling of new data, or neural network training, and no programming experience is necessary.
+
+### Key Goals and Results
+
+- **Automation of animal pose analysis for scientific studies:**
+
+ The primary objective of DeepLabCut technology is to measure and track posture
+ of animals in a diverse settings. This data can be used, for example, in
+ neuroscience studies to understand how the brain controls movement, or to
+ elucidate how animals socially interact. Researchers have observed a
+ [tenfold performance boost](https://www.biorxiv.org/content/10.1101/457242v1)
+ with DeepLabCut. Poses can be inferred offline at up to 1200 frames per second
+ (FPS).
+
+- **Creation of an easy-to-use Python toolkit for pose estimation:**
+
+ DeepLabCut wanted to share their animal pose-estimation technology in the form
+ of an easy to use tool that can be adopted by researchers easily. So they have
+ created a complete, easy-to-use Python toolbox with project management features
+ as well. These enable not only automation of pose-estimation but also
+ managing the project end-to-end by helping the DeepLabCut Toolkit user right
+ from the dataset collection stage to creating shareable and reusable analysis
+ pipelines.
+
+ Their [toolkit][DLCToolkit] is now available as open source.
+
+ A typical DeepLabCut Workflow includes:
+
+ - creation and refining of training sets via active learning
+ - creation of tailored neural networks for specific animals and scenarios
+ - code for large-scale inference on videos
+ - draw inferences using integrated visualization tools
+
+{{< figure >}}
+{{< /figure >}}
+
+[DLCToolkit]: https://github.com/DeepLabCut/DeepLabCut
+
+### The Challenges
+
+- **Speed**
+
+ Fast processing of animal behavior videos in order to measure their behavior
+ and at the same time make scientific experiments more efficient, accurate.
+ Extracting detailed animal poses for laboratory experiments, without
+ markers, in dynamically changing backgrounds, can be challenging, both
+ technically as well as in terms of resource needs and training data required.
+ Coming up with a tool that is easy to use without the need for skills such
+ as computer vision expertise that enables scientists to do research in more
+ real-world contexts, is a non-trivial problem to solve.
+
+- **Combinatorics**
+
+ Combinatorics involves assembly and integration of movement of multiple
+ limbs into individual animal behavior. Assembling keypoints and their
+ connections into individual animal movements and linking them across time
+ is a complex process that requires heavy-duty numerical analysis, especially
+ in case of multi-animal movement tracking in experiment videos.
+
+- **Data Processing**
+
+ Last but not the least, array manipulation - processing large stacks of
+ arrays corresponding to various images, target tensors and keypoints is
+ fairly challenging.
+
+{{< figure >}}
+{{< /figure >}}
+
+## NumPy's Role in meeting Pose Estimation Challenges
+
+NumPy addresses DeepLabCut technology's core need of numerical computations at
+high speed for behavioural analytics. Besides NumPy, DeepLabCut employs
+various Python software that utilize NumPy at their core, such as
+[SciPy](https://www.scipy.org), [Pandas](https://pandas.pydata.org),
+[matplotlib](https://matplotlib.org),
+[Tensorpack](https://github.com/tensorpack/tensorpack),
+[imgaug](https://github.com/aleju/imgaug),
+[scikit-learn](https://scikit-learn.org/stable/),
+[scikit-image](https://scikit-image.org) and
+[Tensorflow](https://www.tensorflow.org).
+
+The following features of NumPy played a key role in addressing the image
+processing, combinatorics requirements and need for fast computation in
+DeepLabCut pose estimation algorithms:
+
+- Vectorization
+- Masked Array Operations
+- Linear Algebra
+- Random Sampling
+- Reshaping of large arrays
+
+DeepLabCut utilizes NumPy’s array capabilities throughout the workflow offered
+by the toolkit. In particular, NumPy is used for sampling distinct frames for
+human annotation labeling, and for writing, editing and processing annotation
+data. Within TensorFlow the neural network is trained by DeepLabCut technology
+over thousands of iterations to predict the ground truth annotations from
+frames. For this purpose, target densities (scoremaps) are created to cast pose
+estimation as a image-to-image translation problem. To make the neural networks
+robust, data augmentation is employed, which requires the calculation of target
+scoremaps subject to various geometric and image processing steps. To make
+training fast, NumPy’s vectorization capabilities are leveraged. For inference,
+the most likely predictions from target scoremaps need to extracted and one
+needs to efficiently “link predictions to assemble individual animals”.
+
+{{< figure >}}
+{{< /figure >}}
+
+## Summary
+
+Observing and efficiently describing behavior is a core tenant of modern
+ethology, neuroscience, medicine, and technology.
+[DeepLabCut](https://static1.squarespace.com/static/57f6d51c9f74566f55ecf271/t/5eab5ff7999bf94756b27481/1588289532243/NathMathis2019.pdf)
+allows researchers to estimate the pose of the subject, efficiently enabling
+them to quantify the behavior. With only a small set of training images,
+the DeepLabCut Python toolbox allows training a neural network to within human
+level labeling accuracy, thus expanding its application to not only behavior
+analysis in the laboratory, but to potentially also in sports, gait analysis,
+medicine and rehabilitation studies. Complex combinatorics, data processing
+challenges faced by DeepLabCut algorithms are addressed through the use of
+NumPy's array manipulation capabilities.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/fr/case-studies/gw-discov.md b/content/fr/case-studies/gw-discov.md
new file mode 100644
index 00000000..2ff32510
--- /dev/null
+++ b/content/fr/case-studies/gw-discov.md
@@ -0,0 +1,144 @@
+---
+title: "Case Study: Discovery of Gravitational Waves"
+sidebar: false
+---
+
+{{< figure >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
+ by="David Shoemaker, _LIGO Scientific Collaboration_" >}}
+{{< /blockquote >}}
+
+## About [Gravitational Waves](https://www.nationalgeographic.com/news/2017/10/what-are-gravitational-waves-ligo-astronomy-science/) and [LIGO](https://www.ligo.caltech.edu)
+
+Gravitational waves are ripples in the fabric of space and time, generated by
+cataclysmic events in the universe such as collision and merging of two black
+holes or coalescing binary stars or supernovae. Observing GW can not only help
+in studying gravity but also in understanding some of the obscure phenomena in
+the distant universe and its impact.
+
+The [Laser Interferometer Gravitational-Wave Observatory (LIGO)](https://www.ligo.caltech.edu)
+was designed to open the field of gravitational-wave astrophysics through the
+direct detection of gravitational waves predicted by Einstein’s General Theory
+of Relativity. It comprises two widely separated interferometers within the
+United States — one in Hanford, Washington and the other in Livingston,
+Louisiana — operated in unison to detect gravitational waves. Each of them has
+multi-kilometer-scale gravitational wave detectors that use laser
+interferometry. The LIGO Scientific Collaboration (LSC), is a group of more
+than 1000 scientists from universities around the United States and in 14
+other countries supported by more than 90 universities and research institutes;
+approximately 250 students actively contributing to the collaboration. The new
+LIGO discovery is the first observation of gravitational waves themselves,
+made by measuring the tiny disturbances the waves make to space and time as
+they pass through the earth. It has opened up new astrophysical frontiers
+that explore the warped side of the universe—objects and phenomena that are
+made from warped spacetime.
+
+### Key Objectives
+
+- Though its [mission](https://www.ligo.caltech.edu/page/what-is-ligo) is to
+ detect gravitational waves from some of the most violent and energetic
+ processes in the Universe, the data LIGO collects may have far-reaching
+ effects on many areas of physics including gravitation, relativity,
+ astrophysics, cosmology, particle physics, and nuclear physics.
+- Crunch observed data via numerical relativity computations that involves
+ complex maths in order to discern signal from noise, filter out relevant
+ signal and statistically estimate significance of observed data
+- Data visualization so that the binary / numerical results can be
+ comprehended.
+
+### The Challenges
+
+- **Computation**
+
+ Gravitational Waves are hard to detect as they produce a very small effect
+ and have tiny interaction with matter. Processing and analyzing all of
+ LIGO's data requires a vast computing infrastructure.After taking care of
+ noise, which is billions of times of the signal, there is still very
+ complex relativity equations and huge amounts of data which present a
+ computational challenge:
+ [O(10^7) CPU hrs needed for binary merger analyses](https://youtu.be/7mcHknWWzNI)
+ spread on 6 dedicated LIGO clusters
+
+- **Data Deluge**
+
+ As observational devices become more sensitive and reliable, the challenges
+ posed by data deluge and finding a needle in a haystack rise multi-fold.
+ LIGO generates terabytes of data every day! Making sense of this data
+ requires an enormous effort for each and every detection. For example, the
+ signals being collected by LIGO must be matched by supercomputers against
+ hundreds of thousands of templates of possible gravitational-wave signatures.
+
+- **Visualization**
+
+ Once the obstacles related to understanding Einstein’s equations well
+ enough to solve them using supercomputers are taken care of, the next big
+ challenge was making data comprehensible to the human brain. Simulation
+ modeling as well as signal detection requires effective visualization
+ techniques. Visualization also plays a role in lending more credibility
+ to numerical relativity in the eyes of pure science aficionados, who did
+ not give enough importance to numerical relativity until imaging and
+ simulations made it easier to comprehend results for a larger audience.
+ Speed of complex computations and rendering, re-rendering images and
+ simulations using latest experimental inputs and insights can be a time
+ consuming activity that challenges researchers in this domain.
+
+{{< figure >}}
+{{< /figure >}}
+
+## NumPy’s Role in the Detection of Gravitational Waves
+
+Gravitational waves emitted from the merger cannot be computed using any
+technique except brute force numerical relativity using supercomputers.
+The amount of data LIGO collects is as incomprehensibly large as gravitational
+wave signals are small.
+
+NumPy, the standard numerical analysis package for Python, was utilized by
+the software used for various tasks performed during the GW detection project
+at LIGO. NumPy helped in solving complex maths and data manipulation at high
+speed. Here are some examples:
+
+- [Signal Processing](https://www.uv.es/virgogroup/Denoising_ROF.html): Glitch
+ detection, [Noise identification and Data Characterization](https://ep2016.europython.eu/media/conference/slides/pyhton-in-gravitational-waves-research-communities.pdf)
+ (NumPy, scikit-learn, scipy, matplotlib, pandas, pyCharm)
+- Data retrieval: Deciding which data can be analyzed, figuring out whether it
+ contains a signal - needle in a haystack
+- Statistical analysis: estimate the statistical significance of observational
+ data, estimating the signal parameters (e.g. masses of stars, spin velocity,
+ and distance) by comparison with a model.
+- Visualization of data
+ - Time series
+ - Spectrograms
+- Compute Correlations
+- Key [Software](https://github.com/lscsoft) developed in GW data analysis
+ such as [GwPy](https://gwpy.github.io/docs/stable/overview.html) and
+ [PyCBC](https://pycbc.org) uses NumPy and AstroPy under the hood for
+ providing object based interfaces to utilities, tools, and methods for
+ studying data from gravitational-wave detectors.
+
+{{< figure >}}
+{{< /figure >}}
+
+----
+
+{{< figure >}}
+{{< /figure >}}
+
+## Summary
+
+GW detection has enabled researchers to discover entirely unexpected phenomena
+while providing new insight into many of the most profound astrophysical
+phenomena known. Number crunching and data visualization is a crucial step
+that helps scientists gain insights into data gathered from the scientific
+observations and understand the results. The computations are complex and
+cannot be comprehended by humans unless it is visualized using computer
+simulations that are fed with the real observed data and analysis. NumPy
+along with other Python packages such as matplotlib, pandas, and scikit-learn
+is [enabling researchers](https://www.gw-openscience.org/events/GW150914/) to
+answer complex questions and discover new horizons in our understanding of the
+universe.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/fr/citing-numpy.md b/content/fr/citing-numpy.md
new file mode 100644
index 00000000..60925013
--- /dev/null
+++ b/content/fr/citing-numpy.md
@@ -0,0 +1,35 @@
+---
+title: Citing NumPy
+sidebar: false
+---
+
+If NumPy has been significant in your research, and you would like to acknowledge the project in your academic publication, we suggest citing the following paper:
+
+- Harris, C.R., Millman, K.J., van der Walt, S.J. et al. _Array programming with NumPy_. Nature 585, 357–362 (2020). DOI: [10.1038/s41586-020-2649-2](https://doi.org/10.1038/s41586-020-2649-2). ([Publisher link](https://www.nature.com/articles/s41586-020-2649-2)).
+
+_In BibTeX format:_
+
+ ```
+ @Article{ harris2020array,
+ title = {Array programming with {NumPy}},
+ author = {Charles R. Harris and K. Jarrod Millman and St{\'{e}}fan J.
+ van der Walt and Ralf Gommers and Pauli Virtanen and David
+ Cournapeau and Eric Wieser and Julian Taylor and Sebastian
+ Berg and Nathaniel J. Smith and Robert Kern and Matti Picus
+ and Stephan Hoyer and Marten H. van Kerkwijk and Matthew
+ Brett and Allan Haldane and Jaime Fern{\'{a}}ndez del
+ R{\'{i}}o and Mark Wiebe and Pearu Peterson and Pierre
+ G{\'{e}}rard-Marchant and Kevin Sheppard and Tyler Reddy and
+ Warren Weckesser and Hameer Abbasi and Christoph Gohlke and
+ Travis E. Oliphant},
+ year = {2020},
+ month = sep,
+ journal = {Nature},
+ volume = {585},
+ number = {7825},
+ pages = {357--362},
+ doi = {10.1038/s41586-020-2649-2},
+ publisher = {Springer Science and Business Media {LLC}},
+ url = {https://doi.org/10.1038/s41586-020-2649-2}
+ }
+ ```
diff --git a/content/fr/code-of-conduct.md b/content/fr/code-of-conduct.md
new file mode 100644
index 00000000..d5819b62
--- /dev/null
+++ b/content/fr/code-of-conduct.md
@@ -0,0 +1,83 @@
+---
+title: NumPy Code of Conduct
+sidebar: false
+aliases:
+ - /conduct.html
+---
+
+### Introduction
+
+This Code of Conduct applies to all spaces managed by the NumPy project, including all public and private mailing lists, issue trackers, wikis, blogs, X, and any other communication channel used by our community. The NumPy project does not organise in-person events, however events related to our community should have a code of conduct similar in spirit to this one.
+
+This Code of Conduct should be honored by everyone who participates in the NumPy community formally or informally, or claims any affiliation with the project, in any project-related activities and especially when representing the project, in any role.
+
+This code is not exhaustive or complete. It serves to distill our common understanding of a collaborative, shared environment and goals. Please try to follow this code in spirit as much as in letter, to create a friendly and productive environment that enriches the surrounding community.
+
+### Specific Guidelines
+
+We strive to:
+
+1. Be open. We invite anyone to participate in our community. We prefer to use public methods of communication for project-related messages, unless discussing something sensitive. This applies to messages for help or project-related support, too; not only is a public support request much more likely to result in an answer to a question, it also ensures that any inadvertent mistakes in answering are more easily detected and corrected.
+2. Be empathetic, welcoming, friendly, and patient. We work together to resolve conflict, and assume good intentions. We may all experience some frustration from time to time, but we do not allow frustration to turn into a personal attack. A community where people feel uncomfortable or threatened is not a productive one.
+3. Be collaborative. Our work will be used by other people, and in turn we will depend on the work of others. When we make something for the benefit of the project, we are willing to explain to others how it works, so that they can build on the work to make it even better. Any decision we make will affect users and colleagues, and we take those consequences seriously when making decisions.
+4. Be inquisitive. Nobody knows everything! Asking questions early avoids many problems later, so we encourage questions, although we may direct them to the appropriate forum. We will try hard to be responsive and helpful.
+5. Be careful in the words that we choose. We are careful and respectful in our communication, and we take responsibility for our own speech. Be kind to others. Do not insult or put down other participants. We will not accept harassment or other exclusionary behaviour, such as:
+ - Violent threats or language directed against another person.
+ - Sexist, racist, or otherwise discriminatory jokes and language.
+ - Posting sexually explicit or violent material.
+ - Posting (or threatening to post) other people’s personally identifying information (“doxing”).
+ - Sharing private content, such as emails sent privately or non-publicly, or unlogged forums such as IRC channel history, without the sender’s consent.
+ - Personal insults, especially those using racist or sexist terms.
+ - Unwelcome sexual attention.
+ - Excessive profanity. Please avoid swearwords; people differ greatly in their sensitivity to swearing.
+ - Repeated harassment of others. In general, if someone asks you to stop, then stop.
+ - Advocating for, or encouraging, any of the above behaviour.
+
+### Diversity Statement
+
+The NumPy project welcomes and encourages participation by everyone. We are committed to being a community that everyone enjoys being part of. Although we may not always be able to accommodate each individual’s preferences, we try our best to treat everyone kindly.
+
+No matter how you identify yourself or how others perceive you: we welcome you. Though no list can hope to be comprehensive, we explicitly honour diversity in: age, culture, ethnicity, genotype, gender identity or expression, language, national origin, neurotype, phenotype, political beliefs, profession, race, religion, sexual orientation, socioeconomic status, subculture and technical ability, to the extent that these do not conflict with this code of conduct.
+
+Though we welcome people fluent in all languages, NumPy development is conducted in English.
+
+Standards for behaviour in the NumPy community are detailed in the Code of Conduct above. Participants in our community should uphold these standards in all their interactions and help others to do so as well (see next section).
+
+### Reporting Guidelines
+
+We know that it is painfully common for internet communication to start at or devolve into obvious and flagrant abuse. We also recognize that sometimes people may have a bad day, or be unaware of some of the guidelines in this Code of Conduct. Please keep this in mind when deciding on how to respond to a breach of this Code.
+
+For clearly intentional breaches, report those to the Code of Conduct Committee (see below). For possibly unintentional breaches, you may reply to the person and point out this code of conduct (either in public or in private, whatever is most appropriate). If you would prefer not to do that, please feel free to report to the Code of Conduct Committee directly, or ask the Committee for advice, in confidence.
+
+You can report issues to the NumPy Code of Conduct Committee at numpy-conduct@googlegroups.com.
+
+Currently, the Committee consists of:
+
+- Stefan van der Walt
+- Melissa Weber Mendonça
+- Rohit Goswami
+
+If your report involves any members of the Committee, or if they feel they have a conflict of interest in handling it, then they will recuse themselves from considering your report. Alternatively, if for any reason you feel uncomfortable making a report to the Committee, then you can also contact senior NumFOCUS staff at [conduct@numfocus.org](https://numfocus.org/code-of-conduct#persons-responsible).
+
+### Incident reporting resolution & Code of Conduct enforcement
+
+_This section summarizes the most important points, more details can be found in_ [NumPy Code of Conduct - How to follow up on a report](report-handling-manual).
+
+We will investigate and respond to all complaints. The NumPy Code of Conduct Committee and the NumPy Steering Committee (if involved) will protect the identity of the reporter, and treat the content of complaints as confidential (unless the reporter agrees otherwise).
+
+In case of severe and obvious breaches, e.g. personal threat or violent, sexist or racist language, we will immediately disconnect the originator from NumPy communication channels; please see the manual for details.
+
+In cases not involving clear severe and obvious breaches of this Code of Conduct the process for acting on any received Code of Conduct violation report will be:
+
+1. acknowledge report is received,
+2. reasonable discussion/feedback,
+3. mediation (if feedback didn’t help, and only if both reporter and reportee agree to this),
+4. enforcement via transparent decision (see [Resolutions](report-handling-manual/#resolutions)) by the Code of Conduct Committee.
+
+The Committee will respond to any report as soon as possible, and at most within 72 hours.
+
+### Endnotes
+
+We are thankful to the groups behind the following documents, from which we drew content and inspiration:
+
+- [The SciPy Code of Conduct](https://docs.scipy.org/doc/scipy/dev/conduct/code_of_conduct.html)
diff --git a/content/fr/community.md b/content/fr/community.md
new file mode 100644
index 00000000..714074ff
--- /dev/null
+++ b/content/fr/community.md
@@ -0,0 +1,72 @@
+---
+title: Communauté
+sidebar: false
+---
+
+NumPy is a community-driven open source project developed by a diverse group of [contributors](/teams/). The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the [NumPy Code of Conduct](/code-of-conduct) for guidance on how to interact with others in a way that makes the community thrive.
+
+We offer several communication channels to learn, share your knowledge and connect with others within the NumPy community.
+
+## Participate online
+
+The following are ways to engage directly with the NumPy project and community.
+_Please note that we encourage users and community members to support each other
+for usage questions - see [Get Help](/gethelp)._
+
+### [NumPy mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion)
+
+This list is the main forum for longer-form discussions, like adding new features to NumPy, making changes to the NumPy Roadmap, and all kinds of project-wide decision making.
+Announcements about NumPy, such as for releases, developer meetings, sprints or
+conference talks are also made on this list.
+
+On this list please use bottom posting, reply to the list (rather than to
+another sender), and don't reply to digests. A searchable archive of this list
+is available [here](https://mail.python.org/archives/list/numpy-discussion@python.org/).
+
+***
+
+### [GitHub issue tracker](https://github.com/numpy/numpy/issues)
+
+- For bug reports (e.g. "`np.arange(3).shape` returns `(5,)`, when it should return `(3,)`");
+- documentation issues (e.g. "I found this section unclear");
+- and feature requests (e.g. "I would like to have a new interpolation method in `np.percentile`").
+
+_Please note that GitHub is not the right place to report a security vulnerability. If you think you have found a security vulnerability in NumPy, please report it [here](https://tidelift.com/docs/security)._
+
+***
+
+### [Slack](https://numpy-team.slack.com)
+
+A real-time chat room to ask questions about _contributing_ to NumPy.
+This is a private space, specifically meant for people who are hesitant to
+bring up their questions or ideas on a large public mailing list or GitHub.
+Please see
+[here](https://numpy.org/devdocs/dev/index.html#contributing-to-numpy) for more
+details and how to get an invite.
+
+## Study Groups and Meetups
+
+If you would like to find a local meetup or study group to learn more about NumPy and the wider ecosystem of Python packages for data science and scientific computing, we recommend exploring the [PyData meetups](https://www.meetup.com/pro/pydata/) (150+ meetups, 100,000+ members).
+
+NumPy also organizes in-person sprints for its team and interested contributors occasionally. These are typically planned several months in advance and will be announced on the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion).
+
+## Conferences
+
+The NumPy project doesn't organize its own conferences. The conferences that have traditionally been most popular with NumPy maintainers, contributors and users are the SciPy and PyData conference series:
+
+- SciPy US
+- EuroSciPy
+- SciPy Latin America
+- SciPy India
+- SciPyData Japon
+- PyData conferences (15-20 events a year spread over many countries)
+
+Many of these conferences include tutorial days that cover NumPy and/or sprints where you can learn how to contribute to NumPy or related open source projects.
+
+## Join the NumPy community
+
+To thrive, the NumPy project needs your expertise and enthusiasm. Not a coder? Not a problem! There are many ways to contribute to NumPy.
+
+If you are interested in becoming a NumPy contributor (yay!) we recommend checking out our [Contribute](/contribute) page.
+
+Also, feel free to stop by and say hi at one of our community meetings. To keep track of them, check out our events calendar [here](https://scientific-python.org/calendars/).
diff --git a/content/fr/config.yaml b/content/fr/config.yaml
new file mode 100644
index 00000000..d0d55066
--- /dev/null
+++ b/content/fr/config.yaml
@@ -0,0 +1,109 @@
+languageName: English
+params:
+ description: Why NumPy? Powerful n-dimensional arrays. Numerical computing tools. Interoperable. Performant. Open source.
+ navbarlogo:
+ image: logo.svg
+ text: NumPy
+ link: /
+ hero:
+ # Main hero title
+ title: NumPy
+ # Hero subtitle (optional)
+ subtitle: The fundamental package for scientific computing with Python
+ # Button text
+ buttontext: "Latest release: NumPy 2.2. View all releases"
+ # Where the main hero button links to
+ buttonlink: "/news/#releases"
+ # Hero image (from static/images/___)
+ image: logo.svg
+ shell:
+ title: placeholder
+ intro:
+ - title: Try NumPy
+ text: Use the interactive shell to try NumPy in the browser
+ docslink: Don't forget to check out the docs.
+ casestudies:
+ title: CASE STUDIES
+ features:
+ - title: First Image of a Black Hole
+ text: How NumPy, together with libraries like SciPy and Matplotlib that depend on NumPy, enabled the Event Horizon Telescope to produce the first ever image of a black hole
+ img: /images/content_images/case_studies/blackhole.png
+ alttext: First image of a black hole. It is an orange circle in a black background.
+ url: /case-studies/blackhole-image
+ - title: Detection of Gravitational Waves
+ text: In 1916, Albert Einstein predicted gravitational waves; 100 years later their existence was confirmed by LIGO scientists using NumPy.
+ img: /images/content_images/case_studies/gravitional.png
+ alttext: Two orbs orbiting each other. They are displacing gravity around them.
+ url: /case-studies/gw-discov
+ - title: Sports Analytics
+ text: Cricket Analytics is changing the game by improving player and team performance through statistical modelling and predictive analytics. NumPy enables many of these analyses.
+ img: /images/content_images/case_studies/sports.jpg
+ alttext: Cricket ball on green field.
+ url: /case-studies/cricket-analytics
+ - title: Pose Estimation using deep learning
+ text: DeepLabCut uses NumPy for accelerating scientific studies that involve observing animal behavior for better understanding of motor control, across species and timescales.
+ img: /images/content_images/case_studies/deeplabcut.png
+ alttext: Cheetah pose analysis
+ url: /case-studies/deeplabcut-dnn
+ tabs:
+ title: ECOSYSTEM
+ section5: false
+ navbar:
+ - title: Install
+ url: /install
+ - title: Documentation
+ url: https://numpy.org/doc/stable
+ - title: Learn
+ url: /learn
+ - title: Communauté
+ url: /community
+ - title: About Us
+ url: /about
+ - title: News
+ url: /news
+ - title: Contribute
+ url: /contribute
+ footer:
+ logo: logo.svg
+ socialmediatitle: ""
+ socialmedia:
+ - link: https://github.com/numpy/numpy
+ icon: github
+ - link: https://www.youtube.com/@NumPy_team
+ icon: youtube
+ quicklinks:
+ column1:
+ title: ""
+ links:
+ - text: Install
+ link: /install
+ - text: Documentation
+ link: https://numpy.org/doc/stable
+ - text: Learn
+ link: /learn
+ - text: Citing NumPy
+ link: /citing-numpy
+ - text: Roadmap
+ link: https://numpy.org/neps/roadmap.html
+ column2:
+ links:
+ - text: About us
+ link: /about
+ - text: Communauté
+ link: /community
+ - text: User surveys
+ link: /user-surveys
+ - text: Contribute
+ link: /contribute
+ - text: Code of conduct
+ link: /code-of-conduct
+ column3:
+ links:
+ - text: Get help
+ link: /gethelp
+ - text: Terms of use
+ link: /terms
+ - text: Privacy
+ link: /privacy
+ - text: Press kit
+ link: /press-kit
diff --git a/content/fr/contribute.md b/content/fr/contribute.md
new file mode 100644
index 00000000..fdd8e223
--- /dev/null
+++ b/content/fr/contribute.md
@@ -0,0 +1,116 @@
+---
+title: Contribute to NumPy
+sidebar: false
+---
+
+The NumPy project welcomes your expertise and enthusiasm!
+Your choices aren't limited to programming, as you can
+see below there are many areas where we need **your** help.
+
+If you're unsure where to start or how your skills fit in, _reach out!_ You
+can ask on the mailing
+list or
+[GitHub](http://github.com/numpy/numpy) (open an
+[issue](https://github.com/numpy/numpy/issues) or comment on a relevant
+issue).
+
+Those are our preferred channels (open source is open by nature), but
+if you prefer to talk privately, contact our community coordinators at
+
Check out also our [YouTube channel](https://www.youtube.com/playlist?list=PLCK6zCrcN3GXBUUzDr9L4__LnXZVtaIzS) for additional advice.
+
+### Reviewing pull requests
+
+The project has more than 250 open pull requests -- meaning many potential
+improvements and many open-source contributors waiting for feedback. If you're
+a developer who knows NumPy, you can help even if you're not familiar with the
+codebase. You can:
+
+- summarize a long-running discussion
+- triage documentation PRs
+- test proposed changes
+
+### Developing educational materials
+
+NumPy's [User Guide](https://numpy.org/devdocs) is undergoing rehabilitation.
+We're in need of new tutorials, how-to's, and deep-dive explanations, and the
+site needs restructuring. Opportunities aren't limited to writers. We'd also
+welcome worked examples, notebooks, and videos. NEP 44 — Restructuring the
+NumPyDocumentation
+lays out our ideas -- and you may have others.
+
+### Issue triaging
+
+The [NumPy issue tracker](https://github.com/numpy/numpy/issues) has a _lot_
+of open issues. Some are no longer valid, some should be prioritized, and some
+would make good issues for new contributors. You can:
+
+- check if older bugs are still present
+- find duplicate issues and link related ones
+- add good self-contained reproducers to issues
+- label issues correctly (this requires triage rights -- just ask)
+
+Please just dive in.
+
+### Website development
+
+We've just revamped our website, but we're far from done. If you love web
+development, these
+[issues](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign)
+list some of our unmet needs -- and feel free to share your own ideas.
+
+### Graphic design
+
+We can barely begin to list the contributions a graphic designer can make here.
+Our docs are parched for illustration; our growing website craves images --
+opportunities abound.
+
+### Translating website content
+
+We plan multiple translations of [numpy.org](https://numpy.org) to make NumPy
+accessible to users in their native language. Volunteer translators are at the heart
+of this effort. See
+[here](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n)
+for background; comment on this GitHub
+issue to sign up.
+
+### Community coordination and outreach
+
+Through community contact we share our work more widely and learn where we're
+falling short. We're eager to get more people involved in efforts like organizing NumPy code
+sprints, a newsletter, and perhaps a blog.
+
+### Fundraising
+
+For many years, NumPy was maintained by dedicated volunteers, but as its importance grew it
+became clear that to ensure stability and growth we would need financial support.
+[This SciPy'19 talk](https://www.youtube.com/watch?v=dBTJD_FDVjU) explains how much difference
+that support has made. Like most nonprofits, we are constantly seeking grants, sponsorships,
+and other kinds of funding. We have a number of ideas and of course we welcome more.
+Fundraising is a scarce skill here -- we'd appreciate your help.
+
+### Donate
+
+If you'd like to contribute to NumPy by making a donation, visit [https://numpy.org/about/#donate](https://numpy.org/about/#donate).
+
+
diff --git a/content/fr/gethelp.md b/content/fr/gethelp.md
new file mode 100644
index 00000000..cce276b9
--- /dev/null
+++ b/content/fr/gethelp.md
@@ -0,0 +1,25 @@
+---
+title: Get Help
+sidebar: false
+---
+
+**Development issues:** For NumPy development-related matters (e.g., bug reports), please
+see [Community](/community).
+
+**User questions:** The best way to get help is to post your question to a site
+like [StackOverflow](http://stackoverflow.com/questions/tagged/numpy) or
+[Reddit](https://www.reddit.com/r/Numpy/). We wish we could keep an eye on
+these sites, or answer questions directly, but the volume is a little
+overwhelming!
+
+### [StackOverflow](http://stackoverflow.com/questions/tagged/numpy)
+
+A forum for asking usage questions, e.g. "How do I do X in NumPy?”. Please [use the `#numpy` tag](https://stackoverflow.com/help/tagging)
+
+***
+
+### [Reddit](https://www.reddit.com/r/Numpy/)
+
+Another forum for usage questions.
+
+***
diff --git a/content/fr/history.md b/content/fr/history.md
new file mode 100644
index 00000000..c02bb936
--- /dev/null
+++ b/content/fr/history.md
@@ -0,0 +1,21 @@
+---
+title: History of NumPy
+sidebar: false
+---
+
+NumPy is a foundational Python library that provides array data structures and related fast numerical routines. When started, the library had little funding, and was written mainly by graduate students—many of them without computer science education, and often without a blessing of their advisors. To even imagine that a small group of “rogue” student programmers could upend the already well-established ecosystem of research software—backed by millions in funding and many hundreds of highly qualified engineers — was preposterous. Yet, the philosophical motivations behind a fully open tool stack, in combination with the excited, friendly community with a singular focus, have proven auspicious in the long run. Nowadays, NumPy is relied upon by scientists, engineers, and many other professionals around the world. For example, the published scripts used in the analysis of gravitational waves import NumPy, and the M87 black hole imaging project directly cites NumPy.
+
+For the in-depth account on milestones in the development of NumPy and related libraries please see [arxiv.org](https://arxiv.org/abs/1907.10121).
+
+If you’d like to obtain a copy of the original Numeric and Numarray libraries, follow the links below:
+
+[Download Page for _Numeric_](https://sourceforge.net/projects/numpy/files/Old%20Numeric/)\*
+
+[Download Page for _Numarray_](https://sourceforge.net/projects/numpy/files/Old%20Numarray/)\*
+
+\*Please note that these older array packages are no longer maintained, and users are strongly advised to use NumPy for any array-related purposes or refactor any pre-existing code to utilize the NumPy library.
+
+### Historic Documentation
+
+[Download _\`Numeric'_ Manual](static/numeric-manual.pdf)
+
diff --git a/content/fr/install.md b/content/fr/install.md
new file mode 100644
index 00000000..2e3550b9
--- /dev/null
+++ b/content/fr/install.md
@@ -0,0 +1,131 @@
+---
+title: Installing NumPy
+sidebar: false
+---
+
+{{< admonition >}}
+{{< /admonition >}}
+
+The recommended method of installing NumPy depends on your preferred workflow. Below, we break down the installation methods into the following categories:
+
+- **Project-based** (e.g., uv, pixi) _(recommended for new users)_
+- **Environment-based** (e.g., pip, conda) _(the traditional workflow)_
+- **System package managers** _(not recommended for most users)_
+- **Building from source** _(for advanced users and development purposes)_
+
+Choose the method that best suits your needs. If you're unsure, start with the **Environment-based** method using `conda` or `pip`.
+
+{{< tabs >}}
+
+[[tab]]
+name = 'Project Based'
+content = '''
+
+Recommended for new users who want a streamlined workflow.
+
+- **uv:** A modern Python package manager designed for speed and simplicity.
+ ```bash
+ uv pip install numpy
+ ```
+
+- **pixi:** A cross-platform package manager for Python and other languages.
+ ```bash
+ pixi add numpy
+ ```
+
+'''
+
+[[tab]]
+name = 'Environment Based'
+content = '''
+
+The two main tools that install Python packages are `pip` and `conda`. Their functionality partially overlaps (e.g. both can install `numpy`), however, they can also work together. We’ll discuss the major differences between pip and conda here - this is important to understand if you want to manage packages effectively.
+
+The first difference is that conda is cross-language and it can install Python, while pip is installed for a particular Python on your system and installs other packages to that same Python install only. This also means conda can install non-Python libraries and tools you may need (e.g. compilers, CUDA, HDF5), while pip can’t.
+
+The second difference is that pip installs from the Python Packaging Index (PyPI), while conda installs from its own channels (typically “defaults” or “conda-forge”). PyPI is the largest collection of packages by far, however, all popular packages are available for conda as well.
+
+The third difference is that conda is an integrated solution for managing packages, dependencies and environments, while with pip you may need another tool (there are many!) for dealing with environments or complex dependencies.
+
+- **Conda:** If you use conda, you can install NumPy from the defaults or conda-forge channels:
+ ```bash
+ conda create -n my-env
+ conda activate my-env
+ conda install numpy
+ ```
+- **Pip:**
+ ```bash
+ pip install numpy
+ ```
+
+{{< admonition >}}
+{{< /admonition >}}
+
+ ```bash
+ python -m venv my-env
+ source my-env/bin/activate # macOS/Linux
+ my-env\Scripts\activate # Windows
+ pip install numpy
+ ```
+
+'''
+
+[[tab]]
+name = 'System Package Managers'
+content = '''
+Not recommended for most users, but available for convenience.
+
+**macOS (Homebrew):**
+
+```bash
+brew install numpy
+```
+
+**Linux (APT):**
+
+```bash
+sudo apt install python3-numpy
+```
+
+**Windows (Chocolatey):**
+
+```bash
+choco install numpy
+```
+
+'''
+
+[[tab]]
+name = 'Building from Source'
+content = '''
+For advanced users and developers who want to customize or debug **NumPy**.
+
+A word of warning: building Numpy from source can be a nontrivial exercise.
+We recommend using binaries instead if those are available for your platform via one of the above methods.
+For details on how to build from source, see [the building from source guide in the Numpy docs](https://numpy.org/devdocs/building/).
+
+{{< /tabs >}}
+
+## Verifying the Installation
+
+After installing NumPy, verify the installation by running the following in a Python shell or script:
+
+```python
+import numpy as np
+print(np.__version__)
+```
+
+This should print the installed version of NumPy without errors.
+
+## Troubleshooting
+
+If your installation fails with the message below, see Troubleshooting
+ImportError.
+
+```
+IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
+
+Importing the numpy c-extensions failed. This error can happen for
+different reasons, often due to issues with your setup.
+```
+
diff --git a/content/fr/learn.md b/content/fr/learn.md
new file mode 100644
index 00000000..ca13a1c2
--- /dev/null
+++ b/content/fr/learn.md
@@ -0,0 +1,76 @@
+---
+title: Learn
+sidebar: false
+---
+
+For the **official NumPy documentation** visit [numpy.org/doc/stable](https://numpy.org/doc/stable).
+
+***
+
+Below is a curated collection of educational resources, both for self-learning and teaching others, developed by NumPy contributors and vetted by the community.
+
+## Beginners
+
+There's a ton of information about NumPy out there. If you are just starting, we'd strongly recommend the following:
+
+ **Tutorials**
+
+- [NumPy Quickstart Tutorial](https://numpy.org/devdocs/user/quickstart.html)
+- [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
+- [NumPy Illustrated: The Visual Guide to NumPy _by Lev Maximov_](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
+- [Scientific Python Lectures](https://lectures.scientific-python.org/) Besides covering NumPy, these lectures offer a broader introduction to the scientific Python ecosystem.
+- [NumPy: the absolute basics for beginners](https://numpy.org/devdocs/user/absolute_beginners.html)
+- [NumPy tutorial _by Nicolas Rougier_](https://github.com/rougier/numpy-tutorial)
+- [Stanford CS231 _by Justin Johnson_](http://cs231n.github.io/python-numpy-tutorial/)
+- [NumPy User Guide](https://numpy.org/devdocs)
+
+ **Books**
+
+- [Guide to NumPy _by Travis E. Oliphant_](https://web.mit.edu/dvp/Public/numpybook.pdf) This is a free version 1 from 2006. For the latest copy (2015) see [here](https://dl.acm.org/doi/10.5555/2886196).
+- [From Python to NumPy _by Nicolas P. Rougier_](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
+- [Elegant SciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877) _by Juan Nunez-Iglesias, Stefan van der Walt, and Harriet Dashnow_
+
+You may also want to check out the [Goodreads list](https://www.goodreads.com/shelf/show/python-scipy) on the subject of "Python+SciPy." Most books there are about the "SciPy ecosystem," which has NumPy at its core.
+
+ **Videos**
+
+- [Introduction to Numerical Computing with NumPy](http://youtu.be/ZB7BZMhfPgk) _by Alex Chabot-Leclerc_
+
+***
+
+## Advanced
+
+Try these advanced resources for a better understanding of NumPy concepts like advanced indexing, splitting, stacking, linear algebra, and more.
+
+ **Tutorials**
+
+- [100 NumPy Exercises](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html) _by Nicolas P. Rougier_
+- [An Introduction to NumPy and Scipy](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf) _by M. Scott Shell_
+- [Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/) _by Stéfan van der Walt_
+- [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
+
+ **Books**
+
+- [Python Data Science Handbook](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1098121228) _by Jake Vanderplas_
+- [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-Jupyter/dp/109810403X) _by Wes McKinney_
+- [Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) _by Robert Johansson_
+
+ **Videos**
+
+- [Advanced NumPy - broadcasting rules, strides, and advanced indexing](https://www.youtube.com/watch?v=cYugp9IN1-Q) _by Juan Nunez-Iglesias_
+
+***
+
+## NumPy Talks
+
+- [The Future of NumPy Indexing](https://www.youtube.com/watch?v=o0EacbIbf58) _by Jaime Fernández_ (2016)
+- Evolution of Array Computing in Python _by Ralf Gommers_ (2019)
+- [NumPy: what has changed and what is going to change?](https://www.youtube.com/watch?v=YFLVQFjRmPY) _by Matti Picus_ (2019)
+- [Inside NumPy](https://www.youtube.com/watch?v=dBTJD_FDVjU) _by Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stefan van der Walt, Charles Harris_ (2019)
+- [Brief Review of Array Computing in Python](https://www.youtube.com/watch?v=f176j2g2eNc) _by Travis Oliphant_ (2019)
+
+***
+
+## Citing NumPy
+
+If NumPy has been significant in your research, and you would like to acknowledge the project in your academic publication, please see [this citation information](/citing-numpy).
diff --git a/content/fr/news.md b/content/fr/news.md
new file mode 100644
index 00000000..8448d825
--- /dev/null
+++ b/content/fr/news.md
@@ -0,0 +1,485 @@
+---
+title: News
+sidebar: false
+newsHeader: NumPy 2.2.0 released!
+date: 2024-12-08
+---
+
+### NumPy 2.2.0 released
+
+_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back
+into sync with the usual twice yearly release cycle. There have been a number
+of small cleanups, improvements to the StringDType, and better support for free
+threaded Python. Highlights are:
+
+- New functions `matvec` and `vecmat`,
+- Many improved annotations,
+- Improved support for the new StringDType,
+- Improved support for free threaded Python,
+- Fixes for f2py.
+
+This release supports Python versions 3.10-3.13.
+
+### NumPy 2.1.0 released
+
+_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
+drops support for Python 3.9. In addition to the usual bug fixes and
+updated Python support, it helps get NumPy back to its usual release
+cycle after the extended development of 2.0. The highlights for this
+release are:
+
+- Support for Python 3.13.
+- Preliminary support for free threaded Python 3.13.
+- Support for the array-api 2023.12 standard.
+
+Python versions 3.10-3.13 are supported by this release.
+
+### NumPy 2.0.0 released
+
+_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
+result of 11 months of development since the last feature release and is the
+work of 212 contributors spread over 1078 pull requests. It contains a large
+number of exciting new features as well as changes to both the Python and C
+APIs. It includes breaking changes that could not happen in a regular minor
+release - including an ABI break, changes to type promotion rules, and API
+changes which may not have been emitting deprecation warnings in 1.26.x. Key
+documents related to how to adapt to changes in NumPy 2.0 include:
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
+tells a bit of the story about how this release came together.
+
+### NumPy 2.0 release date: June 16
+
+_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
+released on June 16, 2024. This release has been over a year in the making, and
+is the first major release since 2006. Importantly, in addition to many new
+features and performance improvement, it contains **breaking changes** to the
+ABI as well as the Python and C APIs. It is likely that downstream packages and
+end user code needs to be adapted - if you can, please verify whether your code
+works with NumPy `2.0.0rc2`. **Please see the following for more details:**
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+### NumFOCUS end of the year fundraiser
+
+_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
+on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
+until December 23rd, 2023 will go directly to the NumFOCUS programs.
+
+Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
+or a coupon code ISUPPORTDATASCIENCE
+
+### NumPy 1.26.0 released
+
+_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
+is now available. The highlights of the release are:
+
+- Python 3.12.0 support.
+- Cython 3.0.0 compatibility.
+- Use of the Meson build system
+- Updated SIMD support
+- f2py fixes, meson and bind(x) support
+- Support for the updated Accelerate BLAS/LAPACK library
+
+The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
+transition to the Meson build system and provision of support for Cython 3.0.0.
+A total of 20 people contributed to this release and 59 pull requests were
+merged.
+
+The Python versions supported by this release are 3.9-3.12.
+
+### numpy.org is now available in Japanese and Portuguese
+
+_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
+Japanese and Portuguese. This wouldn’t be possible without our dedicated volunteers:
+
+_Portuguese:_
+
+- Melissa Weber Mendonça (melissawm)
+- Ricardo Prins (ricardoprins)
+- Getúlio Silva (getuliosilva)
+- Julio Batista Silva (jbsilva)
+- Alexandre de Siqueira (alexdesiqueira)
+- Alexandre B A Villares (villares)
+- Vini Salazar (vinisalazar)
+
+_Japanese:_
+
+- Atsushi Sakai (AtsushiSakai)
+- KKunai
+- Tom Kelly (TomKellyGenetics)
+- Yuji Kanagawa (kngwyu)
+- Tetsuo Koyama (tkoyama010)
+
+The work on the translation infrastructure is supported with funding from CZI.
+
+Looking ahead, we’d love to translate the website into more languages.
+If you’d like to help, please connect with the NumPy Translations Team on Slack:
+https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
+(Look for the #translations channel.) We are also building a Translations Team who will be
+working on localizing documentation and educational content across the Scientific Python
+ecosystem. If this piqued your interest, join us on the Scientific Python
+Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
+
+### NumPy 1.25.0 released
+
+_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
+is now available. The highlights of the release are:
+
+- Support for MUSL, there are now MUSL wheels.
+- Support for the Fujitsu C/C++ compiler.
+- Object arrays are now supported in einsum.
+- Support for the inplace matrix multiplication (`@=`).
+
+The NumPy 1.25.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase the execution speed, and clarify the
+documentation. There has also been preparatory work for the future NumPy 2.0.0,
+resulting in a large number of new and expired deprecations.
+
+A total of 148 people contributed to this release and 530 pull requests were
+merged.
+
+The Python versions supported by this release are 3.9-3.11.
+
+### Fostering an Inclusive Culture: Call for Participation
+
+_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
+
+How can we be better when it comes to diversity and inclusion?
+Read the report and find out how to get involved
+[here](https://contributor-experience.org/docs/posts/dei-report/).
+
+### NumPy documentation team leadership transition
+
+_Jan 6, 2023_ –- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
+documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
+contributions to the NumPy official documentation and educational materials,
+and Mukulika and Ross for stepping up.
+
+### NumPy 1.24.0 released
+
+_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
+is now available. The highlights of the release are:
+
+- New "dtype" and "casting" keywords for stacking functions.
+- New F2PY features and fixes.
+- Many new deprecations, check them out.
+- Many expired deprecations,
+
+The NumPy 1.24.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase execution speed, and clarify the documentation.
+There are a large number of new and expired deprecations due to changes in
+dtype promotion and cleanups. It is the work of 177 contributors spread over
+444 pull requests. The supported Python versions are 3.8-3.11.
+
+### Numpy 1.23.0 released
+
+_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
+is now available. The highlights of the release are:
+
+- Implementation of `loadtxt` in C, greatly improving its performance.
+- Exposure of DLPack at the Python level for easy data exchange.
+- Changes to the promotion and comparisons of structured dtypes.
+- Improvements to f2py.
+
+The NumPy 1.23.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase the execution speed, clarify the documentation,
+and expire old deprecations. It is the work of 151 contributors spread over
+494 pull requests. The Python versions supported by this release 3.8-3.10.
+Python 3.11 will be supported when it reaches the rc stage.
+
+### NumFOCUS DEI research study: call for participation
+
+_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
+research project
+funded by the Gordon & Betty Moore Foundation to
+understand the barriers to participation that contributors, particularly those
+from historically underrepresented groups, face in the open-source software
+community. The research team would like to talk to new contributors, project
+developers and maintainers, and those who have contributed in the past about
+their experiences joining and contributing to NumPy.
+
+**Interested in sharing your experiences?**
+
+Please complete this brief [“Participant Interest” form](https://numfocus.typeform.com/to/WBWVJSqe)
+which contains additional information on the research goals, privacy, and
+confidentiality considerations. Your participation will be valuable to the
+growth and sustainability of diverse and inclusive open-source software
+communities. Accepted participants will participate in a 30-minute interview
+with a research team member.
+
+### Numpy 1.22.0 release
+
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
+is now available. The highlights of the release are:
+
+- Type annotations of the main namespace are essentially complete. Upstream is
+ a moving target, so there will likely be further improvements, but the major
+ work is done. This is probably the most user visible enhancement in this
+ release.
+- A preliminary version of the proposed
+ [array API Standard](https://data-apis.org/array-api/latest/) is provided
+ (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
+ This is a step in creating a standard collection of functions that can be
+ used across libraries such as CuPy and JAX.
+- NumPy now has a DLPack backend. DLPack provides a common interchange format
+ for array (tensor) data.
+- New methods for `quantile`, `percentile`, and related functions. The new
+ methods provide a complete set of the methods commonly found in the
+ literature.
+- The universal functions have been refactored to implement most of
+ [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
+ This also unlocks the ability to experiment with the future DType API.
+- A new configurable memory allocator for use by downstream projects.
+
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
+over 609 pull requests. The Python versions supported by this release are
+3.8-3.10.
+
+### Advancing an inclusive culture in the scientific Python ecosystem
+
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
+[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
+to support the onboarding, inclusion, and retention of people from historically
+marginalized groups on scientific Python projects, and to structurally improve
+the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
+
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
+this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
+will support the creation of dedicated Contributor Experience Lead positions to
+identify, document, and implement practices to foster inclusive open-source
+communities. This project will be led by Melissa Mendonça (NumPy), with
+additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
+Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
+Joris Van den Bossche (Pandas).
+
+This is an ambitious project aiming to discover and implement activities that
+should structurally improve the community dynamics of our projects. By
+establishing these new cross-project roles, we hope to introduce a new
+collaboration model to the Scientific Python communities, allowing
+community-building work within the ecosystem to be done more efficiently and
+with greater outcomes. We also expect to develop a clearer picture of what
+works and what doesn't in our projects to engage and retain new contributors,
+especially from historically underrepresented groups. Finally, we plan on
+producing detailed reports on the actions executed, explaining how they have
+impacted our projects in terms of representation and interaction with our
+communities.
+
+The two-year project is expected to start by November 2021, and we are excited
+to see the results from this work!
+[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### 2021 NumPy survey
+
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
+NumPy users from 75 countries participated in our inaugural survey last year.
+The survey findings gave us a very good understanding of what we should focus
+on for the next 12 months.
+
+It’s time for another survey, and we are counting on you once again. It will
+take about 15 minutes of your time. Besides English, the survey questionnaire
+is available in 8 additional languages: Bangla, French, Hindi, Japanese,
+Mandarin, Portuguese, Russian, and Spanish.
+
+Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+### Numpy 1.21.0 release
+
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
+is now available. The highlights of the release are:
+
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- improved documentation,
+- improved annotations,
+- new `PCG64DXSM` bitgenerator for random numbers.
+
+This NumPy release is the result of 581 merged pull requests contributed by 175
+people. The Python versions supported for this release are 3.7-3.9, support
+for Python 3.10 will be added after Python 3.10 is released.
+
+### 2020 NumPy survey results
+
+_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
+and faculty from the University of Michigan and the University of Maryland
+conducted the first official NumPy community survey. Find the survey results
+here: https://numpy.org/user-survey-2020/.
+
+### Numpy 1.20.0 release
+
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
+is now available. This is the largest NumPy release to date, thanks to 180+
+contributors. The two most exciting new features are:
+
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
+ containing `ArrayLike` and `DtypeLike` aliases that users and downstream
+ libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
+ AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
+ performance improvements for many functions (examples:
+ [sin/cos](https://github.com/numpy/numpy/pull/17587),
+ [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### Diversity in the NumPy project
+
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
+
+### First official NumPy paper published in Nature!
+
+_Sep 16, 2020_ -- We are pleased to announce the publication of
+[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
+as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
+The paper covers applications and fundamental concepts of array programming,
+the rich scientific Python ecosystem built on top of NumPy, and the recently added
+array protocols to facilitate interoperability with external array and tensor
+libraries like CuPy, Dask, and JAX.
+
+### Python 3.9 is coming, when will NumPy release binary wheels?
+
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
+early adopter of Python versions, you may be dissapointed to find that NumPy
+(and other binary packages like SciPy) will not have binary wheels ready on the
+day of the release. It is a major effort to adapt the build infrastructure to a
+new Python version and it typically takes a few weeks for the packages to appear
+on PyPI and conda-forge. In preparation for this event, please make sure to
+
+- update your `pip` to version 20.1 at least to support `manylinux2010` and
+ `manylinux2014`
+- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
+ trying to build from source.
+
+### Numpy 1.19.2 release
+
+_Sep 10, 2020_ -- NumPy
+1.19.2 is now available.
+This latest release in the 1.19 series fixes several bugs, prepares for the
+upcoming Cython 3.x
+release and pins
+setuptools to keep distutils working while upstream modifications are ongoing.
+The aarch64 wheels are built with the latest manylinux2014 release that fixes
+the problem of differing page sizes used by different linux distros.
+
+### The inaugural NumPy survey is live!
+
+_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
+decision-making about the development of NumPy as software and as a community.
+The survey is available in 8 additional languages besides English:
+Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
+
+Please help us make NumPy better and take the survey
+[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+### NumPy has a new logo!
+
+_Jun 24, 2020_ -- NumPy now has a new logo:
+
+
+
+The logo is a modern take on the old one, with a cleaner design. Thanks to
+Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
+for the old logo that served us well for 15+ years.
+
+### NumPy 1.19.0 release
+
+_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
+without Python 2 support, hence it was a "clean-up release". The minimum
+supported Python version is now Python 3.6. An important new feature is that
+the random number generation infrastructure that was introduced in NumPy 1.17.0
+is now accessible from Cython.
+
+### Season of Docs acceptance
+
+_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
+the Google Season of Docs program. We are excited about the opportunity to
+work with a technical writer to improve NumPy's documentation once again! For more
+details, please see
+[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
+[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
+
+### NumPy 1.18.0 release
+
+_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
+1.17.0, this is a consolidation release. It is the last minor release that will
+support Python 3.5. Highlights of the release includes the addition of basic
+infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
+
+Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
+
+### NumPy receives a grant from the Chan Zuckerberg Initiative
+
+_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
+
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
+
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
+
+
+
+## Releases
+
+Here is a list of NumPy releases, with links to release notes. Bugfix
+releases (only the `z` changes in the `x.y.z` version number) have no new
+features; minor releases (the `y` increases) do.
+
+- NumPy 2.2.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.5)) -- _19 Apr 2025_.
+- NumPy 2.2.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.4)) -- _16 Mar 2025_.
+- NumPy 2.2.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.3)) -- _13 Feb 2025_.
+- NumPy 2.2.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.2)) -- _18 Jan 2025_.
+- NumPy 2.2.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.1)) -- _21 Dec 2024_.
+- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
+- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
+- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
+- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
+- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
+- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
+- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
+- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
+- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
+- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
+- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
+- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
+- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
+- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
+- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
+- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
+- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
+- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
+- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
+- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
+- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
+- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
+- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
+- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
+- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
+- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
+- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
+- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
+- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
+- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
+- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
+- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
+- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
+- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
+- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
+- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
+- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
+- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
+- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
+- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
+- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
+- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
+- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
+- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
+- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
diff --git a/content/fr/press-kit.md b/content/fr/press-kit.md
new file mode 100644
index 00000000..2c8970bb
--- /dev/null
+++ b/content/fr/press-kit.md
@@ -0,0 +1,8 @@
+---
+title: Press kit
+sidebar: false
+---
+
+We would like to make it easy for you to include the NumPy project identity in your next academic paper, course materials, or presentation.
+
+You will find several high-resolution versions of the NumPy logo [here](https://github.com/numpy/numpy/tree/main/branding/logo). Note that by using the numpy.org resources, you accept the [NumPy Code of Conduct](/code-of-conduct).
diff --git a/content/fr/privacy.md b/content/fr/privacy.md
new file mode 100644
index 00000000..6064e4c4
--- /dev/null
+++ b/content/fr/privacy.md
@@ -0,0 +1,8 @@
+---
+title: Privacy Policy
+sidebar: false
+---
+
+**numpy.org** is operated by [NumFOCUS, Inc.](https://numfocus.org), the fiscal sponsor of the NumPy project. For the Privacy Policy of this website please refer to https://numfocus.org/privacy-policy.
+
+If you have any questions about the policy or NumFOCUS’s data collection, use, and disclosure practices, please contact the NumFOCUS staff at privacy@numfocus.org.
diff --git a/content/fr/report-handling-manual.md b/content/fr/report-handling-manual.md
new file mode 100644
index 00000000..161757fe
--- /dev/null
+++ b/content/fr/report-handling-manual.md
@@ -0,0 +1,89 @@
+---
+title: NumPy Code of Conduct - How to follow up on a report
+sidebar: false
+---
+
+This is the manual followed by NumPy’s Code of Conduct Committee. It’s used when we respond to an issue to make sure we’re consistent and fair.
+
+Enforcing the [Code of Conduct](/code-of-conduct) impacts our community today and for the future. It’s an action that we do not take lightly. When reviewing enforcement measures, the Code of Conduct Committee will keep the following values and guidelines in mind:
+
+- Act in a personal manner rather than impersonal. The Committee can engage the parties to understand the situation while respecting the privacy and any necessary confidentiality of reporters. However, sometimes it is necessary to communicate with one or more individuals directly: the Committee’s goal is to improve the health of our community rather than only produce a formal decision.
+- Emphasize empathy for individuals rather than judging behavior, avoiding binary labels of “good” and “bad/evil”. Overt, clear-cut aggression and harassment exist, and we will address them firmly. But many scenarios that can prove challenging to resolve are those where normal disagreements devolve into unhelpful or harmful behavior from multiple parties. Understanding the full context and finding a path that re-engages all is hard, but ultimately the most productive for our community.
+- We understand that email is a difficult medium and can be isolating. Receiving criticism over email, without personal contact, can be particularly painful. This makes it especially important to keep an atmosphere of open-minded respect for the views of others. It also means that we must be transparent in our actions, and that we will do everything in our power to make sure that all our members are treated fairly and with sympathy.
+- Discrimination can be subtle and it can be unconscious. It can show itself as unfairness and hostility in otherwise ordinary interactions. We know that this does occur, and we will take care to look out for it. We would very much like to hear from you if you feel you have been treated unfairly, and we will use these procedures to make sure that your complaint is heard and addressed.
+- Help increase engagement in good discussion practice: try to identify where discussion may have broken down, and provide actionable information, pointers, and resources that can lead to positive change on these points.
+- Be mindful of the needs of new members: provide them with explicit support and consideration, with the aim of increasing participation from underrepresented groups in particular.
+- Individuals come from different cultural backgrounds and native languages. Try to identify any honest misunderstandings caused by a non-native speaker and help them understand the issue and what they can change to avoid causing offence. Complex discussion in a foreign language can be very intimidating, and we want to grow our diversity also across nationalities and cultures.
+
+## Mediation
+
+Voluntary informal mediation is a tool at our disposal. In contexts such as when two or more parties have all escalated to the point of inappropriate behavior (something sadly common in human conflict), it may be useful to facilitate a mediation process. This is only an example: the Committee can consider mediation in any case, mindful that the process is meant to be strictly voluntary and no party can be pressured to participate. If the Committee suggests mediation, it should:
+
+- Find a candidate who can serve as a mediator.
+- Obtain the agreement of the reporter(s). The reporter(s) have complete freedom to decline the mediation idea or to propose an alternate mediator.
+- Obtain the agreement of the reported person(s).
+- Settle on the mediator: while parties can propose a different mediator than the suggested candidate, only if a common agreement is reached on all terms can the process move forward.
+- Establish a timeline for mediation to complete, ideally within two weeks.
+
+The mediator will engage with all the parties and seek a resolution that is satisfactory to all. Upon completion, the mediator will provide a report (vetted by all parties to the process) to the Committee, with recommendations on further steps. The Committee will then evaluate these results (whether a satisfactory resolution was achieved or not) and decide on any additional action deemed necessary.
+
+## How the Committee will respond to reports
+
+When the Committee (or a Committee member) receives a report, they will first determine whether the report is about a clear and severe breach (as defined below). If so, immediate action needs to be taken in addition to the regular report handling process.
+
+## Clear and severe breach actions
+
+We know that it is painfully common for internet communication to start at or devolve into obvious and flagrant abuse. We will deal quickly with clear and severe breaches like personal threats, violent, sexist or racist language.
+
+When a member of the Code of Conduct Committee becomes aware of a clear and severe breach, they will do the following:
+
+- Immediately disconnect the originator from all NumPy communication channels.
+- Reply to the reporter that their report has been received and that the originator has been disconnected.
+- In every case, the moderator should make a reasonable effort to contact the originator, and tell them specifically how their language or actions qualify as a “clear and severe breach”. The moderator should also say that, if the originator believes this is unfair or they want to be reconnected to NumPy, they have the right to ask for a review, as below, by the Code of Conduct Committee. The moderator should copy this explanation to the Code of Conduct Committee.
+- The Code of Conduct Committee will formally review and sign off on all cases where this mechanism has been applied to make sure it is not being used to control ordinary heated disagreement.
+
+## Report handling
+
+When a report is sent to the Committee they will immediately reply to the reporter to confirm receipt. This reply must be sent within 72 hours, and the group should strive to respond much quicker than that.
+
+If a report doesn’t contain enough information, the Committee will obtain all relevant data before acting. The Committee is empowered to act on the Steering Council’s behalf in contacting any individuals involved to get a more complete account of events.
+
+The Committee will then review the incident and determine, to the best of their ability:
+
+- What happened.
+- Whether this event constitutes a Code of Conduct violation.
+- Who are the responsible party(ies).
+- Whether this is an ongoing situation, and there is a threat to anyone’s physical safety.
+
+This information will be collected in writing, and whenever possible the group’s deliberations will be recorded and retained (i.e. chat transcripts, email discussions, recorded conference calls, summaries of voice conversations, etc).
+
+It is important to retain an archive of all activities of this Committee to ensure consistency in behavior and provide institutional memory for the project. To assist in this, the default channel of discussion for this Committee will be a private mailing list accessible to current and future members of the Committee as well as members of the Steering Council upon justified request. If the Committee finds the need to use off-list communications (e.g. phone calls for early/rapid response), it should in all cases summarize these back to the list so there’s a good record of the process.
+
+The Code of Conduct Committee should aim to have a resolution agreed upon within two weeks. In the event that a resolution can’t be determined in that time, the Committee will respond to the reporter(s) with an update and projected timeline for resolution.
+
+## Resolutions
+
+The Committee must agree on a resolution by consensus. If the group cannot reach consensus and deadlocks for over a week, the group will turn the matter over to the Steering Council for resolution.
+
+Possible responses may include:
+
+- Taking no further action:
+ - if we determine no violations have occurred;
+ - if the matter has been resolved publicly while the Committee was considering responses.
+- Coordinating voluntary mediation: if all involved parties agree, the Committee may facilitate a mediation process as detailed above.
+- Remind publicly, and point out that some behavior/actions/language have been judged inappropriate and why in the current context, or can but hurtful to some people, requesting the community to self-adjust.
+- A private reprimand from the Committee to the individual(s) involved. In this case, the group chair will deliver that reprimand to the individual(s) over email, cc’ing the group.
+- A public reprimand. In this case, the Committee chair will deliver that reprimand in the same venue that the violation occurred, within the limits of practicality. E.g., the original mailing list for an email violation, but for a chat room discussion where the person/context may be gone, they can be reached by other means. The group may choose to publish this message elsewhere for documentation purposes.
+- A request for a public or private apology, assuming the reporter agrees to this idea: they may at their discretion refuse further contact with the violator. The chair will deliver this request. The Committee may, if it chooses, attach “strings” to this request: for example, the group may ask a violator to apologize in order to retain one’s membership on a mailing list.
+- A “mutually agreed upon hiatus” where the Committee asks the individual to temporarily refrain from community participation. If the individual chooses not to take a temporary break voluntarily, the Committee may issue a “mandatory cooling off period”.
+- A permanent or temporary ban from some or all NumPy spaces (mailing lists, gitter.im, etc.). The group will maintain records of all such bans so that they may be reviewed in the future or otherwise maintained.
+
+Once a resolution is agreed upon, but before it is enacted, the Committee will contact the original reporter and any other affected parties and explain the proposed resolution. The Committee will ask if this resolution is acceptable, and must note feedback for the record.
+
+Finally, the Committee will make a report to the NumPy Steering Council (as well as the NumPy core team in the event of an ongoing resolution, such as a ban).
+
+The Committee will never publicly discuss the issue; all public statements will be made by the chair of the Code of Conduct Committee or the NumPy Steering Council.
+
+## Conflicts of Interest
+
+In the event of any conflict of interest, a Committee member must immediately notify the other members, and recuse themselves if necessary.
diff --git a/content/fr/tabcontents.yaml b/content/fr/tabcontents.yaml
new file mode 100644
index 00000000..ecfce140
--- /dev/null
+++ b/content/fr/tabcontents.yaml
@@ -0,0 +1,275 @@
+params:
+ machinelearning:
+ paras:
+ - para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlow’s](https://www.tensorflow.org) deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing.
+ para2: Statistical techniques called [ensemble methods](https://scikit-learn.org/stable/modules/ensemble.html) such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://xgboost.readthedocs.io/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) — one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
+ arraylibraries:
+ intro:
+ - text: NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.
+ headers:
+ - text: Array Library
+ - text: Capabilities & Application areas
+ libraries:
+ - title: Dask
+ text: Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
+ img: /images/content_images/arlib/dask.png
+ alttext: Dask
+ url: https://dask.org/
+ - title: CuPy
+ text: NumPy-compatible array library for GPU-accelerated computing with Python.
+ img: /images/content_images/arlib/cupy.png
+ alttext: CuPy
+ url: https://cupy.dev
+ - title: JAX
+ text: "Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU."
+ img: /images/content_images/arlib/jax_logo_250px.png
+ alttext: JAX
+ url: https://jax.readthedocs.io/
+ - title: Xarray
+ text: Labeled, indexed multi-dimensional arrays for advanced analytics and visualization.
+ img: /images/content_images/arlib/xarray.png
+ alttext: xarray
+ url: https://xarray.pydata.org/en/stable/index.html
+ - title: Sparse
+ text: NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
+ img: /images/content_images/arlib/sparse.png
+ alttext: sparse
+ url: https://sparse.pydata.org/en/latest/
+ - title: PyTorch
+ text: Deep learning framework that accelerates the path from research prototyping to production deployment.
+ img: /images/content_images/arlib/pytorch-logo-dark.svg
+ alttext: PyTorch
+ url: https://pytorch.org/
+ - title: TensorFlow
+ text: An end-to-end platform for machine learning to easily build and deploy ML powered applications.
+ img: /images/content_images/arlib/tensorflow-logo.svg
+ alttext: TensorFlow
+ url: https://www.tensorflow.org
+ - title: Arrow
+ text: A cross-language development platform for columnar in-memory data and analytics.
+ img: /images/content_images/arlib/arrow.png
+ alttext: arrow
+ url: https://arrow.apache.org/
+ - title: xtensor
+ text: Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
+ img: /images/content_images/arlib/xtensor.png
+ alttext: xtensor
+ url: https://github.com/xtensor-stack/xtensor-python
+ - title: Awkward Array
+ text: Manipulate JSON-like data with NumPy-like idioms.
+ img: /images/content_images/arlib/awkward.svg
+ alttext: awkward
+ url: https://awkward-array.org/
+ - title: uarray
+ text: Python backend system that decouples API from implementation; unumpy provides a NumPy API.
+ img: /images/content_images/arlib/uarray.png
+ alttext: uarray
+ url: https://uarray.org/en/latest/
+ - title: tensorly
+ text: Tensor learning, algebra and backends to seamlessly use NumPy, PyTorch, TensorFlow or CuPy.
+ img: /images/content_images/arlib/tensorly.png
+ alttext: tensorly
+ url: http://tensorly.org/stable/home.html
+ scientificdomains:
+ intro:
+ - text: Nearly every scientist working in Python draws on the power of NumPy.
+ - text: "NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant."
+ libraries:
+ - title: Quantum Computing
+ alttext: A computer chip.
+ img: /images/content_images/sc_dom_img/quantum_computing.svg
+ links:
+ - url: https://qutip.org
+ label: QuTiP
+ - url: https://pyquil-docs.rigetti.com/en/stable
+ label: PyQuil
+ - url: https://qiskit.org
+ label: Qiskit
+ - url: https://pennylane.ai
+ label: PennyLane
+ - title: Statistical Computing
+ alttext: A line graph with the line moving up.
+ img: /images/content_images/sc_dom_img/statistical_computing.svg
+ links:
+ - url: https://pandas.pydata.org/
+ label: Pandas
+ - url: https://www.statsmodels.org/
+ label: statsmodels
+ - url: https://xarray.pydata.org/en/stable/
+ label: Xarray
+ - url: https://seaborn.pydata.org/
+ label: Seaborn
+ - title: Signal Processing
+ alttext: A bar chart with positive and negative values.
+ img: /images/content_images/sc_dom_img/signal_processing.svg
+ links:
+ - url: https://www.scipy.org/
+ label: SciPy
+ - url: https://pywavelets.readthedocs.io/
+ label: PyWavelets
+ - url: https://python-control.org/
+ label: python-control
+ - url: https://hyperspy.org/
+ label: HyperSpy
+ - title: Image Processing
+ alttext: An photograph of the mountains.
+ img: /images/content_images/sc_dom_img/image_processing.svg
+ links:
+ - url: https://scikit-image.org/
+ label: Scikit-image
+ - url: https://opencv.org/
+ label: OpenCV
+ - url: https://mahotas.rtfd.io/
+ label: Mahotas
+ - title: Graphs and Networks
+ alttext: A simple graph.
+ img: /images/content_images/sc_dom_img/sd6.svg
+ links:
+ - url: https://networkx.org/
+ label: NetworkX
+ - url: https://graph-tool.skewed.de/
+ label: graph-tool
+ - url: https://igraph.org/python/
+ label: igraph
+ - url: https://pygsp.rtfd.io/
+ label: PyGSP
+ - title: Astronomy
+ alttext: A telescope.
+ img: /images/content_images/sc_dom_img/astronomy_processes.svg
+ links:
+ - url: https://www.astropy.org/
+ label: AstroPy
+ - url: https://sunpy.org/
+ label: SunPy
+ - url: https://spacepy.github.io/
+ label: SpacePy
+ - title: Cognitive Psychology
+ alttext: A human head with gears.
+ img: /images/content_images/sc_dom_img/cognitive_psychology.svg
+ links:
+ - url: https://www.psychopy.org/
+ label: PsychoPy
+ - title: Bioinformatics
+ alttext: A strand of DNA.
+ img: /images/content_images/sc_dom_img/bioinformatics.svg
+ links:
+ - url: https://biopython.org/
+ label: BioPython
+ - url: http://scikit-bio.org/
+ label: Scikit-Bio
+ - url: https://github.com/openvax/pyensembl
+ label: PyEnsembl
+ - url: http://etetoolkit.org/
+ label: ETE
+ - title: Bayesian Inference
+ alttext: A graph with a bell-shaped curve.
+ img: /images/content_images/sc_dom_img/bayesian_inference.svg
+ links:
+ - url: https://pystan.readthedocs.io/en/latest/
+ label: PyStan
+ - url: https://docs.pymc.io/
+ label: PyMC
+ - url: https://arviz-devs.github.io/arviz/
+ label: ArviZ
+ - url: https://emcee.readthedocs.io/
+ label: emcee
+ - title: Mathematical Analysis
+ alttext: Four mathematical symbols.
+ img: /images/content_images/sc_dom_img/mathematical_analysis.svg
+ links:
+ - url: https://www.scipy.org/
+ label: SciPy
+ - url: https://www.sympy.org/
+ label: SymPy
+ - url: https://www.cvxpy.org/
+ label: cvxpy
+ - url: https://fenicsproject.org/
+ label: FEniCS
+ - title: Chemistry
+ alttext: A test tube.
+ img: /images/content_images/sc_dom_img/chemistry.svg
+ links:
+ - url: https://cantera.org/
+ label: Cantera
+ - url: https://www.mdanalysis.org/
+ label: MDAnalysis
+ - url: https://github.com/rdkit/rdkit
+ label: RDKit
+ - url: https://www.pybamm.org/
+ label: PyBaMM
+ - title: Geoscience
+ alttext: The Earth.
+ img: /images/content_images/sc_dom_img/geoscience.svg
+ links:
+ - url: https://pangeo.io/
+ label: Pangeo
+ - url: https://simpeg.xyz/
+ label: Simpeg
+ - url: https://github.com/obspy/obspy/wiki
+ label: ObsPy
+ - url: https://www.fatiando.org/
+ label: Fatiando a Terra
+ - title: Geographic Processing
+ alttext: A map.
+ img: /images/content_images/sc_dom_img/GIS.svg
+ links:
+ - url: https://shapely.readthedocs.io/
+ label: Shapely
+ - url: https://geopandas.org/
+ label: GeoPandas
+ - url: https://python-visualization.github.io/folium
+ label: Folium
+ - title: Architecture & Engineering
+ alttext: A microprocessor development board.
+ img: /images/content_images/sc_dom_img/robotics.svg
+ links:
+ - url: https://compas.dev/
+ label: COMPAS
+ - url: https://cityenergyanalyst.com/
+ label: City Energy Analyst
+ - url: https://nortikin.github.io/sverchok/
+ label: Sverchok
+ datascience:
+ intro: "NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:"
+ image1:
+ - img: /images/content_images/ds-landscape.png
+ alttext: Diagram of Python Libraries. The five catagories are 'Extract, Transform, Load', 'Data Exploration', 'Data Modeling', 'Data Evaluation' and 'Data Presentation'.
+ image2:
+ - img: /images/content_images/data-science.png
+ alttext: Diagram of three overlapping circles. The circles are labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
+ examples:
+ - text: "Extract, Transform, Load: [Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor-devs.github.io/pyjanitor/)"
+ - text: "Exploratory analysis: [Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
+ - text: "Model and evaluate: [scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC](https://docs.pymc.io), [spaCy](https://spacy.io)"
+ - text: "Report in a dashboard: [Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://voila.readthedocs.io/)"
+ content:
+ - text: For high data volumes, [Dask](https://dask.org) and [Ray](https://ray.io/) are designed to scale. Stable deployments rely on data versioning ([DVC](https://dvc.org)), experiment tracking ([MLFlow](https://mlflow.org)), and workflow automation ([Airflow](https://airflow.apache.org), [Dagster](https://dagster.io) and [Prefect](https://www.prefect.io)).
+ visualization:
+ images:
+ - url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
+ img: /images/content_images/v_matplotlib.png
+ alttext: A streamplot made in matplotlib
+ - url: https://github.com/yhat/ggpy
+ img: /images/content_images/v_ggpy.png
+ alttext: A scatter-plot graph made in ggpy
+ - url: https://www.journaldev.com/19692/python-plotly-tutorial
+ img: /images/content_images/v_plotly.png
+ alttext: A box-plot made in plotly
+ - url: https://altair-viz.github.io/gallery/streamgraph.html
+ img: /images/content_images/v_altair.png
+ alttext: A streamgraph made in altair
+ - url: https://seaborn.pydata.org
+ img: /images/content_images/v_seaborn.png
+ alttext: A pairplot of two types of graph, a plot-graph and a frequency graph made in seaborn"
+ - url: https://docs.pyvista.org/
+ img: /images/content_images/v_pyvista.png
+ alttext: A 3D volume rendering made in PyVista.
+ - url: https://napari.org
+ img: /images/content_images/v_napari.png
+ alttext: A multi-dimensionan image made in napari.
+ - url: https://vispy.org/gallery/index.html
+ img: /images/content_images/v_vispy.png
+ alttext: A Voronoi diagram made in vispy.
+ content:
+ - text: NumPy is an essential component in the burgeoning [Python visualization landscape](https://pyviz.org/overviews/index.html), which includes [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://napari.org/), and [PyVista](https://docs.pyvista.org/), to name a few.
+ - text: NumPy's accelerated processing of large arrays allows researchers to visualize datasets far larger than native Python could handle.
diff --git a/content/fr/teams/index.md b/content/fr/teams/index.md
new file mode 100644
index 00000000..f5be9dfd
--- /dev/null
+++ b/content/fr/teams/index.md
@@ -0,0 +1,40 @@
+---
+title: NumPy Teams
+sidebar: false
+---
+
+We are an international team on a mission to support scientific and research
+communities worldwide by building quality, open-source software.
+[Join us](/contribute)!
+
+### Maintainers
+
+{{< grid file="maintainers.toml" columns="2 3 4 5" />}}
+
+### Docs team
+
+{{< grid file="docs-team.toml" columns="2 3 4 5" />}}
+
+### Web team
+
+{{< grid file="web-team.toml" columns="2 3 4 5" />}}
+
+### Triage team
+
+{{< grid file="triage-team.toml" columns="2 3 4 5" />}}
+
+### Survey team
+
+{{< grid file="survey-team.toml" columns="2 3 4 5" />}}
+
+### Translations team
+
+{{< grid file="translations-team.toml" columns="2 3 4 5" />}}
+
+### Emeritus maintainers
+
+{{< grid file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
+
+# Governance
+
+For the list of the Steering Council members, please see [here](https://numpy.org/about/).
diff --git a/content/fr/user-survey-2020.md b/content/fr/user-survey-2020.md
new file mode 100644
index 00000000..e822c661
--- /dev/null
+++ b/content/fr/user-survey-2020.md
@@ -0,0 +1,23 @@
+---
+title: 2020 NUMPY COMMUNITY SURVEY
+sidebar: false
+---
+
+In 2020, the NumPy survey team in partnership with students and faculty from a
+Master’s course in Survey Methodology jointly hosted by the University of
+Michigan and the University of Maryland conducted the first official NumPy
+community survey. Over 1,200 users from 75 countries participated to help us
+map out a landscape of the NumPy community and voiced their thoughts about the
+future of the project.
+
+{{< figure >}}
+{{< /figure >}}
+
+**[Download the report](/surveys/NumPy_usersurvey_2020_report.pdf)**
+to take a closer look at the survey findings.
+
+For the highlights, check out
+**[this infographic](https://github.com/numpy/numpy-surveys/blob/master/images/2020NumPysurveyresults_community_infographic.pdf)**.
+
+Ready for a deep dive? Visit **https://numpy.org/user-survey-2020-details/**.
+
diff --git a/content/fr/user-surveys.md b/content/fr/user-surveys.md
new file mode 100644
index 00000000..529a6c1e
--- /dev/null
+++ b/content/fr/user-surveys.md
@@ -0,0 +1,11 @@
+---
+title: NUMPY USER SURVEYS
+sidebar: false
+---
+
+**2020**
+The NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results [here](https://numpy.org/user-survey-2020/).
+
+**2021** The collected data is currently being analyzed.
+
+If you have any questions or suggestions for the past or future surveys, please open an issue [here](https://github.com/numpy/numpy-surveys/issues).
diff --git a/content/hi/404.md b/content/hi/404.md
new file mode 100644
index 00000000..7fe5d79a
--- /dev/null
+++ b/content/hi/404.md
@@ -0,0 +1,8 @@
+---
+title: 404
+sidebar: false
+---
+
+Oops! You've reached a dead end.
+
+If you think something should be here, you can [open an issue](https://github.com/numpy/numpy.org/issues) on GitHub.
diff --git a/content/hi/_index.md b/content/hi/_index.md
new file mode 100644
index 00000000..43b25e39
--- /dev/null
+++ b/content/hi/_index.md
@@ -0,0 +1,49 @@
+---
+title: NumPy
+---
+
+{{< grid columns="1 2 2 3" >}}
+
+[[item]]
+type = 'card'
+title = 'Powerful N-dimensional arrays'
+body = '''
+Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today.
+'''
+
+[[item]]
+type = 'card'
+title = 'Numerical computing tools'
+body = '''
+NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.
+'''
+
+[[item]]
+type = 'card'
+title = 'Open source'
+body = '''
+Distributed under a liberal [BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt), NumPy is developed and maintained [publicly on GitHub](https://github.com/numpy/numpy) by a vibrant, responsive, and diverse [community](/community).
+'''
+
+[[item]]
+type = 'card'
+title = 'Interoperable'
+body = '''
+NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.
+'''
+
+[[item]]
+type = 'card'
+title = 'Performant'
+body = '''
+The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code.
+'''
+
+[[item]]
+type = 'card'
+title = 'Easy to use'
+body = '''
+NumPy's high level syntax makes it accessible and productive for programmers from any background or experience level.
+'''
+
+{{< /grid>}}
diff --git a/content/hi/about.md b/content/hi/about.md
new file mode 100644
index 00000000..29e14c04
--- /dev/null
+++ b/content/hi/about.md
@@ -0,0 +1,88 @@
+---
+title: About Us
+sidebar: false
+---
+
+NumPy is an open source project that enables numerical computing with Python. It was created in 2005 building on the early work of the Numeric and Numarray libraries. NumPy will always be 100% open source software and free for all to use. It is released under the liberal terms of the [modified BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt).
+
+NumPy is developed in the open on GitHub, through the consensus of the NumPy and wider scientific Python community. For more information on our governance approach, please see our [Governance Document](https://www.numpy.org/devdocs/dev/governance/index.html).
+
+## Steering Council
+
+The NumPy Steering Council is the project's governing body. Its role is to ensure, through working with and serving the broader NumPy community, the long-term sustainability of the project, both as a software package and community. The NumPy Steering Council currently consists of the following members (in alphabetical order, by last name):
+
+- Sebastian Berg
+- Ralf Gommers
+- Charles Harris
+- Inessa Pawson
+- Matti Picus
+- Stéfan van der Walt
+- Melissa Weber Mendonça
+- Marten van Kerkwijk
+- Nathan Goldbaum
+
+Emeritus:
+
+- Alex Griffing (2015-2017)
+- Allan Haldane (2015-2021)
+- Travis Oliphant (project founder, 2005-2012)
+- Nathaniel Smith (2012-2021)
+- Julian Taylor (2013-2021)
+- Jaime Fernández del Río (2014-2021)
+- Pauli Virtanen (2008-2021)
+- Eric Wieser (2017-2025)
+- Stephan Hoyer (2017-2025)
+
+To contact the NumPy Steering Council, please email numpy-team@googlegroups.com.
+
+## Teams
+
+The NumPy project leadership is actively working on diversifying contribution pathways to the project.
+NumPy currently has the following teams:
+
+- development
+- documentation
+- triage
+- website
+- survey
+- translations
+- sprint mentors
+- optimization
+- funding and grants
+
+See the [Team](/teams) page for more info.
+
+## NumFOCUS Subcommittee
+
+- Charles Harris
+- Ralf Gommers
+- Inessa Pawson
+- Sebastian Berg
+- External member: Thomas Caswell
+
+## Sponsors
+
+{{< sponsors >}}
+
+## Institutional Partners
+
+Institutional Partners are organizations that support the project by employing people that contribute to NumPy as part of their job. Current Institutional Partners include:
+
+- UC Berkeley (Stéfan van der Walt)
+- Quansight (Nathan Goldbaum, Ralf Gommers, Matti Picus, Melissa Weber Mendonça, Mateusz Sokol, Rohit Goswami)
+- NVIDIA (Sebastian Berg)
+
+{{< partners >}}
+
+## Donate
+
+If you have found NumPy useful in your work, research, or company, please consider a donation to the project commensurate with your resources. Any amount helps! All donations will be used strictly to fund the development of NumPy’s open source software, documentation, and community.
+
+NumPy is a Sponsored Project of NumFOCUS, a 501(c)(3) nonprofit charity in the United States. NumFOCUS provides NumPy with fiscal, legal, and administrative support to help ensure the health and sustainability of the project. Visit [numfocus.org](https://numfocus.org) for more information.
+
+Donations to NumPy are managed by [NumFOCUS](https://numfocus.org). For donors in the United States, your gift is tax-deductible to the extent provided by law. As with any donation, you should consult with your tax advisor about your particular tax situation.
+
+NumPy's Steering Council will make the decisions on how to best use any funds received. Technical and infrastructure priorities are documented on the [NumPy Roadmap](https://www.numpy.org/neps/index.html#roadmap).
+
+{{
+
+**Array computing** is based on **arrays** data structures. _Arrays_ are used
+to organize vast amounts of data such that a related set of values can be easily
+sorted, searched, mathematically manipulated, and transformed easily and quickly.
+
+Array computing is _unique_ as it involves operating on the data array _at
+once_. What this means is that any array operation applies to an entire set of
+values in one shot. This vectorized approach provides speed and simplicity by
+enabling programmers to code and operate on aggregates of data, without having
+to use loops of individual scalar operations.
diff --git a/content/hi/case-studies/blackhole-image.md b/content/hi/case-studies/blackhole-image.md
new file mode 100644
index 00000000..ca6f4351
--- /dev/null
+++ b/content/hi/case-studies/blackhole-image.md
@@ -0,0 +1,127 @@
+---
+title: "Case Study: First Image of a Black Hole"
+sidebar: false
+---
+
+{{< figure
+ src='/images/content_images/cs/blackhole.jpg'
+ title='Black Hole M87'
+ alt='black hole image'
+ attribution='(Image Credits: Event Horizon Telescope Collaboration)'
+ attributionlink="https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg"
+>}}
+
+{{< blockquote
+ cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
+ by="Katie Bouman, _Assistant Professor, Computing & Mathematical Sciences, Caltech_"
+>}}
+{{< /blockquote >}}
+
+## A telescope the size of the earth
+
+The [Event Horizon telescope (EHT)](https://eventhorizontelescope.org) is an
+array of eight ground-based radio telescopes forming a computational telescope
+the size of the earth, studing the universe with unprecedented
+sensitivity and resolution. The huge virtual telescope, which uses a technique
+called very-long-baseline interferometry (VLBI), has an angular resolution of
+[20 micro-arcseconds][resolution] — enough to read a newspaper in New York
+from a sidewalk café in Paris!
+
+[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
+
+### Key Goals and Results
+
+- **A New View of the Universe:**
+ The groundwork for the EHT's groundbreaking image had been laid 100 years
+ earlier when [Sir Arthur Eddington][eddington] yielded the first
+ observational support of Einstein's theory of general relativity.
+
+- **The Black Hole:** EHT was trained on a supermassive black hole
+ approximately 55 million light-years from Earth, lying at the center
+ of the galaxy Messier 87 (M87) in the Virgo galaxy cluster. Its mass is
+ 6.5 billion times the Sun's. It had been studied for
+ [over 100 years](https://www.jpl.nasa.gov/news/news.php?feature=7385), but never before
+ had a black hole been visually observed.
+
+- **Comparing Observations to Theory:** From Einstein’s general theory of
+ relativity, scientists expected to find a shadow-like region caused by
+ gravitational bending and capture of light. Scientists could
+ use it to measure the black hole's enormous mass.
+
+[eddington]: https://en.wikipedia.org/wiki/Eddington_experiment
+
+### The Challenges
+
+- **Computational scale**
+
+ EHT poses massive data-processing challenges, including rapid atmospheric
+ phase fluctuations, large recording bandwidth, and telescopes that are
+ widely dissimilar and geographically dispersed.
+
+- **Too much information**
+
+ Each day EHT generates over 350 terabytes of observations, stored on
+ helium-filled hard drives. Reducing the volume and complexity of this much
+ data is enormously difficult.
+
+- **Into the unknown**
+
+ When the goal is to see something never before seen, how can scientists be
+ confident the image is correct?
+
+{{< figure >}}
+{{< /figure >}}
+
+## NumPy’s Role
+
+What if there's a problem with the data? Or perhaps an algorithm relies too
+heavily on a particular assumption. Will the image change drastically if a
+single parameter is changed?
+
+The EHT collaboration met these challenges by having independent teams
+evaluate the data, using both established and cutting-edge image reconstruction
+techniques. When results proved consistent, they were combined to yield the
+first-of-a-kind image of the black hole.
+
+Their work illustrates the role the scientific Python ecosystem plays in
+advancing science through collaborative data analysis.
+
+{{< figure >}}
+{{< /figure >}}
+
+For example, the [`eht-imaging`][ehtim] Python package provides tools for
+simulating and performing image reconstruction on VLBI data.
+NumPy is at the core of array data processing used
+in this package, as illustrated by the partial software
+dependency chart below.
+
+{{< figure >}}
+{{< /figure >}}
+
+[ehtim]: https://github.com/achael/eht-imaging
+
+Besides NumPy, many other packages, such as
+[SciPy](https://scipy.org) and [Pandas](https://pandas.pydata.org), are part of the
+data processing pipeline for imaging the black hole.
+The standard astronomical file formats and time/coordinate transformations
+were handled by [Astropy][astropy], while [Matplotlib][mpl] was used
+in visualizing data throughout the analysis pipeline, including the generation
+of the final image of the black hole.
+
+[astropy]: https://www.astropy.org/
+[mpl]: https://matplotlib.org/
+
+## Summary
+
+The efficient and adaptable n-dimensional array that is NumPy's central feature
+enabled researchers to manipulate large numerical datasets, providing a
+foundation for the first-ever image of a black hole. A landmark moment in
+science, it gives stunning visual evidence of Einstein’s theory. The
+achievement encompasses not only technological breakthroughs but also
+international collaboration among over 200 scientists and some of the world's
+best radio observatories. Innovative algorithms and data processing
+techniques, improving upon existing astronomical models, helped unfold a
+mystery of the universe.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/hi/case-studies/cricket-analytics.md b/content/hi/case-studies/cricket-analytics.md
new file mode 100644
index 00000000..ff64c20a
--- /dev/null
+++ b/content/hi/case-studies/cricket-analytics.md
@@ -0,0 +1,146 @@
+---
+title: "Case Study: Cricket Analytics, the game changer!"
+sidebar: false
+---
+
+{{< figure
+ src='/images/content_images/cs/ipl-stadium.png'
+ >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="https://www.scoopwhoop.com/sports/ms-dhoni/"
+ by="M S Dhoni, _International Cricket Player, ex-captain, Indian Team, plays for Chennai Super Kings in IPL_"
+>}}
+{{< /blockquote >}}
+
+## About Cricket
+
+It would be an understatement to state that Indians love cricket. The game is
+played in just about every nook and cranny of India, rural or urban, popular
+with the young and the old alike, connecting billions in India unlike any other sport.
+Cricket enjoys lots of media attention. There is a significant amount of
+[money](https://www.statista.com/topics/4543/indian-premier-league-ipl/) and
+fame at stake. Over the last several years, technology has literally been a game
+changer. Audiences are spoilt for choice with streaming media, tournaments,
+affordable access to mobile based live cricket watching, and more.
+
+The Indian Premier League (IPL) is a professional Twenty20 cricket
+league, founded in 2008. It is one of the most attended cricketing events in
+the world, valued at [$6.7 billion](https://en.wikipedia.org/wiki/Indian_Premier_League)
+in 2019.
+
+Cricket is a game of numbers - the runs scored by a batsman, the wickets taken
+by a bowler, the matches won by a cricket team, the number of times a batsman
+responds in a certain way to a kind of bowling attack, etc. The capability to
+dig into cricketing numbers for both improving performance and studying
+the business opportunities, overall market, and economics of cricket via powerful
+analytics tools, powered by numerical computing software such as NumPy, is a big
+deal. Cricket analytics provides interesting insights into the game and
+predictive intelligence regarding game outcomes.
+
+Today, there are rich and almost infinite troves of cricket game records and
+statistics available, e.g., ESPN
+cricinfo and
+[cricsheet](https://cricsheet.org). These and several such cricket databases
+have been used for cricket
+analysis
+using the latest machine learning and predictive modelling algorithms.
+Media and entertainment platforms along with professional sports bodies
+associated with the game use technology and analytics for determining key
+metrics for improving match winning chances:
+
+- batting performance moving average,
+- score forecasting,
+- gaining insights into fitness and performance of a player against different opposition,
+- player contribution to wins and losses for making strategic decisions on team composition
+
+{{< figure >}}
+{{< /figure >}}
+
+### Key Data Analytics Objectives
+
+- Sports data analytics are used not only in cricket but many other
+ sports for
+ improving the overall team performance and maximizing winning chances.
+- Real-time data analytics can help in gaining insights even during the game
+ for changing tactics by the team and by associated businesses for economic
+ benefits and growth.
+- Besides historical analysis, predictive models are
+ harnessed to determine the possible match outcomes that require significant
+ number crunching and data science know-how, visualization tools and capability
+ to include newer observations in the analysis.
+
+{{< figure >}}
+{{< /figure >}}
+
+### The Challenges
+
+- **Data Cleaning and preprocessing**
+
+ IPL has expanded cricket beyond the classic test match format to a much
+ larger scale. The number of matches played every season across various
+ formats has increased and so has the data, the algorithms, newer sports data
+ analysis technologies and simulation models. Cricket data analysis requires
+ field mapping, player tracking, ball tracking, player shot analysis, and
+ several other aspects involved in how the ball is delivered, its angle, spin,
+ velocity, and trajectory. All these factors together have increased the
+ complexity of data cleaning and preprocessing.
+
+- **Dynamic Modeling**
+
+ In cricket, just like any other sport,
+ there can be a large number of variables related to tracking various numbers
+ of players on the field, their attributes, the ball, and several possibilities
+ of potential actions. The complexity of data analytics and modeling is
+ directly proportional to the kind of predictive questions that are put forth
+ during analysis and are highly dependent on data representation and the
+ model. Things get even more challenging in terms of computation, data
+ comparisons when dynamic cricket play predictions are sought such as what
+ would have happened if the batsman had hit the ball at a different angle or
+ velocity.
+
+- **Predictive Analytics Complexity**
+
+ Much of the decision making in cricket is based on questions such as "how
+ often does a batsman play a certain kind of shot if the ball delivery is of a
+ particular type", or "how does a bowler change his line and length if the
+ batsman responds to his delivery in a certain way".
+ This kind of predictive analytics query requires highly granular dataset
+ availability and the capability to synthesize data and create generative
+ models that are highly accurate.
+
+## NumPy’s Role in Cricket Analytics
+
+Sports Analytics is a thriving field. Many researchers and companies
+[use NumPy](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx)
+and other PyData packages like Scikit-learn, SciPy, Matplotlib, and Jupyter,
+besides using the latest machine learning and AI techniques. NumPy has been used
+for various kinds of cricket related sporting analytics such as:
+
+- **Statistical Analysis:** NumPy's numerical capabilities help estimate the
+ statistical significance of observational data or match events in the context
+ of various player and game tactics, estimating the game outcome by comparison
+ with a generative or static model.
+ [Causal analysis](https://amplitude.com/blog/2017/01/19/causation-correlation)
+ and [big data approaches](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996805/)
+ are used for tactical analysis.
+
+- **Data Visualization:** Data graphing and visualization provide useful insights into relationship between various datasets.
+
+## Summary
+
+Sports Analytics is a game changer when it comes to how professional games are
+played, especially how strategic decision making happens, which until recently
+was primarily done based on “gut feeling" or adherence to past traditions. NumPy
+forms a solid foundation for a large set of Python packages which provide higher
+level functions related to data analytics, machine learning, and AI algorithms.
+These packages are widely deployed to gain real-time insights that help in
+decision making for game-changing outcomes, both on field as well as to draw
+inferences and drive business around the game of cricket. Finding out the
+hidden parameters, patterns, and attributes that lead to the outcome of a
+cricket match helps the stakeholders to take notice of game insights that are
+otherwise hidden in numbers and statistics.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/hi/case-studies/deeplabcut-dnn.md b/content/hi/case-studies/deeplabcut-dnn.md
new file mode 100644
index 00000000..60b48522
--- /dev/null
+++ b/content/hi/case-studies/deeplabcut-dnn.md
@@ -0,0 +1,154 @@
+---
+title: "Case Study: DeepLabCut 3D Pose Estimation"
+sidebar: false
+---
+
+{{< figure >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="https://news.harvard.edu/gazette/story/newsplus/harvard-researchers-awarded-czi-open-source-award/"
+ by="Alexander Mathis, _Assistant Professor, École polytechnique fédérale de Lausanne_ ([EPFL](https://www.epfl.ch/en/))"
+>}}
+{{< /blockquote >}}
+
+## About DeepLabCut
+
+[DeepLabCut](https://github.com/DeepLabCut/DeepLabCut) is an open source toolbox that empowers researchers at hundreds of institutions worldwide to track behaviour of laboratory animals, with very little training data, at human-level accuracy. With DeepLabCut technology, scientists can delve deeper into the scientific understanding of motor control and behavior across animal species and timescales.
+
+Several areas of research, including neuroscience, medicine, and biomechanics, use data from tracking animal movement. DeepLabCut helps in understanding what humans and other animals are doing by parsing actions that have been recorded on film. Using automation for laborious tasks of tagging and monitoring, along with deep neural network based data analysis, DeepLabCut makes scientific studies involving observing animals, such as primates, mice, fish, flies etc., much faster and more accurate.
+
+{{< figure >}}
+{{< /figure >}}
+
+DeepLabCut's non-invasive behavioral tracking of animals by extracting the poses of animals is crucial for scientific pursuits in domains such as biomechanics, genetics, ethology & neuroscience. Measuring animal poses non-invasively from video - without markers - in dynamically changing backgrounds is computationally challenging, both technically as well as in terms of resource needs and training data required.
+
+DeepLabCut allows researchers to estimate the pose of the subject, efficiently enabling them to quantify the behavior through a Python based software toolkit. With DeepLabCut, researchers can identify distinct frames from videos, digitally label specific body parts in a few dozen frames with a tailored GUI, and then the deep learning based pose estimation architectures in DeepLabCut learn how to pick out those same features in the rest of the video and in other similar videos of animals. It works across species of animals, from common laboratory animals such as flies and mice to more unusual animals like [cheetahs][cheetah-movement].
+
+[cheetah-movement]: https://www.technologynetworks.com/neuroscience/articles/interview-a-deeper-cut-into-behavior-with-mackenzie-mathis-327618
+
+DeepLabCut uses a principle called [transfer learning](https://arxiv.org/pdf/1909.11229), which greatly reduces the amount of training data required and speeds up the convergence of the training period. Depending on the needs, users can pick different network architectures that provide faster inference (e.g. MobileNetV2), which can also be combined with real-time experimental feedback. DeepLabCut originally used the feature detectors from a top-performing human pose estimation architecture, called [DeeperCut](https://arxiv.org/abs/1605.03170), which inspired the name. The package now has been significantly changed to include additional architectures, augmentation methods, and a full front-end user experience. Furthermore, to support large-scale biological experiments DeepLabCut provides active learning capabilities so that users can increase the training set over time to cover edge cases and make their pose estimation algorithm robust within the specific context.
+
+Recently, the [DeepLabCut model zoo](https://deeplabcut.github.io/DeepLabCut/docs/ModelZoo.html) was introduced, which provides pre-trained models for various species and experimental conditions from facial analysis in primates to dog posture. This can be run for instance in the cloud without any labeling of new data, or neural network training, and no programming experience is necessary.
+
+### Key Goals and Results
+
+- **Automation of animal pose analysis for scientific studies:**
+
+ The primary objective of DeepLabCut technology is to measure and track posture
+ of animals in a diverse settings. This data can be used, for example, in
+ neuroscience studies to understand how the brain controls movement, or to
+ elucidate how animals socially interact. Researchers have observed a
+ [tenfold performance boost](https://www.biorxiv.org/content/10.1101/457242v1)
+ with DeepLabCut. Poses can be inferred offline at up to 1200 frames per second
+ (FPS).
+
+- **Creation of an easy-to-use Python toolkit for pose estimation:**
+
+ DeepLabCut wanted to share their animal pose-estimation technology in the form
+ of an easy to use tool that can be adopted by researchers easily. So they have
+ created a complete, easy-to-use Python toolbox with project management features
+ as well. These enable not only automation of pose-estimation but also
+ managing the project end-to-end by helping the DeepLabCut Toolkit user right
+ from the dataset collection stage to creating shareable and reusable analysis
+ pipelines.
+
+ Their [toolkit][DLCToolkit] is now available as open source.
+
+ A typical DeepLabCut Workflow includes:
+
+ - creation and refining of training sets via active learning
+ - creation of tailored neural networks for specific animals and scenarios
+ - code for large-scale inference on videos
+ - draw inferences using integrated visualization tools
+
+{{< figure >}}
+{{< /figure >}}
+
+[DLCToolkit]: https://github.com/DeepLabCut/DeepLabCut
+
+### The Challenges
+
+- **Speed**
+
+ Fast processing of animal behavior videos in order to measure their behavior
+ and at the same time make scientific experiments more efficient, accurate.
+ Extracting detailed animal poses for laboratory experiments, without
+ markers, in dynamically changing backgrounds, can be challenging, both
+ technically as well as in terms of resource needs and training data required.
+ Coming up with a tool that is easy to use without the need for skills such
+ as computer vision expertise that enables scientists to do research in more
+ real-world contexts, is a non-trivial problem to solve.
+
+- **Combinatorics**
+
+ Combinatorics involves assembly and integration of movement of multiple
+ limbs into individual animal behavior. Assembling keypoints and their
+ connections into individual animal movements and linking them across time
+ is a complex process that requires heavy-duty numerical analysis, especially
+ in case of multi-animal movement tracking in experiment videos.
+
+- **Data Processing**
+
+ Last but not the least, array manipulation - processing large stacks of
+ arrays corresponding to various images, target tensors and keypoints is
+ fairly challenging.
+
+{{< figure >}}
+{{< /figure >}}
+
+## NumPy's Role in meeting Pose Estimation Challenges
+
+NumPy addresses DeepLabCut technology's core need of numerical computations at
+high speed for behavioural analytics. Besides NumPy, DeepLabCut employs
+various Python software that utilize NumPy at their core, such as
+[SciPy](https://www.scipy.org), [Pandas](https://pandas.pydata.org),
+[matplotlib](https://matplotlib.org),
+[Tensorpack](https://github.com/tensorpack/tensorpack),
+[imgaug](https://github.com/aleju/imgaug),
+[scikit-learn](https://scikit-learn.org/stable/),
+[scikit-image](https://scikit-image.org) and
+[Tensorflow](https://www.tensorflow.org).
+
+The following features of NumPy played a key role in addressing the image
+processing, combinatorics requirements and need for fast computation in
+DeepLabCut pose estimation algorithms:
+
+- Vectorization
+- Masked Array Operations
+- Linear Algebra
+- Random Sampling
+- Reshaping of large arrays
+
+DeepLabCut utilizes NumPy’s array capabilities throughout the workflow offered
+by the toolkit. In particular, NumPy is used for sampling distinct frames for
+human annotation labeling, and for writing, editing and processing annotation
+data. Within TensorFlow the neural network is trained by DeepLabCut technology
+over thousands of iterations to predict the ground truth annotations from
+frames. For this purpose, target densities (scoremaps) are created to cast pose
+estimation as a image-to-image translation problem. To make the neural networks
+robust, data augmentation is employed, which requires the calculation of target
+scoremaps subject to various geometric and image processing steps. To make
+training fast, NumPy’s vectorization capabilities are leveraged. For inference,
+the most likely predictions from target scoremaps need to extracted and one
+needs to efficiently “link predictions to assemble individual animals”.
+
+{{< figure >}}
+{{< /figure >}}
+
+## Summary
+
+Observing and efficiently describing behavior is a core tenant of modern
+ethology, neuroscience, medicine, and technology.
+[DeepLabCut](https://static1.squarespace.com/static/57f6d51c9f74566f55ecf271/t/5eab5ff7999bf94756b27481/1588289532243/NathMathis2019.pdf)
+allows researchers to estimate the pose of the subject, efficiently enabling
+them to quantify the behavior. With only a small set of training images,
+the DeepLabCut Python toolbox allows training a neural network to within human
+level labeling accuracy, thus expanding its application to not only behavior
+analysis in the laboratory, but to potentially also in sports, gait analysis,
+medicine and rehabilitation studies. Complex combinatorics, data processing
+challenges faced by DeepLabCut algorithms are addressed through the use of
+NumPy's array manipulation capabilities.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/hi/case-studies/gw-discov.md b/content/hi/case-studies/gw-discov.md
new file mode 100644
index 00000000..2ff32510
--- /dev/null
+++ b/content/hi/case-studies/gw-discov.md
@@ -0,0 +1,144 @@
+---
+title: "Case Study: Discovery of Gravitational Waves"
+sidebar: false
+---
+
+{{< figure >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
+ by="David Shoemaker, _LIGO Scientific Collaboration_" >}}
+{{< /blockquote >}}
+
+## About [Gravitational Waves](https://www.nationalgeographic.com/news/2017/10/what-are-gravitational-waves-ligo-astronomy-science/) and [LIGO](https://www.ligo.caltech.edu)
+
+Gravitational waves are ripples in the fabric of space and time, generated by
+cataclysmic events in the universe such as collision and merging of two black
+holes or coalescing binary stars or supernovae. Observing GW can not only help
+in studying gravity but also in understanding some of the obscure phenomena in
+the distant universe and its impact.
+
+The [Laser Interferometer Gravitational-Wave Observatory (LIGO)](https://www.ligo.caltech.edu)
+was designed to open the field of gravitational-wave astrophysics through the
+direct detection of gravitational waves predicted by Einstein’s General Theory
+of Relativity. It comprises two widely separated interferometers within the
+United States — one in Hanford, Washington and the other in Livingston,
+Louisiana — operated in unison to detect gravitational waves. Each of them has
+multi-kilometer-scale gravitational wave detectors that use laser
+interferometry. The LIGO Scientific Collaboration (LSC), is a group of more
+than 1000 scientists from universities around the United States and in 14
+other countries supported by more than 90 universities and research institutes;
+approximately 250 students actively contributing to the collaboration. The new
+LIGO discovery is the first observation of gravitational waves themselves,
+made by measuring the tiny disturbances the waves make to space and time as
+they pass through the earth. It has opened up new astrophysical frontiers
+that explore the warped side of the universe—objects and phenomena that are
+made from warped spacetime.
+
+### Key Objectives
+
+- Though its [mission](https://www.ligo.caltech.edu/page/what-is-ligo) is to
+ detect gravitational waves from some of the most violent and energetic
+ processes in the Universe, the data LIGO collects may have far-reaching
+ effects on many areas of physics including gravitation, relativity,
+ astrophysics, cosmology, particle physics, and nuclear physics.
+- Crunch observed data via numerical relativity computations that involves
+ complex maths in order to discern signal from noise, filter out relevant
+ signal and statistically estimate significance of observed data
+- Data visualization so that the binary / numerical results can be
+ comprehended.
+
+### The Challenges
+
+- **Computation**
+
+ Gravitational Waves are hard to detect as they produce a very small effect
+ and have tiny interaction with matter. Processing and analyzing all of
+ LIGO's data requires a vast computing infrastructure.After taking care of
+ noise, which is billions of times of the signal, there is still very
+ complex relativity equations and huge amounts of data which present a
+ computational challenge:
+ [O(10^7) CPU hrs needed for binary merger analyses](https://youtu.be/7mcHknWWzNI)
+ spread on 6 dedicated LIGO clusters
+
+- **Data Deluge**
+
+ As observational devices become more sensitive and reliable, the challenges
+ posed by data deluge and finding a needle in a haystack rise multi-fold.
+ LIGO generates terabytes of data every day! Making sense of this data
+ requires an enormous effort for each and every detection. For example, the
+ signals being collected by LIGO must be matched by supercomputers against
+ hundreds of thousands of templates of possible gravitational-wave signatures.
+
+- **Visualization**
+
+ Once the obstacles related to understanding Einstein’s equations well
+ enough to solve them using supercomputers are taken care of, the next big
+ challenge was making data comprehensible to the human brain. Simulation
+ modeling as well as signal detection requires effective visualization
+ techniques. Visualization also plays a role in lending more credibility
+ to numerical relativity in the eyes of pure science aficionados, who did
+ not give enough importance to numerical relativity until imaging and
+ simulations made it easier to comprehend results for a larger audience.
+ Speed of complex computations and rendering, re-rendering images and
+ simulations using latest experimental inputs and insights can be a time
+ consuming activity that challenges researchers in this domain.
+
+{{< figure >}}
+{{< /figure >}}
+
+## NumPy’s Role in the Detection of Gravitational Waves
+
+Gravitational waves emitted from the merger cannot be computed using any
+technique except brute force numerical relativity using supercomputers.
+The amount of data LIGO collects is as incomprehensibly large as gravitational
+wave signals are small.
+
+NumPy, the standard numerical analysis package for Python, was utilized by
+the software used for various tasks performed during the GW detection project
+at LIGO. NumPy helped in solving complex maths and data manipulation at high
+speed. Here are some examples:
+
+- [Signal Processing](https://www.uv.es/virgogroup/Denoising_ROF.html): Glitch
+ detection, [Noise identification and Data Characterization](https://ep2016.europython.eu/media/conference/slides/pyhton-in-gravitational-waves-research-communities.pdf)
+ (NumPy, scikit-learn, scipy, matplotlib, pandas, pyCharm)
+- Data retrieval: Deciding which data can be analyzed, figuring out whether it
+ contains a signal - needle in a haystack
+- Statistical analysis: estimate the statistical significance of observational
+ data, estimating the signal parameters (e.g. masses of stars, spin velocity,
+ and distance) by comparison with a model.
+- Visualization of data
+ - Time series
+ - Spectrograms
+- Compute Correlations
+- Key [Software](https://github.com/lscsoft) developed in GW data analysis
+ such as [GwPy](https://gwpy.github.io/docs/stable/overview.html) and
+ [PyCBC](https://pycbc.org) uses NumPy and AstroPy under the hood for
+ providing object based interfaces to utilities, tools, and methods for
+ studying data from gravitational-wave detectors.
+
+{{< figure >}}
+{{< /figure >}}
+
+----
+
+{{< figure >}}
+{{< /figure >}}
+
+## Summary
+
+GW detection has enabled researchers to discover entirely unexpected phenomena
+while providing new insight into many of the most profound astrophysical
+phenomena known. Number crunching and data visualization is a crucial step
+that helps scientists gain insights into data gathered from the scientific
+observations and understand the results. The computations are complex and
+cannot be comprehended by humans unless it is visualized using computer
+simulations that are fed with the real observed data and analysis. NumPy
+along with other Python packages such as matplotlib, pandas, and scikit-learn
+is [enabling researchers](https://www.gw-openscience.org/events/GW150914/) to
+answer complex questions and discover new horizons in our understanding of the
+universe.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/hi/citing-numpy.md b/content/hi/citing-numpy.md
new file mode 100644
index 00000000..60925013
--- /dev/null
+++ b/content/hi/citing-numpy.md
@@ -0,0 +1,35 @@
+---
+title: Citing NumPy
+sidebar: false
+---
+
+If NumPy has been significant in your research, and you would like to acknowledge the project in your academic publication, we suggest citing the following paper:
+
+- Harris, C.R., Millman, K.J., van der Walt, S.J. et al. _Array programming with NumPy_. Nature 585, 357–362 (2020). DOI: [10.1038/s41586-020-2649-2](https://doi.org/10.1038/s41586-020-2649-2). ([Publisher link](https://www.nature.com/articles/s41586-020-2649-2)).
+
+_In BibTeX format:_
+
+ ```
+ @Article{ harris2020array,
+ title = {Array programming with {NumPy}},
+ author = {Charles R. Harris and K. Jarrod Millman and St{\'{e}}fan J.
+ van der Walt and Ralf Gommers and Pauli Virtanen and David
+ Cournapeau and Eric Wieser and Julian Taylor and Sebastian
+ Berg and Nathaniel J. Smith and Robert Kern and Matti Picus
+ and Stephan Hoyer and Marten H. van Kerkwijk and Matthew
+ Brett and Allan Haldane and Jaime Fern{\'{a}}ndez del
+ R{\'{i}}o and Mark Wiebe and Pearu Peterson and Pierre
+ G{\'{e}}rard-Marchant and Kevin Sheppard and Tyler Reddy and
+ Warren Weckesser and Hameer Abbasi and Christoph Gohlke and
+ Travis E. Oliphant},
+ year = {2020},
+ month = sep,
+ journal = {Nature},
+ volume = {585},
+ number = {7825},
+ pages = {357--362},
+ doi = {10.1038/s41586-020-2649-2},
+ publisher = {Springer Science and Business Media {LLC}},
+ url = {https://doi.org/10.1038/s41586-020-2649-2}
+ }
+ ```
diff --git a/content/hi/code-of-conduct.md b/content/hi/code-of-conduct.md
new file mode 100644
index 00000000..d5819b62
--- /dev/null
+++ b/content/hi/code-of-conduct.md
@@ -0,0 +1,83 @@
+---
+title: NumPy Code of Conduct
+sidebar: false
+aliases:
+ - /conduct.html
+---
+
+### Introduction
+
+This Code of Conduct applies to all spaces managed by the NumPy project, including all public and private mailing lists, issue trackers, wikis, blogs, X, and any other communication channel used by our community. The NumPy project does not organise in-person events, however events related to our community should have a code of conduct similar in spirit to this one.
+
+This Code of Conduct should be honored by everyone who participates in the NumPy community formally or informally, or claims any affiliation with the project, in any project-related activities and especially when representing the project, in any role.
+
+This code is not exhaustive or complete. It serves to distill our common understanding of a collaborative, shared environment and goals. Please try to follow this code in spirit as much as in letter, to create a friendly and productive environment that enriches the surrounding community.
+
+### Specific Guidelines
+
+We strive to:
+
+1. Be open. We invite anyone to participate in our community. We prefer to use public methods of communication for project-related messages, unless discussing something sensitive. This applies to messages for help or project-related support, too; not only is a public support request much more likely to result in an answer to a question, it also ensures that any inadvertent mistakes in answering are more easily detected and corrected.
+2. Be empathetic, welcoming, friendly, and patient. We work together to resolve conflict, and assume good intentions. We may all experience some frustration from time to time, but we do not allow frustration to turn into a personal attack. A community where people feel uncomfortable or threatened is not a productive one.
+3. Be collaborative. Our work will be used by other people, and in turn we will depend on the work of others. When we make something for the benefit of the project, we are willing to explain to others how it works, so that they can build on the work to make it even better. Any decision we make will affect users and colleagues, and we take those consequences seriously when making decisions.
+4. Be inquisitive. Nobody knows everything! Asking questions early avoids many problems later, so we encourage questions, although we may direct them to the appropriate forum. We will try hard to be responsive and helpful.
+5. Be careful in the words that we choose. We are careful and respectful in our communication, and we take responsibility for our own speech. Be kind to others. Do not insult or put down other participants. We will not accept harassment or other exclusionary behaviour, such as:
+ - Violent threats or language directed against another person.
+ - Sexist, racist, or otherwise discriminatory jokes and language.
+ - Posting sexually explicit or violent material.
+ - Posting (or threatening to post) other people’s personally identifying information (“doxing”).
+ - Sharing private content, such as emails sent privately or non-publicly, or unlogged forums such as IRC channel history, without the sender’s consent.
+ - Personal insults, especially those using racist or sexist terms.
+ - Unwelcome sexual attention.
+ - Excessive profanity. Please avoid swearwords; people differ greatly in their sensitivity to swearing.
+ - Repeated harassment of others. In general, if someone asks you to stop, then stop.
+ - Advocating for, or encouraging, any of the above behaviour.
+
+### Diversity Statement
+
+The NumPy project welcomes and encourages participation by everyone. We are committed to being a community that everyone enjoys being part of. Although we may not always be able to accommodate each individual’s preferences, we try our best to treat everyone kindly.
+
+No matter how you identify yourself or how others perceive you: we welcome you. Though no list can hope to be comprehensive, we explicitly honour diversity in: age, culture, ethnicity, genotype, gender identity or expression, language, national origin, neurotype, phenotype, political beliefs, profession, race, religion, sexual orientation, socioeconomic status, subculture and technical ability, to the extent that these do not conflict with this code of conduct.
+
+Though we welcome people fluent in all languages, NumPy development is conducted in English.
+
+Standards for behaviour in the NumPy community are detailed in the Code of Conduct above. Participants in our community should uphold these standards in all their interactions and help others to do so as well (see next section).
+
+### Reporting Guidelines
+
+We know that it is painfully common for internet communication to start at or devolve into obvious and flagrant abuse. We also recognize that sometimes people may have a bad day, or be unaware of some of the guidelines in this Code of Conduct. Please keep this in mind when deciding on how to respond to a breach of this Code.
+
+For clearly intentional breaches, report those to the Code of Conduct Committee (see below). For possibly unintentional breaches, you may reply to the person and point out this code of conduct (either in public or in private, whatever is most appropriate). If you would prefer not to do that, please feel free to report to the Code of Conduct Committee directly, or ask the Committee for advice, in confidence.
+
+You can report issues to the NumPy Code of Conduct Committee at numpy-conduct@googlegroups.com.
+
+Currently, the Committee consists of:
+
+- Stefan van der Walt
+- Melissa Weber Mendonça
+- Rohit Goswami
+
+If your report involves any members of the Committee, or if they feel they have a conflict of interest in handling it, then they will recuse themselves from considering your report. Alternatively, if for any reason you feel uncomfortable making a report to the Committee, then you can also contact senior NumFOCUS staff at [conduct@numfocus.org](https://numfocus.org/code-of-conduct#persons-responsible).
+
+### Incident reporting resolution & Code of Conduct enforcement
+
+_This section summarizes the most important points, more details can be found in_ [NumPy Code of Conduct - How to follow up on a report](report-handling-manual).
+
+We will investigate and respond to all complaints. The NumPy Code of Conduct Committee and the NumPy Steering Committee (if involved) will protect the identity of the reporter, and treat the content of complaints as confidential (unless the reporter agrees otherwise).
+
+In case of severe and obvious breaches, e.g. personal threat or violent, sexist or racist language, we will immediately disconnect the originator from NumPy communication channels; please see the manual for details.
+
+In cases not involving clear severe and obvious breaches of this Code of Conduct the process for acting on any received Code of Conduct violation report will be:
+
+1. acknowledge report is received,
+2. reasonable discussion/feedback,
+3. mediation (if feedback didn’t help, and only if both reporter and reportee agree to this),
+4. enforcement via transparent decision (see [Resolutions](report-handling-manual/#resolutions)) by the Code of Conduct Committee.
+
+The Committee will respond to any report as soon as possible, and at most within 72 hours.
+
+### Endnotes
+
+We are thankful to the groups behind the following documents, from which we drew content and inspiration:
+
+- [The SciPy Code of Conduct](https://docs.scipy.org/doc/scipy/dev/conduct/code_of_conduct.html)
diff --git a/content/hi/community.md b/content/hi/community.md
new file mode 100644
index 00000000..6b0e5de4
--- /dev/null
+++ b/content/hi/community.md
@@ -0,0 +1,72 @@
+---
+title: Community
+sidebar: false
+---
+
+NumPy is a community-driven open source project developed by a diverse group of [contributors](/teams/). The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the [NumPy Code of Conduct](/code-of-conduct) for guidance on how to interact with others in a way that makes the community thrive.
+
+We offer several communication channels to learn, share your knowledge and connect with others within the NumPy community.
+
+## Participate online
+
+The following are ways to engage directly with the NumPy project and community.
+_Please note that we encourage users and community members to support each other
+for usage questions - see [Get Help](/gethelp)._
+
+### [NumPy mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion)
+
+This list is the main forum for longer-form discussions, like adding new features to NumPy, making changes to the NumPy Roadmap, and all kinds of project-wide decision making.
+Announcements about NumPy, such as for releases, developer meetings, sprints or
+conference talks are also made on this list.
+
+On this list please use bottom posting, reply to the list (rather than to
+another sender), and don't reply to digests. A searchable archive of this list
+is available [here](https://mail.python.org/archives/list/numpy-discussion@python.org/).
+
+***
+
+### [GitHub issue tracker](https://github.com/numpy/numpy/issues)
+
+- For bug reports (e.g. "`np.arange(3).shape` returns `(5,)`, when it should return `(3,)`");
+- documentation issues (e.g. "I found this section unclear");
+- and feature requests (e.g. "I would like to have a new interpolation method in `np.percentile`").
+
+_Please note that GitHub is not the right place to report a security vulnerability. If you think you have found a security vulnerability in NumPy, please report it [here](https://tidelift.com/docs/security)._
+
+***
+
+### [Slack](https://numpy-team.slack.com)
+
+A real-time chat room to ask questions about _contributing_ to NumPy.
+This is a private space, specifically meant for people who are hesitant to
+bring up their questions or ideas on a large public mailing list or GitHub.
+Please see
+[here](https://numpy.org/devdocs/dev/index.html#contributing-to-numpy) for more
+details and how to get an invite.
+
+## Study Groups and Meetups
+
+If you would like to find a local meetup or study group to learn more about NumPy and the wider ecosystem of Python packages for data science and scientific computing, we recommend exploring the [PyData meetups](https://www.meetup.com/pro/pydata/) (150+ meetups, 100,000+ members).
+
+NumPy also organizes in-person sprints for its team and interested contributors occasionally. These are typically planned several months in advance and will be announced on the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion).
+
+## Conferences
+
+The NumPy project doesn't organize its own conferences. The conferences that have traditionally been most popular with NumPy maintainers, contributors and users are the SciPy and PyData conference series:
+
+- SciPy US
+- EuroSciPy
+- SciPy Latin America
+- SciPy India
+- SciPyData Japan
+- PyData conferences (15-20 events a year spread over many countries)
+
+Many of these conferences include tutorial days that cover NumPy and/or sprints where you can learn how to contribute to NumPy or related open source projects.
+
+## Join the NumPy community
+
+To thrive, the NumPy project needs your expertise and enthusiasm. Not a coder? Not a problem! There are many ways to contribute to NumPy.
+
+If you are interested in becoming a NumPy contributor (yay!) we recommend checking out our [Contribute](/contribute) page.
+
+Also, feel free to stop by and say hi at one of our community meetings. To keep track of them, check out our events calendar [here](https://scientific-python.org/calendars/).
diff --git a/content/hi/config.yaml b/content/hi/config.yaml
new file mode 100644
index 00000000..f045713c
--- /dev/null
+++ b/content/hi/config.yaml
@@ -0,0 +1,109 @@
+languageName: English
+params:
+ description: Why NumPy? Powerful n-dimensional arrays. Numerical computing tools. Interoperable. Performant. Open source.
+ navbarlogo:
+ image: logo.svg
+ text: NumPy
+ link: /
+ hero:
+ # Main hero title
+ title: NumPy
+ # Hero subtitle (optional)
+ subtitle: The fundamental package for scientific computing with Python
+ # Button text
+ buttontext: "Latest release: NumPy 2.2. View all releases"
+ # Where the main hero button links to
+ buttonlink: "/news/#releases"
+ # Hero image (from static/images/___)
+ image: logo.svg
+ shell:
+ title: placeholder
+ intro:
+ - title: Try NumPy
+ text: Use the interactive shell to try NumPy in the browser
+ docslink: Don't forget to check out the docs.
+ casestudies:
+ title: CASE STUDIES
+ features:
+ - title: First Image of a Black Hole
+ text: How NumPy, together with libraries like SciPy and Matplotlib that depend on NumPy, enabled the Event Horizon Telescope to produce the first ever image of a black hole
+ img: /images/content_images/case_studies/blackhole.png
+ alttext: First image of a black hole. It is an orange circle in a black background.
+ url: /case-studies/blackhole-image
+ - title: Detection of Gravitational Waves
+ text: In 1916, Albert Einstein predicted gravitational waves; 100 years later their existence was confirmed by LIGO scientists using NumPy.
+ img: /images/content_images/case_studies/gravitional.png
+ alttext: Two orbs orbiting each other. They are displacing gravity around them.
+ url: /case-studies/gw-discov
+ - title: Sports Analytics
+ text: Cricket Analytics is changing the game by improving player and team performance through statistical modelling and predictive analytics. NumPy enables many of these analyses.
+ img: /images/content_images/case_studies/sports.jpg
+ alttext: Cricket ball on green field.
+ url: /case-studies/cricket-analytics
+ - title: Pose Estimation using deep learning
+ text: DeepLabCut uses NumPy for accelerating scientific studies that involve observing animal behavior for better understanding of motor control, across species and timescales.
+ img: /images/content_images/case_studies/deeplabcut.png
+ alttext: Cheetah pose analysis
+ url: /case-studies/deeplabcut-dnn
+ tabs:
+ title: ECOSYSTEM
+ section5: false
+ navbar:
+ - title: Install
+ url: /install
+ - title: Documentation
+ url: https://numpy.org/doc/stable
+ - title: Learn
+ url: /learn
+ - title: Community
+ url: /community
+ - title: About Us
+ url: /about
+ - title: News
+ url: /news
+ - title: Contribute
+ url: /contribute
+ footer:
+ logo: logo.svg
+ socialmediatitle: ""
+ socialmedia:
+ - link: https://github.com/numpy/numpy
+ icon: github
+ - link: https://www.youtube.com/@NumPy_team
+ icon: youtube
+ quicklinks:
+ column1:
+ title: ""
+ links:
+ - text: Install
+ link: /install
+ - text: Documentation
+ link: https://numpy.org/doc/stable
+ - text: Learn
+ link: /learn
+ - text: Citing NumPy
+ link: /citing-numpy
+ - text: Roadmap
+ link: https://numpy.org/neps/roadmap.html
+ column2:
+ links:
+ - text: About us
+ link: /about
+ - text: Community
+ link: /community
+ - text: User surveys
+ link: /user-surveys
+ - text: Contribute
+ link: /contribute
+ - text: Code of conduct
+ link: /code-of-conduct
+ column3:
+ links:
+ - text: Get help
+ link: /gethelp
+ - text: Terms of use
+ link: /terms
+ - text: Privacy
+ link: /privacy
+ - text: Press kit
+ link: /press-kit
diff --git a/content/hi/contribute.md b/content/hi/contribute.md
new file mode 100644
index 00000000..fdd8e223
--- /dev/null
+++ b/content/hi/contribute.md
@@ -0,0 +1,116 @@
+---
+title: Contribute to NumPy
+sidebar: false
+---
+
+The NumPy project welcomes your expertise and enthusiasm!
+Your choices aren't limited to programming, as you can
+see below there are many areas where we need **your** help.
+
+If you're unsure where to start or how your skills fit in, _reach out!_ You
+can ask on the mailing
+list or
+[GitHub](http://github.com/numpy/numpy) (open an
+[issue](https://github.com/numpy/numpy/issues) or comment on a relevant
+issue).
+
+Those are our preferred channels (open source is open by nature), but
+if you prefer to talk privately, contact our community coordinators at
+
Check out also our [YouTube channel](https://www.youtube.com/playlist?list=PLCK6zCrcN3GXBUUzDr9L4__LnXZVtaIzS) for additional advice.
+
+### Reviewing pull requests
+
+The project has more than 250 open pull requests -- meaning many potential
+improvements and many open-source contributors waiting for feedback. If you're
+a developer who knows NumPy, you can help even if you're not familiar with the
+codebase. You can:
+
+- summarize a long-running discussion
+- triage documentation PRs
+- test proposed changes
+
+### Developing educational materials
+
+NumPy's [User Guide](https://numpy.org/devdocs) is undergoing rehabilitation.
+We're in need of new tutorials, how-to's, and deep-dive explanations, and the
+site needs restructuring. Opportunities aren't limited to writers. We'd also
+welcome worked examples, notebooks, and videos. NEP 44 — Restructuring the
+NumPyDocumentation
+lays out our ideas -- and you may have others.
+
+### Issue triaging
+
+The [NumPy issue tracker](https://github.com/numpy/numpy/issues) has a _lot_
+of open issues. Some are no longer valid, some should be prioritized, and some
+would make good issues for new contributors. You can:
+
+- check if older bugs are still present
+- find duplicate issues and link related ones
+- add good self-contained reproducers to issues
+- label issues correctly (this requires triage rights -- just ask)
+
+Please just dive in.
+
+### Website development
+
+We've just revamped our website, but we're far from done. If you love web
+development, these
+[issues](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign)
+list some of our unmet needs -- and feel free to share your own ideas.
+
+### Graphic design
+
+We can barely begin to list the contributions a graphic designer can make here.
+Our docs are parched for illustration; our growing website craves images --
+opportunities abound.
+
+### Translating website content
+
+We plan multiple translations of [numpy.org](https://numpy.org) to make NumPy
+accessible to users in their native language. Volunteer translators are at the heart
+of this effort. See
+[here](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n)
+for background; comment on this GitHub
+issue to sign up.
+
+### Community coordination and outreach
+
+Through community contact we share our work more widely and learn where we're
+falling short. We're eager to get more people involved in efforts like organizing NumPy code
+sprints, a newsletter, and perhaps a blog.
+
+### Fundraising
+
+For many years, NumPy was maintained by dedicated volunteers, but as its importance grew it
+became clear that to ensure stability and growth we would need financial support.
+[This SciPy'19 talk](https://www.youtube.com/watch?v=dBTJD_FDVjU) explains how much difference
+that support has made. Like most nonprofits, we are constantly seeking grants, sponsorships,
+and other kinds of funding. We have a number of ideas and of course we welcome more.
+Fundraising is a scarce skill here -- we'd appreciate your help.
+
+### Donate
+
+If you'd like to contribute to NumPy by making a donation, visit [https://numpy.org/about/#donate](https://numpy.org/about/#donate).
+
+
diff --git a/content/hi/gethelp.md b/content/hi/gethelp.md
new file mode 100644
index 00000000..cce276b9
--- /dev/null
+++ b/content/hi/gethelp.md
@@ -0,0 +1,25 @@
+---
+title: Get Help
+sidebar: false
+---
+
+**Development issues:** For NumPy development-related matters (e.g., bug reports), please
+see [Community](/community).
+
+**User questions:** The best way to get help is to post your question to a site
+like [StackOverflow](http://stackoverflow.com/questions/tagged/numpy) or
+[Reddit](https://www.reddit.com/r/Numpy/). We wish we could keep an eye on
+these sites, or answer questions directly, but the volume is a little
+overwhelming!
+
+### [StackOverflow](http://stackoverflow.com/questions/tagged/numpy)
+
+A forum for asking usage questions, e.g. "How do I do X in NumPy?”. Please [use the `#numpy` tag](https://stackoverflow.com/help/tagging)
+
+***
+
+### [Reddit](https://www.reddit.com/r/Numpy/)
+
+Another forum for usage questions.
+
+***
diff --git a/content/hi/history.md b/content/hi/history.md
new file mode 100644
index 00000000..c02bb936
--- /dev/null
+++ b/content/hi/history.md
@@ -0,0 +1,21 @@
+---
+title: History of NumPy
+sidebar: false
+---
+
+NumPy is a foundational Python library that provides array data structures and related fast numerical routines. When started, the library had little funding, and was written mainly by graduate students—many of them without computer science education, and often without a blessing of their advisors. To even imagine that a small group of “rogue” student programmers could upend the already well-established ecosystem of research software—backed by millions in funding and many hundreds of highly qualified engineers — was preposterous. Yet, the philosophical motivations behind a fully open tool stack, in combination with the excited, friendly community with a singular focus, have proven auspicious in the long run. Nowadays, NumPy is relied upon by scientists, engineers, and many other professionals around the world. For example, the published scripts used in the analysis of gravitational waves import NumPy, and the M87 black hole imaging project directly cites NumPy.
+
+For the in-depth account on milestones in the development of NumPy and related libraries please see [arxiv.org](https://arxiv.org/abs/1907.10121).
+
+If you’d like to obtain a copy of the original Numeric and Numarray libraries, follow the links below:
+
+[Download Page for _Numeric_](https://sourceforge.net/projects/numpy/files/Old%20Numeric/)\*
+
+[Download Page for _Numarray_](https://sourceforge.net/projects/numpy/files/Old%20Numarray/)\*
+
+\*Please note that these older array packages are no longer maintained, and users are strongly advised to use NumPy for any array-related purposes or refactor any pre-existing code to utilize the NumPy library.
+
+### Historic Documentation
+
+[Download _\`Numeric'_ Manual](static/numeric-manual.pdf)
+
diff --git a/content/hi/install.md b/content/hi/install.md
new file mode 100644
index 00000000..2e3550b9
--- /dev/null
+++ b/content/hi/install.md
@@ -0,0 +1,131 @@
+---
+title: Installing NumPy
+sidebar: false
+---
+
+{{< admonition >}}
+{{< /admonition >}}
+
+The recommended method of installing NumPy depends on your preferred workflow. Below, we break down the installation methods into the following categories:
+
+- **Project-based** (e.g., uv, pixi) _(recommended for new users)_
+- **Environment-based** (e.g., pip, conda) _(the traditional workflow)_
+- **System package managers** _(not recommended for most users)_
+- **Building from source** _(for advanced users and development purposes)_
+
+Choose the method that best suits your needs. If you're unsure, start with the **Environment-based** method using `conda` or `pip`.
+
+{{< tabs >}}
+
+[[tab]]
+name = 'Project Based'
+content = '''
+
+Recommended for new users who want a streamlined workflow.
+
+- **uv:** A modern Python package manager designed for speed and simplicity.
+ ```bash
+ uv pip install numpy
+ ```
+
+- **pixi:** A cross-platform package manager for Python and other languages.
+ ```bash
+ pixi add numpy
+ ```
+
+'''
+
+[[tab]]
+name = 'Environment Based'
+content = '''
+
+The two main tools that install Python packages are `pip` and `conda`. Their functionality partially overlaps (e.g. both can install `numpy`), however, they can also work together. We’ll discuss the major differences between pip and conda here - this is important to understand if you want to manage packages effectively.
+
+The first difference is that conda is cross-language and it can install Python, while pip is installed for a particular Python on your system and installs other packages to that same Python install only. This also means conda can install non-Python libraries and tools you may need (e.g. compilers, CUDA, HDF5), while pip can’t.
+
+The second difference is that pip installs from the Python Packaging Index (PyPI), while conda installs from its own channels (typically “defaults” or “conda-forge”). PyPI is the largest collection of packages by far, however, all popular packages are available for conda as well.
+
+The third difference is that conda is an integrated solution for managing packages, dependencies and environments, while with pip you may need another tool (there are many!) for dealing with environments or complex dependencies.
+
+- **Conda:** If you use conda, you can install NumPy from the defaults or conda-forge channels:
+ ```bash
+ conda create -n my-env
+ conda activate my-env
+ conda install numpy
+ ```
+- **Pip:**
+ ```bash
+ pip install numpy
+ ```
+
+{{< admonition >}}
+{{< /admonition >}}
+
+ ```bash
+ python -m venv my-env
+ source my-env/bin/activate # macOS/Linux
+ my-env\Scripts\activate # Windows
+ pip install numpy
+ ```
+
+'''
+
+[[tab]]
+name = 'System Package Managers'
+content = '''
+Not recommended for most users, but available for convenience.
+
+**macOS (Homebrew):**
+
+```bash
+brew install numpy
+```
+
+**Linux (APT):**
+
+```bash
+sudo apt install python3-numpy
+```
+
+**Windows (Chocolatey):**
+
+```bash
+choco install numpy
+```
+
+'''
+
+[[tab]]
+name = 'Building from Source'
+content = '''
+For advanced users and developers who want to customize or debug **NumPy**.
+
+A word of warning: building Numpy from source can be a nontrivial exercise.
+We recommend using binaries instead if those are available for your platform via one of the above methods.
+For details on how to build from source, see [the building from source guide in the Numpy docs](https://numpy.org/devdocs/building/).
+
+{{< /tabs >}}
+
+## Verifying the Installation
+
+After installing NumPy, verify the installation by running the following in a Python shell or script:
+
+```python
+import numpy as np
+print(np.__version__)
+```
+
+This should print the installed version of NumPy without errors.
+
+## Troubleshooting
+
+If your installation fails with the message below, see Troubleshooting
+ImportError.
+
+```
+IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
+
+Importing the numpy c-extensions failed. This error can happen for
+different reasons, often due to issues with your setup.
+```
+
diff --git a/content/hi/learn.md b/content/hi/learn.md
new file mode 100644
index 00000000..ca13a1c2
--- /dev/null
+++ b/content/hi/learn.md
@@ -0,0 +1,76 @@
+---
+title: Learn
+sidebar: false
+---
+
+For the **official NumPy documentation** visit [numpy.org/doc/stable](https://numpy.org/doc/stable).
+
+***
+
+Below is a curated collection of educational resources, both for self-learning and teaching others, developed by NumPy contributors and vetted by the community.
+
+## Beginners
+
+There's a ton of information about NumPy out there. If you are just starting, we'd strongly recommend the following:
+
+ **Tutorials**
+
+- [NumPy Quickstart Tutorial](https://numpy.org/devdocs/user/quickstart.html)
+- [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
+- [NumPy Illustrated: The Visual Guide to NumPy _by Lev Maximov_](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
+- [Scientific Python Lectures](https://lectures.scientific-python.org/) Besides covering NumPy, these lectures offer a broader introduction to the scientific Python ecosystem.
+- [NumPy: the absolute basics for beginners](https://numpy.org/devdocs/user/absolute_beginners.html)
+- [NumPy tutorial _by Nicolas Rougier_](https://github.com/rougier/numpy-tutorial)
+- [Stanford CS231 _by Justin Johnson_](http://cs231n.github.io/python-numpy-tutorial/)
+- [NumPy User Guide](https://numpy.org/devdocs)
+
+ **Books**
+
+- [Guide to NumPy _by Travis E. Oliphant_](https://web.mit.edu/dvp/Public/numpybook.pdf) This is a free version 1 from 2006. For the latest copy (2015) see [here](https://dl.acm.org/doi/10.5555/2886196).
+- [From Python to NumPy _by Nicolas P. Rougier_](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
+- [Elegant SciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877) _by Juan Nunez-Iglesias, Stefan van der Walt, and Harriet Dashnow_
+
+You may also want to check out the [Goodreads list](https://www.goodreads.com/shelf/show/python-scipy) on the subject of "Python+SciPy." Most books there are about the "SciPy ecosystem," which has NumPy at its core.
+
+ **Videos**
+
+- [Introduction to Numerical Computing with NumPy](http://youtu.be/ZB7BZMhfPgk) _by Alex Chabot-Leclerc_
+
+***
+
+## Advanced
+
+Try these advanced resources for a better understanding of NumPy concepts like advanced indexing, splitting, stacking, linear algebra, and more.
+
+ **Tutorials**
+
+- [100 NumPy Exercises](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html) _by Nicolas P. Rougier_
+- [An Introduction to NumPy and Scipy](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf) _by M. Scott Shell_
+- [Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/) _by Stéfan van der Walt_
+- [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
+
+ **Books**
+
+- [Python Data Science Handbook](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1098121228) _by Jake Vanderplas_
+- [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-Jupyter/dp/109810403X) _by Wes McKinney_
+- [Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) _by Robert Johansson_
+
+ **Videos**
+
+- [Advanced NumPy - broadcasting rules, strides, and advanced indexing](https://www.youtube.com/watch?v=cYugp9IN1-Q) _by Juan Nunez-Iglesias_
+
+***
+
+## NumPy Talks
+
+- [The Future of NumPy Indexing](https://www.youtube.com/watch?v=o0EacbIbf58) _by Jaime Fernández_ (2016)
+- Evolution of Array Computing in Python _by Ralf Gommers_ (2019)
+- [NumPy: what has changed and what is going to change?](https://www.youtube.com/watch?v=YFLVQFjRmPY) _by Matti Picus_ (2019)
+- [Inside NumPy](https://www.youtube.com/watch?v=dBTJD_FDVjU) _by Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stefan van der Walt, Charles Harris_ (2019)
+- [Brief Review of Array Computing in Python](https://www.youtube.com/watch?v=f176j2g2eNc) _by Travis Oliphant_ (2019)
+
+***
+
+## Citing NumPy
+
+If NumPy has been significant in your research, and you would like to acknowledge the project in your academic publication, please see [this citation information](/citing-numpy).
diff --git a/content/hi/news.md b/content/hi/news.md
new file mode 100644
index 00000000..8448d825
--- /dev/null
+++ b/content/hi/news.md
@@ -0,0 +1,485 @@
+---
+title: News
+sidebar: false
+newsHeader: NumPy 2.2.0 released!
+date: 2024-12-08
+---
+
+### NumPy 2.2.0 released
+
+_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back
+into sync with the usual twice yearly release cycle. There have been a number
+of small cleanups, improvements to the StringDType, and better support for free
+threaded Python. Highlights are:
+
+- New functions `matvec` and `vecmat`,
+- Many improved annotations,
+- Improved support for the new StringDType,
+- Improved support for free threaded Python,
+- Fixes for f2py.
+
+This release supports Python versions 3.10-3.13.
+
+### NumPy 2.1.0 released
+
+_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
+drops support for Python 3.9. In addition to the usual bug fixes and
+updated Python support, it helps get NumPy back to its usual release
+cycle after the extended development of 2.0. The highlights for this
+release are:
+
+- Support for Python 3.13.
+- Preliminary support for free threaded Python 3.13.
+- Support for the array-api 2023.12 standard.
+
+Python versions 3.10-3.13 are supported by this release.
+
+### NumPy 2.0.0 released
+
+_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
+result of 11 months of development since the last feature release and is the
+work of 212 contributors spread over 1078 pull requests. It contains a large
+number of exciting new features as well as changes to both the Python and C
+APIs. It includes breaking changes that could not happen in a regular minor
+release - including an ABI break, changes to type promotion rules, and API
+changes which may not have been emitting deprecation warnings in 1.26.x. Key
+documents related to how to adapt to changes in NumPy 2.0 include:
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
+tells a bit of the story about how this release came together.
+
+### NumPy 2.0 release date: June 16
+
+_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
+released on June 16, 2024. This release has been over a year in the making, and
+is the first major release since 2006. Importantly, in addition to many new
+features and performance improvement, it contains **breaking changes** to the
+ABI as well as the Python and C APIs. It is likely that downstream packages and
+end user code needs to be adapted - if you can, please verify whether your code
+works with NumPy `2.0.0rc2`. **Please see the following for more details:**
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+### NumFOCUS end of the year fundraiser
+
+_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
+on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
+until December 23rd, 2023 will go directly to the NumFOCUS programs.
+
+Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
+or a coupon code ISUPPORTDATASCIENCE
+
+### NumPy 1.26.0 released
+
+_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
+is now available. The highlights of the release are:
+
+- Python 3.12.0 support.
+- Cython 3.0.0 compatibility.
+- Use of the Meson build system
+- Updated SIMD support
+- f2py fixes, meson and bind(x) support
+- Support for the updated Accelerate BLAS/LAPACK library
+
+The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
+transition to the Meson build system and provision of support for Cython 3.0.0.
+A total of 20 people contributed to this release and 59 pull requests were
+merged.
+
+The Python versions supported by this release are 3.9-3.12.
+
+### numpy.org is now available in Japanese and Portuguese
+
+_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
+Japanese and Portuguese. This wouldn’t be possible without our dedicated volunteers:
+
+_Portuguese:_
+
+- Melissa Weber Mendonça (melissawm)
+- Ricardo Prins (ricardoprins)
+- Getúlio Silva (getuliosilva)
+- Julio Batista Silva (jbsilva)
+- Alexandre de Siqueira (alexdesiqueira)
+- Alexandre B A Villares (villares)
+- Vini Salazar (vinisalazar)
+
+_Japanese:_
+
+- Atsushi Sakai (AtsushiSakai)
+- KKunai
+- Tom Kelly (TomKellyGenetics)
+- Yuji Kanagawa (kngwyu)
+- Tetsuo Koyama (tkoyama010)
+
+The work on the translation infrastructure is supported with funding from CZI.
+
+Looking ahead, we’d love to translate the website into more languages.
+If you’d like to help, please connect with the NumPy Translations Team on Slack:
+https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
+(Look for the #translations channel.) We are also building a Translations Team who will be
+working on localizing documentation and educational content across the Scientific Python
+ecosystem. If this piqued your interest, join us on the Scientific Python
+Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
+
+### NumPy 1.25.0 released
+
+_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
+is now available. The highlights of the release are:
+
+- Support for MUSL, there are now MUSL wheels.
+- Support for the Fujitsu C/C++ compiler.
+- Object arrays are now supported in einsum.
+- Support for the inplace matrix multiplication (`@=`).
+
+The NumPy 1.25.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase the execution speed, and clarify the
+documentation. There has also been preparatory work for the future NumPy 2.0.0,
+resulting in a large number of new and expired deprecations.
+
+A total of 148 people contributed to this release and 530 pull requests were
+merged.
+
+The Python versions supported by this release are 3.9-3.11.
+
+### Fostering an Inclusive Culture: Call for Participation
+
+_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
+
+How can we be better when it comes to diversity and inclusion?
+Read the report and find out how to get involved
+[here](https://contributor-experience.org/docs/posts/dei-report/).
+
+### NumPy documentation team leadership transition
+
+_Jan 6, 2023_ –- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
+documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
+contributions to the NumPy official documentation and educational materials,
+and Mukulika and Ross for stepping up.
+
+### NumPy 1.24.0 released
+
+_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
+is now available. The highlights of the release are:
+
+- New "dtype" and "casting" keywords for stacking functions.
+- New F2PY features and fixes.
+- Many new deprecations, check them out.
+- Many expired deprecations,
+
+The NumPy 1.24.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase execution speed, and clarify the documentation.
+There are a large number of new and expired deprecations due to changes in
+dtype promotion and cleanups. It is the work of 177 contributors spread over
+444 pull requests. The supported Python versions are 3.8-3.11.
+
+### Numpy 1.23.0 released
+
+_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
+is now available. The highlights of the release are:
+
+- Implementation of `loadtxt` in C, greatly improving its performance.
+- Exposure of DLPack at the Python level for easy data exchange.
+- Changes to the promotion and comparisons of structured dtypes.
+- Improvements to f2py.
+
+The NumPy 1.23.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase the execution speed, clarify the documentation,
+and expire old deprecations. It is the work of 151 contributors spread over
+494 pull requests. The Python versions supported by this release 3.8-3.10.
+Python 3.11 will be supported when it reaches the rc stage.
+
+### NumFOCUS DEI research study: call for participation
+
+_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
+research project
+funded by the Gordon & Betty Moore Foundation to
+understand the barriers to participation that contributors, particularly those
+from historically underrepresented groups, face in the open-source software
+community. The research team would like to talk to new contributors, project
+developers and maintainers, and those who have contributed in the past about
+their experiences joining and contributing to NumPy.
+
+**Interested in sharing your experiences?**
+
+Please complete this brief [“Participant Interest” form](https://numfocus.typeform.com/to/WBWVJSqe)
+which contains additional information on the research goals, privacy, and
+confidentiality considerations. Your participation will be valuable to the
+growth and sustainability of diverse and inclusive open-source software
+communities. Accepted participants will participate in a 30-minute interview
+with a research team member.
+
+### Numpy 1.22.0 release
+
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
+is now available. The highlights of the release are:
+
+- Type annotations of the main namespace are essentially complete. Upstream is
+ a moving target, so there will likely be further improvements, but the major
+ work is done. This is probably the most user visible enhancement in this
+ release.
+- A preliminary version of the proposed
+ [array API Standard](https://data-apis.org/array-api/latest/) is provided
+ (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
+ This is a step in creating a standard collection of functions that can be
+ used across libraries such as CuPy and JAX.
+- NumPy now has a DLPack backend. DLPack provides a common interchange format
+ for array (tensor) data.
+- New methods for `quantile`, `percentile`, and related functions. The new
+ methods provide a complete set of the methods commonly found in the
+ literature.
+- The universal functions have been refactored to implement most of
+ [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
+ This also unlocks the ability to experiment with the future DType API.
+- A new configurable memory allocator for use by downstream projects.
+
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
+over 609 pull requests. The Python versions supported by this release are
+3.8-3.10.
+
+### Advancing an inclusive culture in the scientific Python ecosystem
+
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
+[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
+to support the onboarding, inclusion, and retention of people from historically
+marginalized groups on scientific Python projects, and to structurally improve
+the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
+
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
+this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
+will support the creation of dedicated Contributor Experience Lead positions to
+identify, document, and implement practices to foster inclusive open-source
+communities. This project will be led by Melissa Mendonça (NumPy), with
+additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
+Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
+Joris Van den Bossche (Pandas).
+
+This is an ambitious project aiming to discover and implement activities that
+should structurally improve the community dynamics of our projects. By
+establishing these new cross-project roles, we hope to introduce a new
+collaboration model to the Scientific Python communities, allowing
+community-building work within the ecosystem to be done more efficiently and
+with greater outcomes. We also expect to develop a clearer picture of what
+works and what doesn't in our projects to engage and retain new contributors,
+especially from historically underrepresented groups. Finally, we plan on
+producing detailed reports on the actions executed, explaining how they have
+impacted our projects in terms of representation and interaction with our
+communities.
+
+The two-year project is expected to start by November 2021, and we are excited
+to see the results from this work!
+[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### 2021 NumPy survey
+
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
+NumPy users from 75 countries participated in our inaugural survey last year.
+The survey findings gave us a very good understanding of what we should focus
+on for the next 12 months.
+
+It’s time for another survey, and we are counting on you once again. It will
+take about 15 minutes of your time. Besides English, the survey questionnaire
+is available in 8 additional languages: Bangla, French, Hindi, Japanese,
+Mandarin, Portuguese, Russian, and Spanish.
+
+Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+### Numpy 1.21.0 release
+
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
+is now available. The highlights of the release are:
+
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- improved documentation,
+- improved annotations,
+- new `PCG64DXSM` bitgenerator for random numbers.
+
+This NumPy release is the result of 581 merged pull requests contributed by 175
+people. The Python versions supported for this release are 3.7-3.9, support
+for Python 3.10 will be added after Python 3.10 is released.
+
+### 2020 NumPy survey results
+
+_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
+and faculty from the University of Michigan and the University of Maryland
+conducted the first official NumPy community survey. Find the survey results
+here: https://numpy.org/user-survey-2020/.
+
+### Numpy 1.20.0 release
+
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
+is now available. This is the largest NumPy release to date, thanks to 180+
+contributors. The two most exciting new features are:
+
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
+ containing `ArrayLike` and `DtypeLike` aliases that users and downstream
+ libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
+ AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
+ performance improvements for many functions (examples:
+ [sin/cos](https://github.com/numpy/numpy/pull/17587),
+ [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### Diversity in the NumPy project
+
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
+
+### First official NumPy paper published in Nature!
+
+_Sep 16, 2020_ -- We are pleased to announce the publication of
+[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
+as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
+The paper covers applications and fundamental concepts of array programming,
+the rich scientific Python ecosystem built on top of NumPy, and the recently added
+array protocols to facilitate interoperability with external array and tensor
+libraries like CuPy, Dask, and JAX.
+
+### Python 3.9 is coming, when will NumPy release binary wheels?
+
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
+early adopter of Python versions, you may be dissapointed to find that NumPy
+(and other binary packages like SciPy) will not have binary wheels ready on the
+day of the release. It is a major effort to adapt the build infrastructure to a
+new Python version and it typically takes a few weeks for the packages to appear
+on PyPI and conda-forge. In preparation for this event, please make sure to
+
+- update your `pip` to version 20.1 at least to support `manylinux2010` and
+ `manylinux2014`
+- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
+ trying to build from source.
+
+### Numpy 1.19.2 release
+
+_Sep 10, 2020_ -- NumPy
+1.19.2 is now available.
+This latest release in the 1.19 series fixes several bugs, prepares for the
+upcoming Cython 3.x
+release and pins
+setuptools to keep distutils working while upstream modifications are ongoing.
+The aarch64 wheels are built with the latest manylinux2014 release that fixes
+the problem of differing page sizes used by different linux distros.
+
+### The inaugural NumPy survey is live!
+
+_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
+decision-making about the development of NumPy as software and as a community.
+The survey is available in 8 additional languages besides English:
+Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
+
+Please help us make NumPy better and take the survey
+[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+### NumPy has a new logo!
+
+_Jun 24, 2020_ -- NumPy now has a new logo:
+
+
+
+The logo is a modern take on the old one, with a cleaner design. Thanks to
+Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
+for the old logo that served us well for 15+ years.
+
+### NumPy 1.19.0 release
+
+_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
+without Python 2 support, hence it was a "clean-up release". The minimum
+supported Python version is now Python 3.6. An important new feature is that
+the random number generation infrastructure that was introduced in NumPy 1.17.0
+is now accessible from Cython.
+
+### Season of Docs acceptance
+
+_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
+the Google Season of Docs program. We are excited about the opportunity to
+work with a technical writer to improve NumPy's documentation once again! For more
+details, please see
+[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
+[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
+
+### NumPy 1.18.0 release
+
+_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
+1.17.0, this is a consolidation release. It is the last minor release that will
+support Python 3.5. Highlights of the release includes the addition of basic
+infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
+
+Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
+
+### NumPy receives a grant from the Chan Zuckerberg Initiative
+
+_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
+
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
+
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
+
+
+
+## Releases
+
+Here is a list of NumPy releases, with links to release notes. Bugfix
+releases (only the `z` changes in the `x.y.z` version number) have no new
+features; minor releases (the `y` increases) do.
+
+- NumPy 2.2.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.5)) -- _19 Apr 2025_.
+- NumPy 2.2.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.4)) -- _16 Mar 2025_.
+- NumPy 2.2.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.3)) -- _13 Feb 2025_.
+- NumPy 2.2.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.2)) -- _18 Jan 2025_.
+- NumPy 2.2.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.1)) -- _21 Dec 2024_.
+- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
+- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
+- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
+- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
+- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
+- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
+- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
+- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
+- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
+- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
+- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
+- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
+- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
+- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
+- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
+- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
+- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
+- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
+- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
+- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
+- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
+- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
+- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
+- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
+- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
+- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
+- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
+- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
+- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
+- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
+- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
+- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
+- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
+- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
+- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
+- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
+- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
+- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
+- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
+- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
+- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
+- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
+- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
+- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
+- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
diff --git a/content/hi/press-kit.md b/content/hi/press-kit.md
new file mode 100644
index 00000000..2c8970bb
--- /dev/null
+++ b/content/hi/press-kit.md
@@ -0,0 +1,8 @@
+---
+title: Press kit
+sidebar: false
+---
+
+We would like to make it easy for you to include the NumPy project identity in your next academic paper, course materials, or presentation.
+
+You will find several high-resolution versions of the NumPy logo [here](https://github.com/numpy/numpy/tree/main/branding/logo). Note that by using the numpy.org resources, you accept the [NumPy Code of Conduct](/code-of-conduct).
diff --git a/content/hi/privacy.md b/content/hi/privacy.md
new file mode 100644
index 00000000..6064e4c4
--- /dev/null
+++ b/content/hi/privacy.md
@@ -0,0 +1,8 @@
+---
+title: Privacy Policy
+sidebar: false
+---
+
+**numpy.org** is operated by [NumFOCUS, Inc.](https://numfocus.org), the fiscal sponsor of the NumPy project. For the Privacy Policy of this website please refer to https://numfocus.org/privacy-policy.
+
+If you have any questions about the policy or NumFOCUS’s data collection, use, and disclosure practices, please contact the NumFOCUS staff at privacy@numfocus.org.
diff --git a/content/hi/report-handling-manual.md b/content/hi/report-handling-manual.md
new file mode 100644
index 00000000..161757fe
--- /dev/null
+++ b/content/hi/report-handling-manual.md
@@ -0,0 +1,89 @@
+---
+title: NumPy Code of Conduct - How to follow up on a report
+sidebar: false
+---
+
+This is the manual followed by NumPy’s Code of Conduct Committee. It’s used when we respond to an issue to make sure we’re consistent and fair.
+
+Enforcing the [Code of Conduct](/code-of-conduct) impacts our community today and for the future. It’s an action that we do not take lightly. When reviewing enforcement measures, the Code of Conduct Committee will keep the following values and guidelines in mind:
+
+- Act in a personal manner rather than impersonal. The Committee can engage the parties to understand the situation while respecting the privacy and any necessary confidentiality of reporters. However, sometimes it is necessary to communicate with one or more individuals directly: the Committee’s goal is to improve the health of our community rather than only produce a formal decision.
+- Emphasize empathy for individuals rather than judging behavior, avoiding binary labels of “good” and “bad/evil”. Overt, clear-cut aggression and harassment exist, and we will address them firmly. But many scenarios that can prove challenging to resolve are those where normal disagreements devolve into unhelpful or harmful behavior from multiple parties. Understanding the full context and finding a path that re-engages all is hard, but ultimately the most productive for our community.
+- We understand that email is a difficult medium and can be isolating. Receiving criticism over email, without personal contact, can be particularly painful. This makes it especially important to keep an atmosphere of open-minded respect for the views of others. It also means that we must be transparent in our actions, and that we will do everything in our power to make sure that all our members are treated fairly and with sympathy.
+- Discrimination can be subtle and it can be unconscious. It can show itself as unfairness and hostility in otherwise ordinary interactions. We know that this does occur, and we will take care to look out for it. We would very much like to hear from you if you feel you have been treated unfairly, and we will use these procedures to make sure that your complaint is heard and addressed.
+- Help increase engagement in good discussion practice: try to identify where discussion may have broken down, and provide actionable information, pointers, and resources that can lead to positive change on these points.
+- Be mindful of the needs of new members: provide them with explicit support and consideration, with the aim of increasing participation from underrepresented groups in particular.
+- Individuals come from different cultural backgrounds and native languages. Try to identify any honest misunderstandings caused by a non-native speaker and help them understand the issue and what they can change to avoid causing offence. Complex discussion in a foreign language can be very intimidating, and we want to grow our diversity also across nationalities and cultures.
+
+## Mediation
+
+Voluntary informal mediation is a tool at our disposal. In contexts such as when two or more parties have all escalated to the point of inappropriate behavior (something sadly common in human conflict), it may be useful to facilitate a mediation process. This is only an example: the Committee can consider mediation in any case, mindful that the process is meant to be strictly voluntary and no party can be pressured to participate. If the Committee suggests mediation, it should:
+
+- Find a candidate who can serve as a mediator.
+- Obtain the agreement of the reporter(s). The reporter(s) have complete freedom to decline the mediation idea or to propose an alternate mediator.
+- Obtain the agreement of the reported person(s).
+- Settle on the mediator: while parties can propose a different mediator than the suggested candidate, only if a common agreement is reached on all terms can the process move forward.
+- Establish a timeline for mediation to complete, ideally within two weeks.
+
+The mediator will engage with all the parties and seek a resolution that is satisfactory to all. Upon completion, the mediator will provide a report (vetted by all parties to the process) to the Committee, with recommendations on further steps. The Committee will then evaluate these results (whether a satisfactory resolution was achieved or not) and decide on any additional action deemed necessary.
+
+## How the Committee will respond to reports
+
+When the Committee (or a Committee member) receives a report, they will first determine whether the report is about a clear and severe breach (as defined below). If so, immediate action needs to be taken in addition to the regular report handling process.
+
+## Clear and severe breach actions
+
+We know that it is painfully common for internet communication to start at or devolve into obvious and flagrant abuse. We will deal quickly with clear and severe breaches like personal threats, violent, sexist or racist language.
+
+When a member of the Code of Conduct Committee becomes aware of a clear and severe breach, they will do the following:
+
+- Immediately disconnect the originator from all NumPy communication channels.
+- Reply to the reporter that their report has been received and that the originator has been disconnected.
+- In every case, the moderator should make a reasonable effort to contact the originator, and tell them specifically how their language or actions qualify as a “clear and severe breach”. The moderator should also say that, if the originator believes this is unfair or they want to be reconnected to NumPy, they have the right to ask for a review, as below, by the Code of Conduct Committee. The moderator should copy this explanation to the Code of Conduct Committee.
+- The Code of Conduct Committee will formally review and sign off on all cases where this mechanism has been applied to make sure it is not being used to control ordinary heated disagreement.
+
+## Report handling
+
+When a report is sent to the Committee they will immediately reply to the reporter to confirm receipt. This reply must be sent within 72 hours, and the group should strive to respond much quicker than that.
+
+If a report doesn’t contain enough information, the Committee will obtain all relevant data before acting. The Committee is empowered to act on the Steering Council’s behalf in contacting any individuals involved to get a more complete account of events.
+
+The Committee will then review the incident and determine, to the best of their ability:
+
+- What happened.
+- Whether this event constitutes a Code of Conduct violation.
+- Who are the responsible party(ies).
+- Whether this is an ongoing situation, and there is a threat to anyone’s physical safety.
+
+This information will be collected in writing, and whenever possible the group’s deliberations will be recorded and retained (i.e. chat transcripts, email discussions, recorded conference calls, summaries of voice conversations, etc).
+
+It is important to retain an archive of all activities of this Committee to ensure consistency in behavior and provide institutional memory for the project. To assist in this, the default channel of discussion for this Committee will be a private mailing list accessible to current and future members of the Committee as well as members of the Steering Council upon justified request. If the Committee finds the need to use off-list communications (e.g. phone calls for early/rapid response), it should in all cases summarize these back to the list so there’s a good record of the process.
+
+The Code of Conduct Committee should aim to have a resolution agreed upon within two weeks. In the event that a resolution can’t be determined in that time, the Committee will respond to the reporter(s) with an update and projected timeline for resolution.
+
+## Resolutions
+
+The Committee must agree on a resolution by consensus. If the group cannot reach consensus and deadlocks for over a week, the group will turn the matter over to the Steering Council for resolution.
+
+Possible responses may include:
+
+- Taking no further action:
+ - if we determine no violations have occurred;
+ - if the matter has been resolved publicly while the Committee was considering responses.
+- Coordinating voluntary mediation: if all involved parties agree, the Committee may facilitate a mediation process as detailed above.
+- Remind publicly, and point out that some behavior/actions/language have been judged inappropriate and why in the current context, or can but hurtful to some people, requesting the community to self-adjust.
+- A private reprimand from the Committee to the individual(s) involved. In this case, the group chair will deliver that reprimand to the individual(s) over email, cc’ing the group.
+- A public reprimand. In this case, the Committee chair will deliver that reprimand in the same venue that the violation occurred, within the limits of practicality. E.g., the original mailing list for an email violation, but for a chat room discussion where the person/context may be gone, they can be reached by other means. The group may choose to publish this message elsewhere for documentation purposes.
+- A request for a public or private apology, assuming the reporter agrees to this idea: they may at their discretion refuse further contact with the violator. The chair will deliver this request. The Committee may, if it chooses, attach “strings” to this request: for example, the group may ask a violator to apologize in order to retain one’s membership on a mailing list.
+- A “mutually agreed upon hiatus” where the Committee asks the individual to temporarily refrain from community participation. If the individual chooses not to take a temporary break voluntarily, the Committee may issue a “mandatory cooling off period”.
+- A permanent or temporary ban from some or all NumPy spaces (mailing lists, gitter.im, etc.). The group will maintain records of all such bans so that they may be reviewed in the future or otherwise maintained.
+
+Once a resolution is agreed upon, but before it is enacted, the Committee will contact the original reporter and any other affected parties and explain the proposed resolution. The Committee will ask if this resolution is acceptable, and must note feedback for the record.
+
+Finally, the Committee will make a report to the NumPy Steering Council (as well as the NumPy core team in the event of an ongoing resolution, such as a ban).
+
+The Committee will never publicly discuss the issue; all public statements will be made by the chair of the Code of Conduct Committee or the NumPy Steering Council.
+
+## Conflicts of Interest
+
+In the event of any conflict of interest, a Committee member must immediately notify the other members, and recuse themselves if necessary.
diff --git a/content/hi/tabcontents.yaml b/content/hi/tabcontents.yaml
new file mode 100644
index 00000000..ecfce140
--- /dev/null
+++ b/content/hi/tabcontents.yaml
@@ -0,0 +1,275 @@
+params:
+ machinelearning:
+ paras:
+ - para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlow’s](https://www.tensorflow.org) deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing.
+ para2: Statistical techniques called [ensemble methods](https://scikit-learn.org/stable/modules/ensemble.html) such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://xgboost.readthedocs.io/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) — one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
+ arraylibraries:
+ intro:
+ - text: NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.
+ headers:
+ - text: Array Library
+ - text: Capabilities & Application areas
+ libraries:
+ - title: Dask
+ text: Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
+ img: /images/content_images/arlib/dask.png
+ alttext: Dask
+ url: https://dask.org/
+ - title: CuPy
+ text: NumPy-compatible array library for GPU-accelerated computing with Python.
+ img: /images/content_images/arlib/cupy.png
+ alttext: CuPy
+ url: https://cupy.dev
+ - title: JAX
+ text: "Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU."
+ img: /images/content_images/arlib/jax_logo_250px.png
+ alttext: JAX
+ url: https://jax.readthedocs.io/
+ - title: Xarray
+ text: Labeled, indexed multi-dimensional arrays for advanced analytics and visualization.
+ img: /images/content_images/arlib/xarray.png
+ alttext: xarray
+ url: https://xarray.pydata.org/en/stable/index.html
+ - title: Sparse
+ text: NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
+ img: /images/content_images/arlib/sparse.png
+ alttext: sparse
+ url: https://sparse.pydata.org/en/latest/
+ - title: PyTorch
+ text: Deep learning framework that accelerates the path from research prototyping to production deployment.
+ img: /images/content_images/arlib/pytorch-logo-dark.svg
+ alttext: PyTorch
+ url: https://pytorch.org/
+ - title: TensorFlow
+ text: An end-to-end platform for machine learning to easily build and deploy ML powered applications.
+ img: /images/content_images/arlib/tensorflow-logo.svg
+ alttext: TensorFlow
+ url: https://www.tensorflow.org
+ - title: Arrow
+ text: A cross-language development platform for columnar in-memory data and analytics.
+ img: /images/content_images/arlib/arrow.png
+ alttext: arrow
+ url: https://arrow.apache.org/
+ - title: xtensor
+ text: Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
+ img: /images/content_images/arlib/xtensor.png
+ alttext: xtensor
+ url: https://github.com/xtensor-stack/xtensor-python
+ - title: Awkward Array
+ text: Manipulate JSON-like data with NumPy-like idioms.
+ img: /images/content_images/arlib/awkward.svg
+ alttext: awkward
+ url: https://awkward-array.org/
+ - title: uarray
+ text: Python backend system that decouples API from implementation; unumpy provides a NumPy API.
+ img: /images/content_images/arlib/uarray.png
+ alttext: uarray
+ url: https://uarray.org/en/latest/
+ - title: tensorly
+ text: Tensor learning, algebra and backends to seamlessly use NumPy, PyTorch, TensorFlow or CuPy.
+ img: /images/content_images/arlib/tensorly.png
+ alttext: tensorly
+ url: http://tensorly.org/stable/home.html
+ scientificdomains:
+ intro:
+ - text: Nearly every scientist working in Python draws on the power of NumPy.
+ - text: "NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant."
+ libraries:
+ - title: Quantum Computing
+ alttext: A computer chip.
+ img: /images/content_images/sc_dom_img/quantum_computing.svg
+ links:
+ - url: https://qutip.org
+ label: QuTiP
+ - url: https://pyquil-docs.rigetti.com/en/stable
+ label: PyQuil
+ - url: https://qiskit.org
+ label: Qiskit
+ - url: https://pennylane.ai
+ label: PennyLane
+ - title: Statistical Computing
+ alttext: A line graph with the line moving up.
+ img: /images/content_images/sc_dom_img/statistical_computing.svg
+ links:
+ - url: https://pandas.pydata.org/
+ label: Pandas
+ - url: https://www.statsmodels.org/
+ label: statsmodels
+ - url: https://xarray.pydata.org/en/stable/
+ label: Xarray
+ - url: https://seaborn.pydata.org/
+ label: Seaborn
+ - title: Signal Processing
+ alttext: A bar chart with positive and negative values.
+ img: /images/content_images/sc_dom_img/signal_processing.svg
+ links:
+ - url: https://www.scipy.org/
+ label: SciPy
+ - url: https://pywavelets.readthedocs.io/
+ label: PyWavelets
+ - url: https://python-control.org/
+ label: python-control
+ - url: https://hyperspy.org/
+ label: HyperSpy
+ - title: Image Processing
+ alttext: An photograph of the mountains.
+ img: /images/content_images/sc_dom_img/image_processing.svg
+ links:
+ - url: https://scikit-image.org/
+ label: Scikit-image
+ - url: https://opencv.org/
+ label: OpenCV
+ - url: https://mahotas.rtfd.io/
+ label: Mahotas
+ - title: Graphs and Networks
+ alttext: A simple graph.
+ img: /images/content_images/sc_dom_img/sd6.svg
+ links:
+ - url: https://networkx.org/
+ label: NetworkX
+ - url: https://graph-tool.skewed.de/
+ label: graph-tool
+ - url: https://igraph.org/python/
+ label: igraph
+ - url: https://pygsp.rtfd.io/
+ label: PyGSP
+ - title: Astronomy
+ alttext: A telescope.
+ img: /images/content_images/sc_dom_img/astronomy_processes.svg
+ links:
+ - url: https://www.astropy.org/
+ label: AstroPy
+ - url: https://sunpy.org/
+ label: SunPy
+ - url: https://spacepy.github.io/
+ label: SpacePy
+ - title: Cognitive Psychology
+ alttext: A human head with gears.
+ img: /images/content_images/sc_dom_img/cognitive_psychology.svg
+ links:
+ - url: https://www.psychopy.org/
+ label: PsychoPy
+ - title: Bioinformatics
+ alttext: A strand of DNA.
+ img: /images/content_images/sc_dom_img/bioinformatics.svg
+ links:
+ - url: https://biopython.org/
+ label: BioPython
+ - url: http://scikit-bio.org/
+ label: Scikit-Bio
+ - url: https://github.com/openvax/pyensembl
+ label: PyEnsembl
+ - url: http://etetoolkit.org/
+ label: ETE
+ - title: Bayesian Inference
+ alttext: A graph with a bell-shaped curve.
+ img: /images/content_images/sc_dom_img/bayesian_inference.svg
+ links:
+ - url: https://pystan.readthedocs.io/en/latest/
+ label: PyStan
+ - url: https://docs.pymc.io/
+ label: PyMC
+ - url: https://arviz-devs.github.io/arviz/
+ label: ArviZ
+ - url: https://emcee.readthedocs.io/
+ label: emcee
+ - title: Mathematical Analysis
+ alttext: Four mathematical symbols.
+ img: /images/content_images/sc_dom_img/mathematical_analysis.svg
+ links:
+ - url: https://www.scipy.org/
+ label: SciPy
+ - url: https://www.sympy.org/
+ label: SymPy
+ - url: https://www.cvxpy.org/
+ label: cvxpy
+ - url: https://fenicsproject.org/
+ label: FEniCS
+ - title: Chemistry
+ alttext: A test tube.
+ img: /images/content_images/sc_dom_img/chemistry.svg
+ links:
+ - url: https://cantera.org/
+ label: Cantera
+ - url: https://www.mdanalysis.org/
+ label: MDAnalysis
+ - url: https://github.com/rdkit/rdkit
+ label: RDKit
+ - url: https://www.pybamm.org/
+ label: PyBaMM
+ - title: Geoscience
+ alttext: The Earth.
+ img: /images/content_images/sc_dom_img/geoscience.svg
+ links:
+ - url: https://pangeo.io/
+ label: Pangeo
+ - url: https://simpeg.xyz/
+ label: Simpeg
+ - url: https://github.com/obspy/obspy/wiki
+ label: ObsPy
+ - url: https://www.fatiando.org/
+ label: Fatiando a Terra
+ - title: Geographic Processing
+ alttext: A map.
+ img: /images/content_images/sc_dom_img/GIS.svg
+ links:
+ - url: https://shapely.readthedocs.io/
+ label: Shapely
+ - url: https://geopandas.org/
+ label: GeoPandas
+ - url: https://python-visualization.github.io/folium
+ label: Folium
+ - title: Architecture & Engineering
+ alttext: A microprocessor development board.
+ img: /images/content_images/sc_dom_img/robotics.svg
+ links:
+ - url: https://compas.dev/
+ label: COMPAS
+ - url: https://cityenergyanalyst.com/
+ label: City Energy Analyst
+ - url: https://nortikin.github.io/sverchok/
+ label: Sverchok
+ datascience:
+ intro: "NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:"
+ image1:
+ - img: /images/content_images/ds-landscape.png
+ alttext: Diagram of Python Libraries. The five catagories are 'Extract, Transform, Load', 'Data Exploration', 'Data Modeling', 'Data Evaluation' and 'Data Presentation'.
+ image2:
+ - img: /images/content_images/data-science.png
+ alttext: Diagram of three overlapping circles. The circles are labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
+ examples:
+ - text: "Extract, Transform, Load: [Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor-devs.github.io/pyjanitor/)"
+ - text: "Exploratory analysis: [Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
+ - text: "Model and evaluate: [scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC](https://docs.pymc.io), [spaCy](https://spacy.io)"
+ - text: "Report in a dashboard: [Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://voila.readthedocs.io/)"
+ content:
+ - text: For high data volumes, [Dask](https://dask.org) and [Ray](https://ray.io/) are designed to scale. Stable deployments rely on data versioning ([DVC](https://dvc.org)), experiment tracking ([MLFlow](https://mlflow.org)), and workflow automation ([Airflow](https://airflow.apache.org), [Dagster](https://dagster.io) and [Prefect](https://www.prefect.io)).
+ visualization:
+ images:
+ - url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
+ img: /images/content_images/v_matplotlib.png
+ alttext: A streamplot made in matplotlib
+ - url: https://github.com/yhat/ggpy
+ img: /images/content_images/v_ggpy.png
+ alttext: A scatter-plot graph made in ggpy
+ - url: https://www.journaldev.com/19692/python-plotly-tutorial
+ img: /images/content_images/v_plotly.png
+ alttext: A box-plot made in plotly
+ - url: https://altair-viz.github.io/gallery/streamgraph.html
+ img: /images/content_images/v_altair.png
+ alttext: A streamgraph made in altair
+ - url: https://seaborn.pydata.org
+ img: /images/content_images/v_seaborn.png
+ alttext: A pairplot of two types of graph, a plot-graph and a frequency graph made in seaborn"
+ - url: https://docs.pyvista.org/
+ img: /images/content_images/v_pyvista.png
+ alttext: A 3D volume rendering made in PyVista.
+ - url: https://napari.org
+ img: /images/content_images/v_napari.png
+ alttext: A multi-dimensionan image made in napari.
+ - url: https://vispy.org/gallery/index.html
+ img: /images/content_images/v_vispy.png
+ alttext: A Voronoi diagram made in vispy.
+ content:
+ - text: NumPy is an essential component in the burgeoning [Python visualization landscape](https://pyviz.org/overviews/index.html), which includes [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://napari.org/), and [PyVista](https://docs.pyvista.org/), to name a few.
+ - text: NumPy's accelerated processing of large arrays allows researchers to visualize datasets far larger than native Python could handle.
diff --git a/content/hi/teams/index.md b/content/hi/teams/index.md
new file mode 100644
index 00000000..f5be9dfd
--- /dev/null
+++ b/content/hi/teams/index.md
@@ -0,0 +1,40 @@
+---
+title: NumPy Teams
+sidebar: false
+---
+
+We are an international team on a mission to support scientific and research
+communities worldwide by building quality, open-source software.
+[Join us](/contribute)!
+
+### Maintainers
+
+{{< grid file="maintainers.toml" columns="2 3 4 5" />}}
+
+### Docs team
+
+{{< grid file="docs-team.toml" columns="2 3 4 5" />}}
+
+### Web team
+
+{{< grid file="web-team.toml" columns="2 3 4 5" />}}
+
+### Triage team
+
+{{< grid file="triage-team.toml" columns="2 3 4 5" />}}
+
+### Survey team
+
+{{< grid file="survey-team.toml" columns="2 3 4 5" />}}
+
+### Translations team
+
+{{< grid file="translations-team.toml" columns="2 3 4 5" />}}
+
+### Emeritus maintainers
+
+{{< grid file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
+
+# Governance
+
+For the list of the Steering Council members, please see [here](https://numpy.org/about/).
diff --git a/content/hi/user-survey-2020.md b/content/hi/user-survey-2020.md
new file mode 100644
index 00000000..e822c661
--- /dev/null
+++ b/content/hi/user-survey-2020.md
@@ -0,0 +1,23 @@
+---
+title: 2020 NUMPY COMMUNITY SURVEY
+sidebar: false
+---
+
+In 2020, the NumPy survey team in partnership with students and faculty from a
+Master’s course in Survey Methodology jointly hosted by the University of
+Michigan and the University of Maryland conducted the first official NumPy
+community survey. Over 1,200 users from 75 countries participated to help us
+map out a landscape of the NumPy community and voiced their thoughts about the
+future of the project.
+
+{{< figure >}}
+{{< /figure >}}
+
+**[Download the report](/surveys/NumPy_usersurvey_2020_report.pdf)**
+to take a closer look at the survey findings.
+
+For the highlights, check out
+**[this infographic](https://github.com/numpy/numpy-surveys/blob/master/images/2020NumPysurveyresults_community_infographic.pdf)**.
+
+Ready for a deep dive? Visit **https://numpy.org/user-survey-2020-details/**.
+
diff --git a/content/hi/user-surveys.md b/content/hi/user-surveys.md
new file mode 100644
index 00000000..529a6c1e
--- /dev/null
+++ b/content/hi/user-surveys.md
@@ -0,0 +1,11 @@
+---
+title: NUMPY USER SURVEYS
+sidebar: false
+---
+
+**2020**
+The NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results [here](https://numpy.org/user-survey-2020/).
+
+**2021** The collected data is currently being analyzed.
+
+If you have any questions or suggestions for the past or future surveys, please open an issue [here](https://github.com/numpy/numpy-surveys/issues).
diff --git a/content/it/404.md b/content/it/404.md
new file mode 100644
index 00000000..7fe5d79a
--- /dev/null
+++ b/content/it/404.md
@@ -0,0 +1,8 @@
+---
+title: 404
+sidebar: false
+---
+
+Oops! You've reached a dead end.
+
+If you think something should be here, you can [open an issue](https://github.com/numpy/numpy.org/issues) on GitHub.
diff --git a/content/it/_index.md b/content/it/_index.md
new file mode 100644
index 00000000..43b25e39
--- /dev/null
+++ b/content/it/_index.md
@@ -0,0 +1,49 @@
+---
+title: NumPy
+---
+
+{{< grid columns="1 2 2 3" >}}
+
+[[item]]
+type = 'card'
+title = 'Powerful N-dimensional arrays'
+body = '''
+Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today.
+'''
+
+[[item]]
+type = 'card'
+title = 'Numerical computing tools'
+body = '''
+NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.
+'''
+
+[[item]]
+type = 'card'
+title = 'Open source'
+body = '''
+Distributed under a liberal [BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt), NumPy is developed and maintained [publicly on GitHub](https://github.com/numpy/numpy) by a vibrant, responsive, and diverse [community](/community).
+'''
+
+[[item]]
+type = 'card'
+title = 'Interoperable'
+body = '''
+NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.
+'''
+
+[[item]]
+type = 'card'
+title = 'Performant'
+body = '''
+The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code.
+'''
+
+[[item]]
+type = 'card'
+title = 'Easy to use'
+body = '''
+NumPy's high level syntax makes it accessible and productive for programmers from any background or experience level.
+'''
+
+{{< /grid>}}
diff --git a/content/it/about.md b/content/it/about.md
new file mode 100644
index 00000000..29e14c04
--- /dev/null
+++ b/content/it/about.md
@@ -0,0 +1,88 @@
+---
+title: About Us
+sidebar: false
+---
+
+NumPy is an open source project that enables numerical computing with Python. It was created in 2005 building on the early work of the Numeric and Numarray libraries. NumPy will always be 100% open source software and free for all to use. It is released under the liberal terms of the [modified BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt).
+
+NumPy is developed in the open on GitHub, through the consensus of the NumPy and wider scientific Python community. For more information on our governance approach, please see our [Governance Document](https://www.numpy.org/devdocs/dev/governance/index.html).
+
+## Steering Council
+
+The NumPy Steering Council is the project's governing body. Its role is to ensure, through working with and serving the broader NumPy community, the long-term sustainability of the project, both as a software package and community. The NumPy Steering Council currently consists of the following members (in alphabetical order, by last name):
+
+- Sebastian Berg
+- Ralf Gommers
+- Charles Harris
+- Inessa Pawson
+- Matti Picus
+- Stéfan van der Walt
+- Melissa Weber Mendonça
+- Marten van Kerkwijk
+- Nathan Goldbaum
+
+Emeritus:
+
+- Alex Griffing (2015-2017)
+- Allan Haldane (2015-2021)
+- Travis Oliphant (project founder, 2005-2012)
+- Nathaniel Smith (2012-2021)
+- Julian Taylor (2013-2021)
+- Jaime Fernández del Río (2014-2021)
+- Pauli Virtanen (2008-2021)
+- Eric Wieser (2017-2025)
+- Stephan Hoyer (2017-2025)
+
+To contact the NumPy Steering Council, please email numpy-team@googlegroups.com.
+
+## Teams
+
+The NumPy project leadership is actively working on diversifying contribution pathways to the project.
+NumPy currently has the following teams:
+
+- development
+- documentation
+- triage
+- website
+- survey
+- translations
+- sprint mentors
+- optimization
+- funding and grants
+
+See the [Team](/teams) page for more info.
+
+## NumFOCUS Subcommittee
+
+- Charles Harris
+- Ralf Gommers
+- Inessa Pawson
+- Sebastian Berg
+- External member: Thomas Caswell
+
+## Sponsors
+
+{{< sponsors >}}
+
+## Institutional Partners
+
+Institutional Partners are organizations that support the project by employing people that contribute to NumPy as part of their job. Current Institutional Partners include:
+
+- UC Berkeley (Stéfan van der Walt)
+- Quansight (Nathan Goldbaum, Ralf Gommers, Matti Picus, Melissa Weber Mendonça, Mateusz Sokol, Rohit Goswami)
+- NVIDIA (Sebastian Berg)
+
+{{< partners >}}
+
+## Donate
+
+If you have found NumPy useful in your work, research, or company, please consider a donation to the project commensurate with your resources. Any amount helps! All donations will be used strictly to fund the development of NumPy’s open source software, documentation, and community.
+
+NumPy is a Sponsored Project of NumFOCUS, a 501(c)(3) nonprofit charity in the United States. NumFOCUS provides NumPy with fiscal, legal, and administrative support to help ensure the health and sustainability of the project. Visit [numfocus.org](https://numfocus.org) for more information.
+
+Donations to NumPy are managed by [NumFOCUS](https://numfocus.org). For donors in the United States, your gift is tax-deductible to the extent provided by law. As with any donation, you should consult with your tax advisor about your particular tax situation.
+
+NumPy's Steering Council will make the decisions on how to best use any funds received. Technical and infrastructure priorities are documented on the [NumPy Roadmap](https://www.numpy.org/neps/index.html#roadmap).
+
+{{
+
+**Array computing** is based on **arrays** data structures. _Arrays_ are used
+to organize vast amounts of data such that a related set of values can be easily
+sorted, searched, mathematically manipulated, and transformed easily and quickly.
+
+Array computing is _unique_ as it involves operating on the data array _at
+once_. What this means is that any array operation applies to an entire set of
+values in one shot. This vectorized approach provides speed and simplicity by
+enabling programmers to code and operate on aggregates of data, without having
+to use loops of individual scalar operations.
diff --git a/content/it/case-studies/blackhole-image.md b/content/it/case-studies/blackhole-image.md
new file mode 100644
index 00000000..d9c374b4
--- /dev/null
+++ b/content/it/case-studies/blackhole-image.md
@@ -0,0 +1,92 @@
+---
+title: "Caso di Studio: Prima Immagine di un Buco Nero"
+sidebar: false
+---
+
+{{< figure
+ src='/images/content_images/cs/blackhole.jpg'
+ title='Black Hole M87'
+ alt='black hole image'
+ attribution='(Image Credits: Event Horizon Telescope Collaboration)'
+ attributionlink="https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg"
+>}}
+
+{{< blockquote
+ cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
+ by="{{< blockquote cite="https://www.youtube.com/watch?v=BIvezCVcsYs" by="Katie Bouman, \* Professore Assistente, Scienze & Matematiche Computazionali, Caltech\*""
+>}}
+{{< /blockquote >}}
+
+## Un telescopio dalla dimensione della Terra
+
+Il telescopio [Event Horizon (EHT)](https://eventhorizontelescope.org) è un complesso di otto radiotelescopi terrestri che formano un telescopio computazionale della dimensione della Terra, studiando l'universo con sensibilità e risoluzione senza precedenti. L'enorme telescopio virtuale, che utilizza una tecnica chiamata interferometria a lunghissima base (VLBI), ha una risoluzione angolare di [20 micro-secondi d'arco][resolution] — abbastanza definito per leggere un giornale a New York da un bar sul marciapiede a Parigi!
+
+[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
+
+### Obiettivi Principali e Risultati
+
+- **Una Nuova Visione dell'Universo:** Le basi per l'immagine innovativa dell'EHT sono state gettate 100 anni prima, quando [Sir Arthur Eddington][eddington] ha dato il primo supporto d'osservazione della teoria della relatività generale di Einstein.
+
+- **Il Buco Nero:** L'EHT è stato addestrato su un buco nero supermassiccio a circa 55 milioni di anni luce dalla Terra, situato al centro della galassia Messier 87 (M87) nell'ammasso della galassia Vergine. La sua massa è 6.5 miliardi di volte quella del Sole. Era stato studiato per [oltre 100 anni](https://www.jpl.nasa.gov/news/news.php?feature=7385), ma mai prima d'ora si era osservato un buco nero visivamente.
+
+- **Paragonando Osservazioni con la Teoria:** Dalla teoria generale della relatività di Einstein, gli scienziati si aspettavano di trovare una regione richiamante un'ombra causata dalla flessione gravitazionale e dalla cattura della luce. Gli scienziati hanno potuto usarla per misurare l'enorme massa del buco nero.
+
+[eddington]: https://en.wikipedia.org/wiki/Eddington_experiment
+
+### Le Sfide
+
+- **Scala computazionale**
+
+ L'EHT pone enormi sfide di elaborazione dei dati, tra cui rapide fluttuazioni di fase atmosferiche, grande larghezza di banda nella registrazione e telescopi che sono ampiamente dissimili e geograficamente dispersi.
+
+- **Troppe informazioni**
+
+ Ogni giorno l'EHT genera oltre 350 terabyte di osservazioni, memorizzati su dischi rigidi riempiti di elio. Ridurre il volume e la complessità di questa quantità di dati è estremamente difficile.
+
+- **Dentro allo sconosciuto**
+
+ Quando l'obiettivo è quello di vedere qualcosa mai visto prima, come possono gli scienziati essere certi che l'immagine sia corretta?
+
+{{< figure >}}
+{{< /figure >}}
+
+## Il Ruolo di NumPy
+
+Che cosa succede se c'è un problema con i dati? O magari se un algoritmo si basa troppo su un'assunzione particolare. src = '/images/content_images/cs/dataprocessbh.png'
+title = 'Pipeline della Processione Dati dell'EHT'
+alt = 'data pipeline'
+align = 'center'
+attribution = '(Crediti del Diagramma: The Astrophysical Journal, Collaborazione del Telescopio Event Horizon)'
+attributionlink = 'https://iopscience.iop.org/article/10.3847/2041-8213/ab0c57'
+
+La collaborazione dell'EHT ha riscontrato queste problematiche durante l'elaborazione dei dati indipendente dei gruppi di ricerca, usando tecniche di ricostruzione d'immagine ben stabilite e all'avanguardia. Quando i risultati si sono dimostrati coerenti, sono stati combinati per produrre la prima immagine mai esistita del buco nero.
+
+Il loro lavoro illustra il ruolo che l'ecosistema scientifico di Python gioca nell'avanzamento della scienza attraverso l'analisi collaborativa di dati.
+
+{{< figure >}}
+{{< /figure >}}
+
+Ad esempio, il paccheto Python [`eht-imaging`][ehtim] fornisce strumenti per la simulazione e la ricostruzione dell'immagine dei dati VLBI.
+NumPy è al centro dell'elaborazione dei dati matriciali utilizzati in questo pacchetto, come illustrato dal grafico delle dipendenze parziali del software
+qui sotto.
+
+{{< figure >}}
+{{< /figure >}}
+
+[ehtim]: https://github.com/achael/eht-imaging
+
+Oltre a NumPy, molti altri pacchetti, come [SciPy](https://www.scipy.org) e [Panda](https://pandas.io), fanno parte della pipeline di elaborazione dati per l’immagine del buco nero.
+I formati di file astronomici standard e le trasformazioni di tempo/coordinate sono stati gestiti da [Astropy][astropy], mentre [Matplotlib][mpl] è stato utilizzato per visualizzare i dati in tutta la pipeline di analisi, compresa la generazione dell'immagine finale del buco nero.
+
+[astropy]: https://www.astropy.org/
+[mpl]: https://matplotlib.org/
+
+## Sommario
+
+La gestione efficiente ed adattabile di matrici n-dimensionali, che è la caratteristica centrale di NumPy,
+ha permesso ai ricercatori di manipolare grandi insiemi di dati numerici, fornendo una base
+per la prima immagine mai osservata di un buco nero. Pietra miliare della scienza, si tratta di una splendida testimonianza visiva della teoria di Einstein. Algoritmi innovativi e tecniche di elaborazione dati, migliorando i modelli astronomici esistenti, hanno contribuito a spiegare un mistero
+dell'universo.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/it/case-studies/cricket-analytics.md b/content/it/case-studies/cricket-analytics.md
new file mode 100644
index 00000000..56ea5d5d
--- /dev/null
+++ b/content/it/case-studies/cricket-analytics.md
@@ -0,0 +1,82 @@
+---
+title: "Caso di Studio: Analisi del Cricket, il punto di svolta!"
+sidebar: false
+---
+
+{{< figure
+ src='/images/content_images/cs/ipl-stadium.png'
+ >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="{{< blockquote cite="https://www.scoopwhoop.com/sports/ms-dhoni/" by="M S Dhoni, _Giocatore Internazionale di Cricket, ex-capitano, Squadra Indiana, gioca per i Chennai Super Kings nel IPL_""
+ by="}} Non giochi per la folla, giochi per il paese."
+>}}
+{{< /blockquote >}}
+
+## Riguardo al Cricket
+
+Sarebbe un eufemismo dire che gli Indiani amano il cricket. Lo sport è giocato in praticamente ogni angolo e pertugio dell'India, rurale o urbano che sia, ed è ugualmente popolare tra giovani ed anziani, connettendo miliardi di persone in India più di qualsiasi altro sport.
+Il Cricket gode di una grande attenzione mediatica. C'è una notevole quantità di [soldi](https://www.statista.com/topics/4543/indian-premier-league-ipl/) e fama in gioco. Nel corso degli ultimi anni, la tecnologia è stata decisamente un punto di svolta. Il pubblico ha l'imbarazzo della scelta tra media in streaming, tornei, accesso a prezzi accessibili per guardare il cricket in diretta dal cellulare e molto altro ancora.
+
+La Premier League Indiana (IPL) è un campionato di cricket professionale in formato Twenty20 fondato nel 2008. Si tratta di uno degli eventi di cricket più seguiti al mondo, valutato per [$6.7 miliardi](https://en.wikipedia.org/wiki/Indian_Premier_League) nel 2019.
+
+Il cricket è un gioco di numeri: i punti segnati da un battitore, le eliminazioni effettuate da un lanciatore, le partite vinte da una squadra di cricket, il numero di volte in cui un battitore risponde in un determinato modo a un tipo di lancio, ecc. La possibilità di investigare tra i numeri del cricket sia per migliorare le prestazioni che per studiare le opportunità commerciali, il mercato complessivo o l'economia del gioco attraverso potenti strumenti di analisi, alimentati da software di calcolo numerico come NumPy, è una grossa questione. L'analisi del Cricket fornisce approfondimenti interessanti riguardanti il gioco e predizioni intelligenti dei risultati delle partite.
+
+Oggi sono disponibili serie ricche e quasi infinite di dati e statistiche sulle partite di cricket, come ad esempio [ESPN cricinfo](https://stats.espncricinfo.com/ci/engine/stats/index.html) e [cricsheet](https://cricsheet.org). Oggi sono disponibili serie ricche e quasi infinite di dati e statistiche sulle partite di cricket, come ad esempio [ESPN cricinfo](https://stats.espncricinfo.com/ci/engine/stats/index.html) e [cricsheet](https://cricsheet.org).
+Le piattaforme di media e intrattenimento, insieme ad enti sportivi professionali associati al gioco, utilizzano la tecnologia e l'analisi per determinare le metriche chiave per migliorare le possibilità di vittoria delle partite:
+
+- media mobile delle prestazioni di battuta,
+- previsione del punteggio,
+- ottenere informazioni sulla forma fisica e sulle prestazioni di un giocatore contro avversari diversi,
+- contributo dei giocatori alle vittorie e alle sconfitte per prendere decisioni strategiche sulla composizione della squadra
+
+{{< figure >}}
+{{< /figure >}}
+
+### Obiettivi Principali Dell'Analisi Dati
+
+- L'analisi dei dati sportivi viene utilizzata non solo nel cricket ma anche in molti [altri sport ](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx) per migliorare le prestazioni complessive della squadra e massimizzare le possibilità di vittoria.
+- L'analisi dei dati in tempo reale può aiutare ad ottenere informazioni anche durante la partita stessa per modificare le tattiche della squadra e delle aziende associate per ottenere vantaggi economici e di crescita.
+- Oltre all'analisi storica, i modelli predittivi vengono sfruttati per determinare i possibili risultati delle partite, che richiedono una notevole quantità di numeri e conoscenze di scienza dei dati, strumenti di visualizzazione e la capacità di includere nuove osservazioni nell'analisi.
+
+{{< figure >}}
+{{< /figure >}}
+
+### Le Sfide
+
+- **Pulizia e pretrattamento dei dati**
+
+ La IPL ha ampliato il cricket dal classico formato del match di prova ad una scala molto più ampia. Il numero di partite giocate ogni stagione in vari formati è aumentato e così hanno fatto i dati, gli algoritmi, le più recenti tecnologie di analisi di dati sportivi ed i modelli di simulazione. L'analisi dei dati di Cricket richiede la mappatura del campo, il tracciamento dei giocatori e delle palle, l'analisi delle battute del giocatore e diversi altri aspetti coinvolti nel modo in cui la palla viene lanciata: la sua angolazione, rotazione, velocità e traiettoria. L'insieme di tutti questi fattori ha aumentato la complessità della pulizia e del pretrattamento dei dati.
+
+- **Modellazione Dinamica**
+
+ Nel cricket, proprio come qualsiasi altro sport, ci può essere un gran numero di variabili relative al tracciamento di varie quantità di giocatori sul campo, i loro attributi, la palla e diverse possibilità di potenziali azioni. La complessità dell'analisi dei dati e della modellazione è direttamente proporzionale al tipo di domande predittive che vengono poste durante l'analisi e sono altamente dipendenti dalla rappresentazione dei dati e dal modello. Le cose diventano ancora più impegnative in termini di computazione e dati comparativi quando si cercano previsioni dinamiche sul gioco del cricket, come ad esempio ciò che sarebbe successo se il battitore avesse colpito la palla ad un angolo o velocità diverse.
+
+- **Complessità Dell'Analisi Predittiva**
+
+ Gran parte del processo decisionale nel cricket si basa su domande quali "quanto spesso un battitore colpisce la palla in un certo modo quando questa viene lanciata in una certa maniera", o "come cambia il lanciatore la sua linea e la sua lunghezza se il battitore risponde alla consegna in un certo modo".
+ Questo tipo di questioni di analisi predittiva richiede la disponibilità di set di dati altamente granulari e la capacità di sintetizzare i dati e creare modelli generativi altamente accurati.
+
+## Il Ruolo di NumPy nell'Analisi del Cricket
+
+Le analisi sportive sono un settore fiorente. Molti ricercatori ed aziende [utilizzano NumPy](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx) ed altri pacchetti di PyData come Scikit-learn, SciPy, Matplotlib e Jupyter, oltre ad utilizzare le più recenti tecniche di machine learning e di AI. Molti ricercatori ed aziende utilizzano NumPy
+ed altri pacchetti di PyData come Scikit-learn, SciPy, Matplotlib e Jupyter, oltre ad utilizzare le più recenti tecniche di machine learning e di AI .
+
+- **Analisi Statistica:** Le capacità numeriche di NumPy aiutano a stimare la significatività statistica dei dati osservazionali o degli eventi di corrispondenza nel contesto di vari giocatori e tattiche di gioco, stimando il risultato di una partita a confronto con un modello generativo o statico.
+ [L'Analisi Causale](https://amplitude.com/blog/2017/01/19/causation-correlation) e [approcci per i big data](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996805/) sono utilizzati per l'analisi strategica.
+
+- **Visualizzazione dei Dati:** La grafica dei dati e [visualizzazione](https://towardsdatascience.com/advanced-sports-visualization-with-pandas-matplotlib-and-seaborn-9c16df80a81b) forniscono utili indicazioni sulle relazioni tra i vari insiemi di dati.
+
+## Sommario
+
+L'Analisi Sportiva ha cambiato le carte in tavola per quanto riguarda il modo in cui vengono giocate le partite professionistiche, soprattutto per quanto riguarda il modo in cui vengono prese le decisioni strategiche, che fino a poco tempo fa si basava principalmente sulla “sensazione di pancia” o sull'aderenza alle tradizioni del passato. NumPy
+costituisce una solida base per un'ampia serie di pacchetti Python che forniscono funzioni di livello superiore legate all'analisi dei dati, al machine learning ed agli algoritmi d'intelligenza artificiale.
+Questi pacchetti sono ampiamente distribuiti per ottenere informazioni in tempo reale che aiutano nel processo decisionale in grado di cambiare le carte in tavola, sia sul campo che per trarre conclusioni
+e guidare il business che circonda il gioco del cricket. L'individuazione dei parametri
+nascosti, modelli, e gli attributi che portano al risultato di una partita di cricket
+aiutano gli stakeholders a prendere nota delle intuizioni di gioco che sono
+altrimenti nascoste in numeri e statistiche.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/it/case-studies/deeplabcut-dnn.md b/content/it/case-studies/deeplabcut-dnn.md
new file mode 100644
index 00000000..743a1f2b
--- /dev/null
+++ b/content/it/case-studies/deeplabcut-dnn.md
@@ -0,0 +1,105 @@
+---
+title: "Caso Di Studio: Stima della Posa con DeepLabCut 3D"
+sidebar: false
+---
+
+{{< figure >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="{{< blockquote cite="https://news.harvard.edu/gazette/story/newsplus/harvard-researchers-awarded-czi-open-source-award/" by="Alexander Mathis, _Professore Assistente, École polytechnique fédérale de Lausanne_ ([EPFL](https://www.epfl.ch/en/))""
+ by="Alexander Mathis, _Assistant Professor, École polytechnique fédérale de Lausanne_ ([EPFL](https://www.epfl.ch/en/))"
+>}}
+{{< /blockquote >}}
+
+## Riguardo DeepLabCut
+
+[DeepLabCut](https://github.com/DeepLabCut/DeepLabCut) è un'insieme di strumenti open source che consente ai ricercatori di centinaia di istituzioni in tutto il mondo di tracciare il comportamento degli animali da laboratorio con pochissimi dati di addestramento e con una precisione pari a quella umana. Con la tecnologia DeepLabCut, gli scienziati possono approfondire la comprensione scientifica del controllo motorio e del comportamento in tutte le specie animali ed in tutti i lassi di tempo.
+
+Diversi settori di ricerca, tra cui neuroscienza, medicina e biomeccanica, utilizzano i dati di monitoraggio del movimento degli animali. DeepLabCut aiuta a capire ciò che gli esseri umani e gli altri animali stanno facendo analizzando le azioni che sono state registrate su pellicola. Utilizzando l'automazione per le laboriose attività di etichettatura e monitoraggio, insieme all'analisi dei dati basata su reti neurali profonde, DeepLabCut rende molto più veloci e accurati gli studi scientifici che prevedono l'osservazione di animali quali primati, topi, pesci, mosche, ecc.
+
+{{< figure >}}
+{{< /figure >}}
+
+Il tracciamento comportamentale non invasivo di animali da parte di DeepLabCut, attraverso l'estrazione delle pose degli animali, è fondamentale per le attività scientifiche in settori quali la biomeccanica, la genetica, l'etologia e le neuroscienze. Misurare le pose degli animali in modo non invasivo da un video - senza marcatori - su sfondi che cambiano dinamicamente è una sfida computazionale, sia dal punto di vista tecnico che da quello delle risorse necessarie e dei dati di addestramento richiesti.
+
+DeepLabCut permette ai ricercatori di stimare la posa del soggetto, consentendo loro di quantificare in modo efficiente il comportamento attraverso un insieme di strumenti software basato su Python. Con DeepLabCut, i ricercatori possono identificare fotogrammi distinti di video, etichettare digitalmente parti del corpo specifiche in poche decine di fotogrammi con un'interfaccia grafica personalizzata; dopodiché le architetture di stima della posa basate sull'apprendimento profondo di DeepLabCut imparano a individuare quelle stesse caratteristiche nel resto del video e in altri video simili di animali. Funziona su tutte le specie di animali, dai comuni animali da laboratorio come mosche e topi ad animali più insoliti come [ghepardi][cheetah-movement].
+
+[cheetah-movement]: https://www.technologynetworks.com/neuroscience/articles/interview-a-deeper-cut-into-behavior-with-mackenzie-mathis-327618
+
+DeepLabCut uses a principle called [transfer learning](https://arxiv.org/pdf/1909.11229), which greatly reduces the amount of training data required and speeds up the convergence of the training period. A seconda delle esigenze, gli utenti possono scegliere diverse architetture di rete che forniscono un'inferenza più rapida (ad esempio, MobileNetV2), che può anche essere combinata con un feedback sperimentale in tempo reale. DeepLabCut all'inizio utilizzava rilevatori di caratteristiche dell'architettura di stima della posa umana dalle prestazioni eccellenti, chiamata [DeeperCut](https://arxiv.org/abs/1605.03170), che ha ispirato il nome. Il pacchetto è stato ora modificato in modo significativo per includere architetture aggiuntive, metodi di incremento e un'esperienza d'interazione con l'utente completa. Inoltre, per supportare esperimenti biologici su larga scala, DeepLabCut offre funzionalità di apprendimento attivo che consentono agli utenti di aumentare il set di addestramento nel tempo per coprire i casi limite e rendere l'algoritmo di stima della posa robusto all'interno del contesto specifico.
+
+Recentemente è stato introdotto lo [zoo di DeepLabCut](https://deeplabcut.github.io/DeepLabCut/docs/ModelZoo.html), che fornisce modelli pre-addestrati per varie specie e condizioni sperimentali, dall'analisi facciale nei primati alla postura dei cani. Questo può essere eseguito, ad esempio, nel cloud senza etichettatura di nuovi dati o addestramento di reti neurali, e non è necessaria alcuna esperienza di programmazione.
+
+### Obiettivi Principali e Risultati
+
+- **Automazione dell'analisi della posa animale per studi scientifici:**
+
+ L'obiettivo primario della tecnologia DeepLabCut è quello di misurare e tracciare la postura di animali in ambienti diversi. Questi dati possono essere utilizzati, ad esempio, negli studi di neuroscienze per capire come il cervello controlla il movimento o per come gli animali interagiscono socialmente. I ricercatori hanno osservato un [ miglioramento delle prestazioni 10 volte superiore](https://www.biorxiv.org/content/10.1101/457242v1) con DeepLabCut. Le pose possono essere dedotte offline fino a 1200 fotogrammi al secondo (FPS).
+
+- **Creazione di un insieme di strumenti Python facile da usare per la stima delle pose:**
+
+ DeepLabCut ha voluto condividere la propria tecnologia di stima della posa degli animali sotto forma di uno strumento di facile utilizzo che potesse essere adottato facilmente dai ricercatori. Per questo hanno creato un pacchetto di strumenti Python completo e facile da usare, con tanto di funzioni per la gestione dei progetti. Questi permettono non solo di automatizzare la stima della posa, ma anche di gestire il progetto dall'inizio alla fine, aiutando l'utente di DeepLabCut Toolkit dalla fase di raccolta dei dati alla creazione di pipeline di analisi condivisibili e riutilizzabili.
+
+ Il loro [toolkit][DLCToolkit] è ora disponibile come open source.
+
+ Un tipico flusso di lavoro con DeepLabCut comprende:
+
+ - la creazione ed il perfezionamento di gruppi di formazione attraverso l'apprendimento attivo
+ - la creazione di reti neurali su misura per animali e scenari specifici
+ - un codice per l'inferenza su larga scala per video
+ - rappresentazione di inferenze utilizzando strumenti di visualizzazione integrati
+
+{{< figure >}}
+{{< /figure >}}
+
+[DLCToolkit]: https://github.com/DeepLabCut/DeepLabCut
+
+### Le Sfide
+
+- **Velocità**
+
+ L'elaborazione rapida dei video del comportamento animale permette di misurarlo con precisione, rendendo al contempo gli esperimenti scientifici più efficienti e accurati.
+ Misurare le pose degli animali in modo non invasivo da un video - senza marcatori - su sfondi che cambiano dinamicamente è una sfida computazionale, sia dal punto di vista tecnico che da quello delle risorse necessarie e dei dati di addestramento richiesti.
+ Fornire uno strumento facile da usare, senza richiedere competenze specifiche come esperienza in visualizzazione computazionale, e che permetta agli scienziati di condurre ricerche in diversi contesti reali, è un problema non banale da risolvere.
+
+- **Combinatoria**
+
+ Il calcolo combinatorio prevede l'assemblaggio e l'integrazione del movimento di più arti in un comportamento individuale dell'animale. Assemblare i punti chiave, le loro connessioni nei singoli movimenti degli animali e collegarli nel tempo è un processo complesso che richiede un'analisi numerica impegnativa, soprattutto nel caso di tracciamento dei movimenti di più animali in video di esperimenti.
+
+- **Trattamento dei Dati**
+
+ Ultimo, ma non meno importante, la manipolazione degli arrays - l'elaborazione di grandi pile di vettori corrispondenti a varie immagini, tensori di destinazione e punti chiave, è piuttosto impegnativo.
+
+{{< figure >}}
+{{< /figure >}}
+
+## Il Ruolo di NumPy verso le Sfide di Stima della Posa
+
+NumPy affronta la necessità principale della tecnologia DeepLabCut di calcoli numerici ad alta velocità
+per l'analisi comportamentale. Oltre a NumPy, DeepLabCut impiega vari software Python che utilizzano NumPy al loro centro, come [SciPy](https://www.scipy.org), [Pandas](https://pandas.pydata.org), [matplotlib](https://matplotlib.org), [Tensorpack](https://github.com/tensorpack/tensorpack), [imgaug](https://github.com/aleju/imgaug), [scikit-learn](https://scikit-learn.org/stable/) [scikit-image](https://scikit-image.org) e [Tensorflow](https://www.tensorflow.org).
+
+Le seguenti caratteristiche di NumPy hanno svolto un ruolo fondamentale nel risolvere i requisiti di elaborazione delle immagini, di combinatoria e di velocità di calcolo degli algoritmi di stima della posa di DeepLabCut:
+
+- Vettorizzazione
+- Operazioni con Arrays Mascherati
+- Algebra Lineare
+- Campionamento Casuale
+- Riarrangiamento di arrays di grandi dimensioni
+
+DeepLabCut utilizza le capacità di array di NumPy durante il flusso di lavoro offerto dal toolkit. In particolare, NumPy viene utilizzato per il campionamento di frame distinti per l'etichettatura dell'annotazione umana e per scrivere, modificare ed elaborare i dati di annotazione. All'interno di TensorFlow, la rete neurale è addestrata dalla tecnologia DeepLabCut sopra migliaia di iterazioni per prevedere le annotazioni di verità fondamentali dai frames. A questo scopo, le densità obiettivo (scoremap) sono create per lanciare la stima di posa come un problema di traduzione da immagine ad immagine. Per rendere le reti neurali
+robuste, si ricorre all'aumento dei dati, che richiede il calcolo di scoremap del bersaglio soggetto in varie fasi di elaborazione geometrica e dell'immagine. Per rendere
+veloce l'addestramento, le capacità di vettorializzazione di NumPy vengono sfruttate. Per l'inferenza,
+le previsioni più probabili dalle scoremap di destinazione devono essere estratte e bisogna “collegare in modo efficiente le predizioni per assemblare i singoli animali”.
+
+{{< figure >}}
+{{< /figure >}}
+
+## Sommario
+
+Osservare e descrivere in modo efficiente il comportamento è un principio fondamentale dell'etologia moderna, delle neuroscienze, della medicina e della tecnologia.
+Osservare e descrivere in modo efficiente il comportamento è un principio fondamentale dell'etologia moderna, delle neuroscienze, della medicina e della tecnologia. Con solo un piccolo insieme di immagini di addestramento, l'insieme di strumenti Python di
+DeepLabCut permette di addestrare una rete neurale con un'accuratezza di etichettatura al pari del livello umano, espandendo così la sua applicazione non solo all'analisi del comportamento in laboratorio, ma potenzialmente anche nello sport, nell'analisi dell'andatura e negli studi di medicina e riabilitazione. Le complesse sfide di calcolo combinatorio e di elaborazione dei dati riscontrate dagli algoritmi di DeepLabCut vengono affrontate attraverso l'uso delle capacità di NumPy di manipolazione degli array.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/it/case-studies/gw-discov.md b/content/it/case-studies/gw-discov.md
new file mode 100644
index 00000000..8bcaa281
--- /dev/null
+++ b/content/it/case-studies/gw-discov.md
@@ -0,0 +1,98 @@
+---
+title: "Caso di Studio: Scoperta delle Onde Gravitazionali"
+sidebar: false
+---
+
+{{< figure >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
+ by="David Shoemaker, _Collaborazione Scientifica LIGO_" >}}
+{{< /blockquote >}}
+
+## Informazioni sulle [Onde Gravitazionali](https://www.nationalgeographic.com/news/2017/10/what-are-gravitational-waves-ligo-astronomy-science/) e [LIGO](https://www.ligo.caltech.edu)
+
+Le onde gravitazionali sono increspature nel tessuto dello spazio e del tempo, generate da eventi cataclismatici nell'universo, come la collisione e la fusione di due buchi neri o la coalescenza di stelle binarie o supernovae. L'osservazione delle onde gravitazionali non solo può aiutare
+nello studio della gravità, ma anche nella comprensione di alcuni fenomeni oscuri dell'universo lontano e del suo impatto.
+
+L' [Osservatorio Interferometro Laser delle Onde Gravitazionali(LIGO)](https://www.ligo.caltech.edu) è stato progettato per inaugurare il campo dell’astrofisica delle gravitazionali attraverso il loro rilevamento diretto previsto dalla Teoria Generale della Relatività di Einstein. It comprises two widely separated interferometers within the
+United States — one in Hanford, Washington and the other in Livingston,
+Louisiana — operated in unison to detect gravitational waves. Each of them has
+multi-kilometer-scale gravitational wave detectors that use laser
+interferometry. The LIGO Scientific Collaboration (LSC), is a group of more
+than 1000 scientists from universities around the United States and in 14
+other countries supported by more than 90 universities and research institutes;
+approximately 250 students actively contributing to the collaboration. The new
+LIGO discovery is the first observation of gravitational waves themselves,
+made by measuring the tiny disturbances the waves make to space and time as
+they pass through the earth. It has opened up new astrophysical frontiers
+that explore the warped side of the universe—objects and phenomena that are
+made from warped spacetime.
+
+### Key Objectives
+
+- Though its [mission](https://www.ligo.caltech.edu/page/what-is-ligo) is to detect gravitational waves from some of the most violent and energetic processes in the Universe, the data LIGO collects may have far-reaching effects on many areas of physics including gravitation, relativity, astrophysics, cosmology, particle physics, and nuclear physics.
+- Crunch observed data via numerical relativity computations that involves complex maths in order to discern signal from noise, filter out relevant signal and statistically estimate significance of observed data
+- Data visualization so that the binary / numerical results can be comprehended.
+
+### Le Sfide
+
+- **Computation**
+
+ Gravitational Waves are hard to detect as they produce a very small effect and have tiny interaction with matter. Processing and analyzing all of LIGO's data requires a vast computing infrastructure.After taking care of noise, which is billions of times of the signal, there is still very complex relativity equations and huge amounts of data which present a computational challenge: [O(10^7) CPU hrs needed for binary merger analyses](https://youtu.be/7mcHknWWzNI) spread on 6 dedicated LIGO clusters
+
+- **Data Deluge**
+
+ As observational devices become more sensitive and reliable, the challenges posed by data deluge and finding a needle in a haystack rise multi-fold.
+ LIGO generates terabytes of data every day! Making sense of this data requires an enormous effort for each and every detection. For example, the signals being collected by LIGO must be matched by supercomputers against hundreds of thousands of templates of possible gravitational-wave signatures.
+
+- **Visualization**
+
+ Once the obstacles related to understanding Einstein’s equations well enough to solve them using supercomputers are taken care of, the next big challenge was making data comprehensible to the human brain. Simulation modeling as well as signal detection requires effective visualization techniques. Visualization also plays a role in lending more credibility to numerical relativity in the eyes of pure science aficionados, who did not give enough importance to numerical relativity until imaging and simulations made it easier to comprehend results for a larger audience.
+ Speed of complex computations and rendering, re-rendering images and simulations using latest experimental inputs and insights can be a time consuming activity that challenges researchers in this domain.
+
+{{< figure >}}
+{{< /figure >}}
+
+## NumPy’s Role in the Detection of Gravitational Waves
+
+Gravitational waves emitted from the merger cannot be computed using any
+technique except brute force numerical relativity using supercomputers.
+The amount of data LIGO collects is as incomprehensibly large as gravitational
+wave signals are small.
+
+NumPy, the standard numerical analysis package for Python, was utilized by
+the software used for various tasks performed during the GW detection project
+at LIGO. NumPy helped in solving complex maths and data manipulation at high
+speed. Here are some examples:
+
+- [Signal Processing](https://www.uv.es/virgogroup/Denoising_ROF.html): Glitch detection, [Noise identification and Data Characterization](https://ep2016.europython.eu/media/conference/slides/pyhton-in-gravitational-waves-research-communities.pdf) (NumPy, scikit-learn, scipy, matplotlib, pandas, pyCharm)
+- Data retrieval: Deciding which data can be analyzed, figuring out whether it contains a signal - needle in a haystack
+- Statistical analysis: estimate the statistical significance of observational data, estimating the signal parameters (e.g. masses of stars, spin velocity, and distance) by comparison with a model.
+- Visualization of data
+ - Time series
+ - Spectrograms
+- Compute Correlations
+- Key [Software](https://github.com/lscsoft) developed in GW data analysis such as [GwPy](https://gwpy.github.io/docs/stable/overview.html) and [PyCBC](https://pycbc.org) uses NumPy and AstroPy under the hood for providing object based interfaces to utilities, tools, and methods for studying data from gravitational-wave detectors.
+
+{{< figure >}}
+{{< /figure >}}
+
+----
+
+{{< figure >}}
+{{< /figure >}}
+
+## Sommario
+
+GW detection has enabled researchers to discover entirely unexpected phenomena
+while providing new insight into many of the most profound astrophysical
+phenomena known. Number crunching and data visualization is a crucial step
+that helps scientists gain insights into data gathered from the scientific
+observations and understand the results. The computations are complex and
+cannot be comprehended by humans unless it is visualized using computer
+simulations that are fed with the real observed data and analysis. NumPy along with other Python packages such as matplotlib, pandas, and scikit-learn is [enabling researchers](https://www.gw-openscience.org/events/GW150914/) to answer complex questions and discover new horizons in our understanding of the universe.
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/it/citing-numpy.md b/content/it/citing-numpy.md
new file mode 100644
index 00000000..60925013
--- /dev/null
+++ b/content/it/citing-numpy.md
@@ -0,0 +1,35 @@
+---
+title: Citing NumPy
+sidebar: false
+---
+
+If NumPy has been significant in your research, and you would like to acknowledge the project in your academic publication, we suggest citing the following paper:
+
+- Harris, C.R., Millman, K.J., van der Walt, S.J. et al. _Array programming with NumPy_. Nature 585, 357–362 (2020). DOI: [10.1038/s41586-020-2649-2](https://doi.org/10.1038/s41586-020-2649-2). ([Publisher link](https://www.nature.com/articles/s41586-020-2649-2)).
+
+_In BibTeX format:_
+
+ ```
+ @Article{ harris2020array,
+ title = {Array programming with {NumPy}},
+ author = {Charles R. Harris and K. Jarrod Millman and St{\'{e}}fan J.
+ van der Walt and Ralf Gommers and Pauli Virtanen and David
+ Cournapeau and Eric Wieser and Julian Taylor and Sebastian
+ Berg and Nathaniel J. Smith and Robert Kern and Matti Picus
+ and Stephan Hoyer and Marten H. van Kerkwijk and Matthew
+ Brett and Allan Haldane and Jaime Fern{\'{a}}ndez del
+ R{\'{i}}o and Mark Wiebe and Pearu Peterson and Pierre
+ G{\'{e}}rard-Marchant and Kevin Sheppard and Tyler Reddy and
+ Warren Weckesser and Hameer Abbasi and Christoph Gohlke and
+ Travis E. Oliphant},
+ year = {2020},
+ month = sep,
+ journal = {Nature},
+ volume = {585},
+ number = {7825},
+ pages = {357--362},
+ doi = {10.1038/s41586-020-2649-2},
+ publisher = {Springer Science and Business Media {LLC}},
+ url = {https://doi.org/10.1038/s41586-020-2649-2}
+ }
+ ```
diff --git a/content/it/code-of-conduct.md b/content/it/code-of-conduct.md
new file mode 100644
index 00000000..d5819b62
--- /dev/null
+++ b/content/it/code-of-conduct.md
@@ -0,0 +1,83 @@
+---
+title: NumPy Code of Conduct
+sidebar: false
+aliases:
+ - /conduct.html
+---
+
+### Introduction
+
+This Code of Conduct applies to all spaces managed by the NumPy project, including all public and private mailing lists, issue trackers, wikis, blogs, X, and any other communication channel used by our community. The NumPy project does not organise in-person events, however events related to our community should have a code of conduct similar in spirit to this one.
+
+This Code of Conduct should be honored by everyone who participates in the NumPy community formally or informally, or claims any affiliation with the project, in any project-related activities and especially when representing the project, in any role.
+
+This code is not exhaustive or complete. It serves to distill our common understanding of a collaborative, shared environment and goals. Please try to follow this code in spirit as much as in letter, to create a friendly and productive environment that enriches the surrounding community.
+
+### Specific Guidelines
+
+We strive to:
+
+1. Be open. We invite anyone to participate in our community. We prefer to use public methods of communication for project-related messages, unless discussing something sensitive. This applies to messages for help or project-related support, too; not only is a public support request much more likely to result in an answer to a question, it also ensures that any inadvertent mistakes in answering are more easily detected and corrected.
+2. Be empathetic, welcoming, friendly, and patient. We work together to resolve conflict, and assume good intentions. We may all experience some frustration from time to time, but we do not allow frustration to turn into a personal attack. A community where people feel uncomfortable or threatened is not a productive one.
+3. Be collaborative. Our work will be used by other people, and in turn we will depend on the work of others. When we make something for the benefit of the project, we are willing to explain to others how it works, so that they can build on the work to make it even better. Any decision we make will affect users and colleagues, and we take those consequences seriously when making decisions.
+4. Be inquisitive. Nobody knows everything! Asking questions early avoids many problems later, so we encourage questions, although we may direct them to the appropriate forum. We will try hard to be responsive and helpful.
+5. Be careful in the words that we choose. We are careful and respectful in our communication, and we take responsibility for our own speech. Be kind to others. Do not insult or put down other participants. We will not accept harassment or other exclusionary behaviour, such as:
+ - Violent threats or language directed against another person.
+ - Sexist, racist, or otherwise discriminatory jokes and language.
+ - Posting sexually explicit or violent material.
+ - Posting (or threatening to post) other people’s personally identifying information (“doxing”).
+ - Sharing private content, such as emails sent privately or non-publicly, or unlogged forums such as IRC channel history, without the sender’s consent.
+ - Personal insults, especially those using racist or sexist terms.
+ - Unwelcome sexual attention.
+ - Excessive profanity. Please avoid swearwords; people differ greatly in their sensitivity to swearing.
+ - Repeated harassment of others. In general, if someone asks you to stop, then stop.
+ - Advocating for, or encouraging, any of the above behaviour.
+
+### Diversity Statement
+
+The NumPy project welcomes and encourages participation by everyone. We are committed to being a community that everyone enjoys being part of. Although we may not always be able to accommodate each individual’s preferences, we try our best to treat everyone kindly.
+
+No matter how you identify yourself or how others perceive you: we welcome you. Though no list can hope to be comprehensive, we explicitly honour diversity in: age, culture, ethnicity, genotype, gender identity or expression, language, national origin, neurotype, phenotype, political beliefs, profession, race, religion, sexual orientation, socioeconomic status, subculture and technical ability, to the extent that these do not conflict with this code of conduct.
+
+Though we welcome people fluent in all languages, NumPy development is conducted in English.
+
+Standards for behaviour in the NumPy community are detailed in the Code of Conduct above. Participants in our community should uphold these standards in all their interactions and help others to do so as well (see next section).
+
+### Reporting Guidelines
+
+We know that it is painfully common for internet communication to start at or devolve into obvious and flagrant abuse. We also recognize that sometimes people may have a bad day, or be unaware of some of the guidelines in this Code of Conduct. Please keep this in mind when deciding on how to respond to a breach of this Code.
+
+For clearly intentional breaches, report those to the Code of Conduct Committee (see below). For possibly unintentional breaches, you may reply to the person and point out this code of conduct (either in public or in private, whatever is most appropriate). If you would prefer not to do that, please feel free to report to the Code of Conduct Committee directly, or ask the Committee for advice, in confidence.
+
+You can report issues to the NumPy Code of Conduct Committee at numpy-conduct@googlegroups.com.
+
+Currently, the Committee consists of:
+
+- Stefan van der Walt
+- Melissa Weber Mendonça
+- Rohit Goswami
+
+If your report involves any members of the Committee, or if they feel they have a conflict of interest in handling it, then they will recuse themselves from considering your report. Alternatively, if for any reason you feel uncomfortable making a report to the Committee, then you can also contact senior NumFOCUS staff at [conduct@numfocus.org](https://numfocus.org/code-of-conduct#persons-responsible).
+
+### Incident reporting resolution & Code of Conduct enforcement
+
+_This section summarizes the most important points, more details can be found in_ [NumPy Code of Conduct - How to follow up on a report](report-handling-manual).
+
+We will investigate and respond to all complaints. The NumPy Code of Conduct Committee and the NumPy Steering Committee (if involved) will protect the identity of the reporter, and treat the content of complaints as confidential (unless the reporter agrees otherwise).
+
+In case of severe and obvious breaches, e.g. personal threat or violent, sexist or racist language, we will immediately disconnect the originator from NumPy communication channels; please see the manual for details.
+
+In cases not involving clear severe and obvious breaches of this Code of Conduct the process for acting on any received Code of Conduct violation report will be:
+
+1. acknowledge report is received,
+2. reasonable discussion/feedback,
+3. mediation (if feedback didn’t help, and only if both reporter and reportee agree to this),
+4. enforcement via transparent decision (see [Resolutions](report-handling-manual/#resolutions)) by the Code of Conduct Committee.
+
+The Committee will respond to any report as soon as possible, and at most within 72 hours.
+
+### Endnotes
+
+We are thankful to the groups behind the following documents, from which we drew content and inspiration:
+
+- [The SciPy Code of Conduct](https://docs.scipy.org/doc/scipy/dev/conduct/code_of_conduct.html)
diff --git a/content/it/community.md b/content/it/community.md
new file mode 100644
index 00000000..6b0e5de4
--- /dev/null
+++ b/content/it/community.md
@@ -0,0 +1,72 @@
+---
+title: Community
+sidebar: false
+---
+
+NumPy is a community-driven open source project developed by a diverse group of [contributors](/teams/). The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the [NumPy Code of Conduct](/code-of-conduct) for guidance on how to interact with others in a way that makes the community thrive.
+
+We offer several communication channels to learn, share your knowledge and connect with others within the NumPy community.
+
+## Participate online
+
+The following are ways to engage directly with the NumPy project and community.
+_Please note that we encourage users and community members to support each other
+for usage questions - see [Get Help](/gethelp)._
+
+### [NumPy mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion)
+
+This list is the main forum for longer-form discussions, like adding new features to NumPy, making changes to the NumPy Roadmap, and all kinds of project-wide decision making.
+Announcements about NumPy, such as for releases, developer meetings, sprints or
+conference talks are also made on this list.
+
+On this list please use bottom posting, reply to the list (rather than to
+another sender), and don't reply to digests. A searchable archive of this list
+is available [here](https://mail.python.org/archives/list/numpy-discussion@python.org/).
+
+***
+
+### [GitHub issue tracker](https://github.com/numpy/numpy/issues)
+
+- For bug reports (e.g. "`np.arange(3).shape` returns `(5,)`, when it should return `(3,)`");
+- documentation issues (e.g. "I found this section unclear");
+- and feature requests (e.g. "I would like to have a new interpolation method in `np.percentile`").
+
+_Please note that GitHub is not the right place to report a security vulnerability. If you think you have found a security vulnerability in NumPy, please report it [here](https://tidelift.com/docs/security)._
+
+***
+
+### [Slack](https://numpy-team.slack.com)
+
+A real-time chat room to ask questions about _contributing_ to NumPy.
+This is a private space, specifically meant for people who are hesitant to
+bring up their questions or ideas on a large public mailing list or GitHub.
+Please see
+[here](https://numpy.org/devdocs/dev/index.html#contributing-to-numpy) for more
+details and how to get an invite.
+
+## Study Groups and Meetups
+
+If you would like to find a local meetup or study group to learn more about NumPy and the wider ecosystem of Python packages for data science and scientific computing, we recommend exploring the [PyData meetups](https://www.meetup.com/pro/pydata/) (150+ meetups, 100,000+ members).
+
+NumPy also organizes in-person sprints for its team and interested contributors occasionally. These are typically planned several months in advance and will be announced on the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion).
+
+## Conferences
+
+The NumPy project doesn't organize its own conferences. The conferences that have traditionally been most popular with NumPy maintainers, contributors and users are the SciPy and PyData conference series:
+
+- SciPy US
+- EuroSciPy
+- SciPy Latin America
+- SciPy India
+- SciPyData Japan
+- PyData conferences (15-20 events a year spread over many countries)
+
+Many of these conferences include tutorial days that cover NumPy and/or sprints where you can learn how to contribute to NumPy or related open source projects.
+
+## Join the NumPy community
+
+To thrive, the NumPy project needs your expertise and enthusiasm. Not a coder? Not a problem! There are many ways to contribute to NumPy.
+
+If you are interested in becoming a NumPy contributor (yay!) we recommend checking out our [Contribute](/contribute) page.
+
+Also, feel free to stop by and say hi at one of our community meetings. To keep track of them, check out our events calendar [here](https://scientific-python.org/calendars/).
diff --git a/content/it/config.yaml b/content/it/config.yaml
new file mode 100644
index 00000000..f045713c
--- /dev/null
+++ b/content/it/config.yaml
@@ -0,0 +1,109 @@
+languageName: English
+params:
+ description: Why NumPy? Powerful n-dimensional arrays. Numerical computing tools. Interoperable. Performant. Open source.
+ navbarlogo:
+ image: logo.svg
+ text: NumPy
+ link: /
+ hero:
+ # Main hero title
+ title: NumPy
+ # Hero subtitle (optional)
+ subtitle: The fundamental package for scientific computing with Python
+ # Button text
+ buttontext: "Latest release: NumPy 2.2. View all releases"
+ # Where the main hero button links to
+ buttonlink: "/news/#releases"
+ # Hero image (from static/images/___)
+ image: logo.svg
+ shell:
+ title: placeholder
+ intro:
+ - title: Try NumPy
+ text: Use the interactive shell to try NumPy in the browser
+ docslink: Don't forget to check out the docs.
+ casestudies:
+ title: CASE STUDIES
+ features:
+ - title: First Image of a Black Hole
+ text: How NumPy, together with libraries like SciPy and Matplotlib that depend on NumPy, enabled the Event Horizon Telescope to produce the first ever image of a black hole
+ img: /images/content_images/case_studies/blackhole.png
+ alttext: First image of a black hole. It is an orange circle in a black background.
+ url: /case-studies/blackhole-image
+ - title: Detection of Gravitational Waves
+ text: In 1916, Albert Einstein predicted gravitational waves; 100 years later their existence was confirmed by LIGO scientists using NumPy.
+ img: /images/content_images/case_studies/gravitional.png
+ alttext: Two orbs orbiting each other. They are displacing gravity around them.
+ url: /case-studies/gw-discov
+ - title: Sports Analytics
+ text: Cricket Analytics is changing the game by improving player and team performance through statistical modelling and predictive analytics. NumPy enables many of these analyses.
+ img: /images/content_images/case_studies/sports.jpg
+ alttext: Cricket ball on green field.
+ url: /case-studies/cricket-analytics
+ - title: Pose Estimation using deep learning
+ text: DeepLabCut uses NumPy for accelerating scientific studies that involve observing animal behavior for better understanding of motor control, across species and timescales.
+ img: /images/content_images/case_studies/deeplabcut.png
+ alttext: Cheetah pose analysis
+ url: /case-studies/deeplabcut-dnn
+ tabs:
+ title: ECOSYSTEM
+ section5: false
+ navbar:
+ - title: Install
+ url: /install
+ - title: Documentation
+ url: https://numpy.org/doc/stable
+ - title: Learn
+ url: /learn
+ - title: Community
+ url: /community
+ - title: About Us
+ url: /about
+ - title: News
+ url: /news
+ - title: Contribute
+ url: /contribute
+ footer:
+ logo: logo.svg
+ socialmediatitle: ""
+ socialmedia:
+ - link: https://github.com/numpy/numpy
+ icon: github
+ - link: https://www.youtube.com/@NumPy_team
+ icon: youtube
+ quicklinks:
+ column1:
+ title: ""
+ links:
+ - text: Install
+ link: /install
+ - text: Documentation
+ link: https://numpy.org/doc/stable
+ - text: Learn
+ link: /learn
+ - text: Citing NumPy
+ link: /citing-numpy
+ - text: Roadmap
+ link: https://numpy.org/neps/roadmap.html
+ column2:
+ links:
+ - text: About us
+ link: /about
+ - text: Community
+ link: /community
+ - text: User surveys
+ link: /user-surveys
+ - text: Contribute
+ link: /contribute
+ - text: Code of conduct
+ link: /code-of-conduct
+ column3:
+ links:
+ - text: Get help
+ link: /gethelp
+ - text: Terms of use
+ link: /terms
+ - text: Privacy
+ link: /privacy
+ - text: Press kit
+ link: /press-kit
diff --git a/content/it/contribute.md b/content/it/contribute.md
new file mode 100644
index 00000000..fdd8e223
--- /dev/null
+++ b/content/it/contribute.md
@@ -0,0 +1,116 @@
+---
+title: Contribute to NumPy
+sidebar: false
+---
+
+The NumPy project welcomes your expertise and enthusiasm!
+Your choices aren't limited to programming, as you can
+see below there are many areas where we need **your** help.
+
+If you're unsure where to start or how your skills fit in, _reach out!_ You
+can ask on the mailing
+list or
+[GitHub](http://github.com/numpy/numpy) (open an
+[issue](https://github.com/numpy/numpy/issues) or comment on a relevant
+issue).
+
+Those are our preferred channels (open source is open by nature), but
+if you prefer to talk privately, contact our community coordinators at
+
Check out also our [YouTube channel](https://www.youtube.com/playlist?list=PLCK6zCrcN3GXBUUzDr9L4__LnXZVtaIzS) for additional advice.
+
+### Reviewing pull requests
+
+The project has more than 250 open pull requests -- meaning many potential
+improvements and many open-source contributors waiting for feedback. If you're
+a developer who knows NumPy, you can help even if you're not familiar with the
+codebase. You can:
+
+- summarize a long-running discussion
+- triage documentation PRs
+- test proposed changes
+
+### Developing educational materials
+
+NumPy's [User Guide](https://numpy.org/devdocs) is undergoing rehabilitation.
+We're in need of new tutorials, how-to's, and deep-dive explanations, and the
+site needs restructuring. Opportunities aren't limited to writers. We'd also
+welcome worked examples, notebooks, and videos. NEP 44 — Restructuring the
+NumPyDocumentation
+lays out our ideas -- and you may have others.
+
+### Issue triaging
+
+The [NumPy issue tracker](https://github.com/numpy/numpy/issues) has a _lot_
+of open issues. Some are no longer valid, some should be prioritized, and some
+would make good issues for new contributors. You can:
+
+- check if older bugs are still present
+- find duplicate issues and link related ones
+- add good self-contained reproducers to issues
+- label issues correctly (this requires triage rights -- just ask)
+
+Please just dive in.
+
+### Website development
+
+We've just revamped our website, but we're far from done. If you love web
+development, these
+[issues](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign)
+list some of our unmet needs -- and feel free to share your own ideas.
+
+### Graphic design
+
+We can barely begin to list the contributions a graphic designer can make here.
+Our docs are parched for illustration; our growing website craves images --
+opportunities abound.
+
+### Translating website content
+
+We plan multiple translations of [numpy.org](https://numpy.org) to make NumPy
+accessible to users in their native language. Volunteer translators are at the heart
+of this effort. See
+[here](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n)
+for background; comment on this GitHub
+issue to sign up.
+
+### Community coordination and outreach
+
+Through community contact we share our work more widely and learn where we're
+falling short. We're eager to get more people involved in efforts like organizing NumPy code
+sprints, a newsletter, and perhaps a blog.
+
+### Fundraising
+
+For many years, NumPy was maintained by dedicated volunteers, but as its importance grew it
+became clear that to ensure stability and growth we would need financial support.
+[This SciPy'19 talk](https://www.youtube.com/watch?v=dBTJD_FDVjU) explains how much difference
+that support has made. Like most nonprofits, we are constantly seeking grants, sponsorships,
+and other kinds of funding. We have a number of ideas and of course we welcome more.
+Fundraising is a scarce skill here -- we'd appreciate your help.
+
+### Donate
+
+If you'd like to contribute to NumPy by making a donation, visit [https://numpy.org/about/#donate](https://numpy.org/about/#donate).
+
+
diff --git a/content/it/gethelp.md b/content/it/gethelp.md
new file mode 100644
index 00000000..cce276b9
--- /dev/null
+++ b/content/it/gethelp.md
@@ -0,0 +1,25 @@
+---
+title: Get Help
+sidebar: false
+---
+
+**Development issues:** For NumPy development-related matters (e.g., bug reports), please
+see [Community](/community).
+
+**User questions:** The best way to get help is to post your question to a site
+like [StackOverflow](http://stackoverflow.com/questions/tagged/numpy) or
+[Reddit](https://www.reddit.com/r/Numpy/). We wish we could keep an eye on
+these sites, or answer questions directly, but the volume is a little
+overwhelming!
+
+### [StackOverflow](http://stackoverflow.com/questions/tagged/numpy)
+
+A forum for asking usage questions, e.g. "How do I do X in NumPy?”. Please [use the `#numpy` tag](https://stackoverflow.com/help/tagging)
+
+***
+
+### [Reddit](https://www.reddit.com/r/Numpy/)
+
+Another forum for usage questions.
+
+***
diff --git a/content/it/history.md b/content/it/history.md
new file mode 100644
index 00000000..c02bb936
--- /dev/null
+++ b/content/it/history.md
@@ -0,0 +1,21 @@
+---
+title: History of NumPy
+sidebar: false
+---
+
+NumPy is a foundational Python library that provides array data structures and related fast numerical routines. When started, the library had little funding, and was written mainly by graduate students—many of them without computer science education, and often without a blessing of their advisors. To even imagine that a small group of “rogue” student programmers could upend the already well-established ecosystem of research software—backed by millions in funding and many hundreds of highly qualified engineers — was preposterous. Yet, the philosophical motivations behind a fully open tool stack, in combination with the excited, friendly community with a singular focus, have proven auspicious in the long run. Nowadays, NumPy is relied upon by scientists, engineers, and many other professionals around the world. For example, the published scripts used in the analysis of gravitational waves import NumPy, and the M87 black hole imaging project directly cites NumPy.
+
+For the in-depth account on milestones in the development of NumPy and related libraries please see [arxiv.org](https://arxiv.org/abs/1907.10121).
+
+If you’d like to obtain a copy of the original Numeric and Numarray libraries, follow the links below:
+
+[Download Page for _Numeric_](https://sourceforge.net/projects/numpy/files/Old%20Numeric/)\*
+
+[Download Page for _Numarray_](https://sourceforge.net/projects/numpy/files/Old%20Numarray/)\*
+
+\*Please note that these older array packages are no longer maintained, and users are strongly advised to use NumPy for any array-related purposes or refactor any pre-existing code to utilize the NumPy library.
+
+### Historic Documentation
+
+[Download _\`Numeric'_ Manual](static/numeric-manual.pdf)
+
diff --git a/content/it/install.md b/content/it/install.md
new file mode 100644
index 00000000..2e3550b9
--- /dev/null
+++ b/content/it/install.md
@@ -0,0 +1,131 @@
+---
+title: Installing NumPy
+sidebar: false
+---
+
+{{< admonition >}}
+{{< /admonition >}}
+
+The recommended method of installing NumPy depends on your preferred workflow. Below, we break down the installation methods into the following categories:
+
+- **Project-based** (e.g., uv, pixi) _(recommended for new users)_
+- **Environment-based** (e.g., pip, conda) _(the traditional workflow)_
+- **System package managers** _(not recommended for most users)_
+- **Building from source** _(for advanced users and development purposes)_
+
+Choose the method that best suits your needs. If you're unsure, start with the **Environment-based** method using `conda` or `pip`.
+
+{{< tabs >}}
+
+[[tab]]
+name = 'Project Based'
+content = '''
+
+Recommended for new users who want a streamlined workflow.
+
+- **uv:** A modern Python package manager designed for speed and simplicity.
+ ```bash
+ uv pip install numpy
+ ```
+
+- **pixi:** A cross-platform package manager for Python and other languages.
+ ```bash
+ pixi add numpy
+ ```
+
+'''
+
+[[tab]]
+name = 'Environment Based'
+content = '''
+
+The two main tools that install Python packages are `pip` and `conda`. Their functionality partially overlaps (e.g. both can install `numpy`), however, they can also work together. We’ll discuss the major differences between pip and conda here - this is important to understand if you want to manage packages effectively.
+
+The first difference is that conda is cross-language and it can install Python, while pip is installed for a particular Python on your system and installs other packages to that same Python install only. This also means conda can install non-Python libraries and tools you may need (e.g. compilers, CUDA, HDF5), while pip can’t.
+
+The second difference is that pip installs from the Python Packaging Index (PyPI), while conda installs from its own channels (typically “defaults” or “conda-forge”). PyPI is the largest collection of packages by far, however, all popular packages are available for conda as well.
+
+The third difference is that conda is an integrated solution for managing packages, dependencies and environments, while with pip you may need another tool (there are many!) for dealing with environments or complex dependencies.
+
+- **Conda:** If you use conda, you can install NumPy from the defaults or conda-forge channels:
+ ```bash
+ conda create -n my-env
+ conda activate my-env
+ conda install numpy
+ ```
+- **Pip:**
+ ```bash
+ pip install numpy
+ ```
+
+{{< admonition >}}
+{{< /admonition >}}
+
+ ```bash
+ python -m venv my-env
+ source my-env/bin/activate # macOS/Linux
+ my-env\Scripts\activate # Windows
+ pip install numpy
+ ```
+
+'''
+
+[[tab]]
+name = 'System Package Managers'
+content = '''
+Not recommended for most users, but available for convenience.
+
+**macOS (Homebrew):**
+
+```bash
+brew install numpy
+```
+
+**Linux (APT):**
+
+```bash
+sudo apt install python3-numpy
+```
+
+**Windows (Chocolatey):**
+
+```bash
+choco install numpy
+```
+
+'''
+
+[[tab]]
+name = 'Building from Source'
+content = '''
+For advanced users and developers who want to customize or debug **NumPy**.
+
+A word of warning: building Numpy from source can be a nontrivial exercise.
+We recommend using binaries instead if those are available for your platform via one of the above methods.
+For details on how to build from source, see [the building from source guide in the Numpy docs](https://numpy.org/devdocs/building/).
+
+{{< /tabs >}}
+
+## Verifying the Installation
+
+After installing NumPy, verify the installation by running the following in a Python shell or script:
+
+```python
+import numpy as np
+print(np.__version__)
+```
+
+This should print the installed version of NumPy without errors.
+
+## Troubleshooting
+
+If your installation fails with the message below, see Troubleshooting
+ImportError.
+
+```
+IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
+
+Importing the numpy c-extensions failed. This error can happen for
+different reasons, often due to issues with your setup.
+```
+
diff --git a/content/it/learn.md b/content/it/learn.md
new file mode 100644
index 00000000..ca13a1c2
--- /dev/null
+++ b/content/it/learn.md
@@ -0,0 +1,76 @@
+---
+title: Learn
+sidebar: false
+---
+
+For the **official NumPy documentation** visit [numpy.org/doc/stable](https://numpy.org/doc/stable).
+
+***
+
+Below is a curated collection of educational resources, both for self-learning and teaching others, developed by NumPy contributors and vetted by the community.
+
+## Beginners
+
+There's a ton of information about NumPy out there. If you are just starting, we'd strongly recommend the following:
+
+ **Tutorials**
+
+- [NumPy Quickstart Tutorial](https://numpy.org/devdocs/user/quickstart.html)
+- [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
+- [NumPy Illustrated: The Visual Guide to NumPy _by Lev Maximov_](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
+- [Scientific Python Lectures](https://lectures.scientific-python.org/) Besides covering NumPy, these lectures offer a broader introduction to the scientific Python ecosystem.
+- [NumPy: the absolute basics for beginners](https://numpy.org/devdocs/user/absolute_beginners.html)
+- [NumPy tutorial _by Nicolas Rougier_](https://github.com/rougier/numpy-tutorial)
+- [Stanford CS231 _by Justin Johnson_](http://cs231n.github.io/python-numpy-tutorial/)
+- [NumPy User Guide](https://numpy.org/devdocs)
+
+ **Books**
+
+- [Guide to NumPy _by Travis E. Oliphant_](https://web.mit.edu/dvp/Public/numpybook.pdf) This is a free version 1 from 2006. For the latest copy (2015) see [here](https://dl.acm.org/doi/10.5555/2886196).
+- [From Python to NumPy _by Nicolas P. Rougier_](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
+- [Elegant SciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877) _by Juan Nunez-Iglesias, Stefan van der Walt, and Harriet Dashnow_
+
+You may also want to check out the [Goodreads list](https://www.goodreads.com/shelf/show/python-scipy) on the subject of "Python+SciPy." Most books there are about the "SciPy ecosystem," which has NumPy at its core.
+
+ **Videos**
+
+- [Introduction to Numerical Computing with NumPy](http://youtu.be/ZB7BZMhfPgk) _by Alex Chabot-Leclerc_
+
+***
+
+## Advanced
+
+Try these advanced resources for a better understanding of NumPy concepts like advanced indexing, splitting, stacking, linear algebra, and more.
+
+ **Tutorials**
+
+- [100 NumPy Exercises](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html) _by Nicolas P. Rougier_
+- [An Introduction to NumPy and Scipy](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf) _by M. Scott Shell_
+- [Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/) _by Stéfan van der Walt_
+- [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
+
+ **Books**
+
+- [Python Data Science Handbook](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1098121228) _by Jake Vanderplas_
+- [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-Jupyter/dp/109810403X) _by Wes McKinney_
+- [Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) _by Robert Johansson_
+
+ **Videos**
+
+- [Advanced NumPy - broadcasting rules, strides, and advanced indexing](https://www.youtube.com/watch?v=cYugp9IN1-Q) _by Juan Nunez-Iglesias_
+
+***
+
+## NumPy Talks
+
+- [The Future of NumPy Indexing](https://www.youtube.com/watch?v=o0EacbIbf58) _by Jaime Fernández_ (2016)
+- Evolution of Array Computing in Python _by Ralf Gommers_ (2019)
+- [NumPy: what has changed and what is going to change?](https://www.youtube.com/watch?v=YFLVQFjRmPY) _by Matti Picus_ (2019)
+- [Inside NumPy](https://www.youtube.com/watch?v=dBTJD_FDVjU) _by Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stefan van der Walt, Charles Harris_ (2019)
+- [Brief Review of Array Computing in Python](https://www.youtube.com/watch?v=f176j2g2eNc) _by Travis Oliphant_ (2019)
+
+***
+
+## Citing NumPy
+
+If NumPy has been significant in your research, and you would like to acknowledge the project in your academic publication, please see [this citation information](/citing-numpy).
diff --git a/content/it/news.md b/content/it/news.md
new file mode 100644
index 00000000..8448d825
--- /dev/null
+++ b/content/it/news.md
@@ -0,0 +1,485 @@
+---
+title: News
+sidebar: false
+newsHeader: NumPy 2.2.0 released!
+date: 2024-12-08
+---
+
+### NumPy 2.2.0 released
+
+_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back
+into sync with the usual twice yearly release cycle. There have been a number
+of small cleanups, improvements to the StringDType, and better support for free
+threaded Python. Highlights are:
+
+- New functions `matvec` and `vecmat`,
+- Many improved annotations,
+- Improved support for the new StringDType,
+- Improved support for free threaded Python,
+- Fixes for f2py.
+
+This release supports Python versions 3.10-3.13.
+
+### NumPy 2.1.0 released
+
+_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
+drops support for Python 3.9. In addition to the usual bug fixes and
+updated Python support, it helps get NumPy back to its usual release
+cycle after the extended development of 2.0. The highlights for this
+release are:
+
+- Support for Python 3.13.
+- Preliminary support for free threaded Python 3.13.
+- Support for the array-api 2023.12 standard.
+
+Python versions 3.10-3.13 are supported by this release.
+
+### NumPy 2.0.0 released
+
+_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
+result of 11 months of development since the last feature release and is the
+work of 212 contributors spread over 1078 pull requests. It contains a large
+number of exciting new features as well as changes to both the Python and C
+APIs. It includes breaking changes that could not happen in a regular minor
+release - including an ABI break, changes to type promotion rules, and API
+changes which may not have been emitting deprecation warnings in 1.26.x. Key
+documents related to how to adapt to changes in NumPy 2.0 include:
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
+tells a bit of the story about how this release came together.
+
+### NumPy 2.0 release date: June 16
+
+_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
+released on June 16, 2024. This release has been over a year in the making, and
+is the first major release since 2006. Importantly, in addition to many new
+features and performance improvement, it contains **breaking changes** to the
+ABI as well as the Python and C APIs. It is likely that downstream packages and
+end user code needs to be adapted - if you can, please verify whether your code
+works with NumPy `2.0.0rc2`. **Please see the following for more details:**
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+### NumFOCUS end of the year fundraiser
+
+_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
+on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
+until December 23rd, 2023 will go directly to the NumFOCUS programs.
+
+Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
+or a coupon code ISUPPORTDATASCIENCE
+
+### NumPy 1.26.0 released
+
+_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
+is now available. The highlights of the release are:
+
+- Python 3.12.0 support.
+- Cython 3.0.0 compatibility.
+- Use of the Meson build system
+- Updated SIMD support
+- f2py fixes, meson and bind(x) support
+- Support for the updated Accelerate BLAS/LAPACK library
+
+The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
+transition to the Meson build system and provision of support for Cython 3.0.0.
+A total of 20 people contributed to this release and 59 pull requests were
+merged.
+
+The Python versions supported by this release are 3.9-3.12.
+
+### numpy.org is now available in Japanese and Portuguese
+
+_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
+Japanese and Portuguese. This wouldn’t be possible without our dedicated volunteers:
+
+_Portuguese:_
+
+- Melissa Weber Mendonça (melissawm)
+- Ricardo Prins (ricardoprins)
+- Getúlio Silva (getuliosilva)
+- Julio Batista Silva (jbsilva)
+- Alexandre de Siqueira (alexdesiqueira)
+- Alexandre B A Villares (villares)
+- Vini Salazar (vinisalazar)
+
+_Japanese:_
+
+- Atsushi Sakai (AtsushiSakai)
+- KKunai
+- Tom Kelly (TomKellyGenetics)
+- Yuji Kanagawa (kngwyu)
+- Tetsuo Koyama (tkoyama010)
+
+The work on the translation infrastructure is supported with funding from CZI.
+
+Looking ahead, we’d love to translate the website into more languages.
+If you’d like to help, please connect with the NumPy Translations Team on Slack:
+https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
+(Look for the #translations channel.) We are also building a Translations Team who will be
+working on localizing documentation and educational content across the Scientific Python
+ecosystem. If this piqued your interest, join us on the Scientific Python
+Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
+
+### NumPy 1.25.0 released
+
+_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
+is now available. The highlights of the release are:
+
+- Support for MUSL, there are now MUSL wheels.
+- Support for the Fujitsu C/C++ compiler.
+- Object arrays are now supported in einsum.
+- Support for the inplace matrix multiplication (`@=`).
+
+The NumPy 1.25.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase the execution speed, and clarify the
+documentation. There has also been preparatory work for the future NumPy 2.0.0,
+resulting in a large number of new and expired deprecations.
+
+A total of 148 people contributed to this release and 530 pull requests were
+merged.
+
+The Python versions supported by this release are 3.9-3.11.
+
+### Fostering an Inclusive Culture: Call for Participation
+
+_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
+
+How can we be better when it comes to diversity and inclusion?
+Read the report and find out how to get involved
+[here](https://contributor-experience.org/docs/posts/dei-report/).
+
+### NumPy documentation team leadership transition
+
+_Jan 6, 2023_ –- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
+documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
+contributions to the NumPy official documentation and educational materials,
+and Mukulika and Ross for stepping up.
+
+### NumPy 1.24.0 released
+
+_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
+is now available. The highlights of the release are:
+
+- New "dtype" and "casting" keywords for stacking functions.
+- New F2PY features and fixes.
+- Many new deprecations, check them out.
+- Many expired deprecations,
+
+The NumPy 1.24.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase execution speed, and clarify the documentation.
+There are a large number of new and expired deprecations due to changes in
+dtype promotion and cleanups. It is the work of 177 contributors spread over
+444 pull requests. The supported Python versions are 3.8-3.11.
+
+### Numpy 1.23.0 released
+
+_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
+is now available. The highlights of the release are:
+
+- Implementation of `loadtxt` in C, greatly improving its performance.
+- Exposure of DLPack at the Python level for easy data exchange.
+- Changes to the promotion and comparisons of structured dtypes.
+- Improvements to f2py.
+
+The NumPy 1.23.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase the execution speed, clarify the documentation,
+and expire old deprecations. It is the work of 151 contributors spread over
+494 pull requests. The Python versions supported by this release 3.8-3.10.
+Python 3.11 will be supported when it reaches the rc stage.
+
+### NumFOCUS DEI research study: call for participation
+
+_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
+research project
+funded by the Gordon & Betty Moore Foundation to
+understand the barriers to participation that contributors, particularly those
+from historically underrepresented groups, face in the open-source software
+community. The research team would like to talk to new contributors, project
+developers and maintainers, and those who have contributed in the past about
+their experiences joining and contributing to NumPy.
+
+**Interested in sharing your experiences?**
+
+Please complete this brief [“Participant Interest” form](https://numfocus.typeform.com/to/WBWVJSqe)
+which contains additional information on the research goals, privacy, and
+confidentiality considerations. Your participation will be valuable to the
+growth and sustainability of diverse and inclusive open-source software
+communities. Accepted participants will participate in a 30-minute interview
+with a research team member.
+
+### Numpy 1.22.0 release
+
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
+is now available. The highlights of the release are:
+
+- Type annotations of the main namespace are essentially complete. Upstream is
+ a moving target, so there will likely be further improvements, but the major
+ work is done. This is probably the most user visible enhancement in this
+ release.
+- A preliminary version of the proposed
+ [array API Standard](https://data-apis.org/array-api/latest/) is provided
+ (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
+ This is a step in creating a standard collection of functions that can be
+ used across libraries such as CuPy and JAX.
+- NumPy now has a DLPack backend. DLPack provides a common interchange format
+ for array (tensor) data.
+- New methods for `quantile`, `percentile`, and related functions. The new
+ methods provide a complete set of the methods commonly found in the
+ literature.
+- The universal functions have been refactored to implement most of
+ [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
+ This also unlocks the ability to experiment with the future DType API.
+- A new configurable memory allocator for use by downstream projects.
+
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
+over 609 pull requests. The Python versions supported by this release are
+3.8-3.10.
+
+### Advancing an inclusive culture in the scientific Python ecosystem
+
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
+[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
+to support the onboarding, inclusion, and retention of people from historically
+marginalized groups on scientific Python projects, and to structurally improve
+the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
+
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
+this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
+will support the creation of dedicated Contributor Experience Lead positions to
+identify, document, and implement practices to foster inclusive open-source
+communities. This project will be led by Melissa Mendonça (NumPy), with
+additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
+Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
+Joris Van den Bossche (Pandas).
+
+This is an ambitious project aiming to discover and implement activities that
+should structurally improve the community dynamics of our projects. By
+establishing these new cross-project roles, we hope to introduce a new
+collaboration model to the Scientific Python communities, allowing
+community-building work within the ecosystem to be done more efficiently and
+with greater outcomes. We also expect to develop a clearer picture of what
+works and what doesn't in our projects to engage and retain new contributors,
+especially from historically underrepresented groups. Finally, we plan on
+producing detailed reports on the actions executed, explaining how they have
+impacted our projects in terms of representation and interaction with our
+communities.
+
+The two-year project is expected to start by November 2021, and we are excited
+to see the results from this work!
+[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### 2021 NumPy survey
+
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
+NumPy users from 75 countries participated in our inaugural survey last year.
+The survey findings gave us a very good understanding of what we should focus
+on for the next 12 months.
+
+It’s time for another survey, and we are counting on you once again. It will
+take about 15 minutes of your time. Besides English, the survey questionnaire
+is available in 8 additional languages: Bangla, French, Hindi, Japanese,
+Mandarin, Portuguese, Russian, and Spanish.
+
+Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+### Numpy 1.21.0 release
+
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
+is now available. The highlights of the release are:
+
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- improved documentation,
+- improved annotations,
+- new `PCG64DXSM` bitgenerator for random numbers.
+
+This NumPy release is the result of 581 merged pull requests contributed by 175
+people. The Python versions supported for this release are 3.7-3.9, support
+for Python 3.10 will be added after Python 3.10 is released.
+
+### 2020 NumPy survey results
+
+_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
+and faculty from the University of Michigan and the University of Maryland
+conducted the first official NumPy community survey. Find the survey results
+here: https://numpy.org/user-survey-2020/.
+
+### Numpy 1.20.0 release
+
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
+is now available. This is the largest NumPy release to date, thanks to 180+
+contributors. The two most exciting new features are:
+
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
+ containing `ArrayLike` and `DtypeLike` aliases that users and downstream
+ libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
+ AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
+ performance improvements for many functions (examples:
+ [sin/cos](https://github.com/numpy/numpy/pull/17587),
+ [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### Diversity in the NumPy project
+
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
+
+### First official NumPy paper published in Nature!
+
+_Sep 16, 2020_ -- We are pleased to announce the publication of
+[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
+as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
+The paper covers applications and fundamental concepts of array programming,
+the rich scientific Python ecosystem built on top of NumPy, and the recently added
+array protocols to facilitate interoperability with external array and tensor
+libraries like CuPy, Dask, and JAX.
+
+### Python 3.9 is coming, when will NumPy release binary wheels?
+
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
+early adopter of Python versions, you may be dissapointed to find that NumPy
+(and other binary packages like SciPy) will not have binary wheels ready on the
+day of the release. It is a major effort to adapt the build infrastructure to a
+new Python version and it typically takes a few weeks for the packages to appear
+on PyPI and conda-forge. In preparation for this event, please make sure to
+
+- update your `pip` to version 20.1 at least to support `manylinux2010` and
+ `manylinux2014`
+- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
+ trying to build from source.
+
+### Numpy 1.19.2 release
+
+_Sep 10, 2020_ -- NumPy
+1.19.2 is now available.
+This latest release in the 1.19 series fixes several bugs, prepares for the
+upcoming Cython 3.x
+release and pins
+setuptools to keep distutils working while upstream modifications are ongoing.
+The aarch64 wheels are built with the latest manylinux2014 release that fixes
+the problem of differing page sizes used by different linux distros.
+
+### The inaugural NumPy survey is live!
+
+_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
+decision-making about the development of NumPy as software and as a community.
+The survey is available in 8 additional languages besides English:
+Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
+
+Please help us make NumPy better and take the survey
+[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+### NumPy has a new logo!
+
+_Jun 24, 2020_ -- NumPy now has a new logo:
+
+
+
+The logo is a modern take on the old one, with a cleaner design. Thanks to
+Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
+for the old logo that served us well for 15+ years.
+
+### NumPy 1.19.0 release
+
+_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
+without Python 2 support, hence it was a "clean-up release". The minimum
+supported Python version is now Python 3.6. An important new feature is that
+the random number generation infrastructure that was introduced in NumPy 1.17.0
+is now accessible from Cython.
+
+### Season of Docs acceptance
+
+_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
+the Google Season of Docs program. We are excited about the opportunity to
+work with a technical writer to improve NumPy's documentation once again! For more
+details, please see
+[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
+[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
+
+### NumPy 1.18.0 release
+
+_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
+1.17.0, this is a consolidation release. It is the last minor release that will
+support Python 3.5. Highlights of the release includes the addition of basic
+infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
+
+Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
+
+### NumPy receives a grant from the Chan Zuckerberg Initiative
+
+_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
+
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
+
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
+
+
+
+## Releases
+
+Here is a list of NumPy releases, with links to release notes. Bugfix
+releases (only the `z` changes in the `x.y.z` version number) have no new
+features; minor releases (the `y` increases) do.
+
+- NumPy 2.2.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.5)) -- _19 Apr 2025_.
+- NumPy 2.2.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.4)) -- _16 Mar 2025_.
+- NumPy 2.2.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.3)) -- _13 Feb 2025_.
+- NumPy 2.2.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.2)) -- _18 Jan 2025_.
+- NumPy 2.2.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.1)) -- _21 Dec 2024_.
+- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
+- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
+- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
+- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
+- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
+- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
+- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
+- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
+- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
+- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
+- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
+- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
+- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
+- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
+- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
+- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
+- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
+- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
+- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
+- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
+- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
+- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
+- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
+- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
+- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
+- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
+- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
+- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
+- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
+- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
+- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
+- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
+- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
+- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
+- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
+- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
+- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
+- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
+- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
+- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
+- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
+- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
+- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
+- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
+- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
diff --git a/content/it/press-kit.md b/content/it/press-kit.md
new file mode 100644
index 00000000..2c8970bb
--- /dev/null
+++ b/content/it/press-kit.md
@@ -0,0 +1,8 @@
+---
+title: Press kit
+sidebar: false
+---
+
+We would like to make it easy for you to include the NumPy project identity in your next academic paper, course materials, or presentation.
+
+You will find several high-resolution versions of the NumPy logo [here](https://github.com/numpy/numpy/tree/main/branding/logo). Note that by using the numpy.org resources, you accept the [NumPy Code of Conduct](/code-of-conduct).
diff --git a/content/it/privacy.md b/content/it/privacy.md
new file mode 100644
index 00000000..6064e4c4
--- /dev/null
+++ b/content/it/privacy.md
@@ -0,0 +1,8 @@
+---
+title: Privacy Policy
+sidebar: false
+---
+
+**numpy.org** is operated by [NumFOCUS, Inc.](https://numfocus.org), the fiscal sponsor of the NumPy project. For the Privacy Policy of this website please refer to https://numfocus.org/privacy-policy.
+
+If you have any questions about the policy or NumFOCUS’s data collection, use, and disclosure practices, please contact the NumFOCUS staff at privacy@numfocus.org.
diff --git a/content/it/report-handling-manual.md b/content/it/report-handling-manual.md
new file mode 100644
index 00000000..161757fe
--- /dev/null
+++ b/content/it/report-handling-manual.md
@@ -0,0 +1,89 @@
+---
+title: NumPy Code of Conduct - How to follow up on a report
+sidebar: false
+---
+
+This is the manual followed by NumPy’s Code of Conduct Committee. It’s used when we respond to an issue to make sure we’re consistent and fair.
+
+Enforcing the [Code of Conduct](/code-of-conduct) impacts our community today and for the future. It’s an action that we do not take lightly. When reviewing enforcement measures, the Code of Conduct Committee will keep the following values and guidelines in mind:
+
+- Act in a personal manner rather than impersonal. The Committee can engage the parties to understand the situation while respecting the privacy and any necessary confidentiality of reporters. However, sometimes it is necessary to communicate with one or more individuals directly: the Committee’s goal is to improve the health of our community rather than only produce a formal decision.
+- Emphasize empathy for individuals rather than judging behavior, avoiding binary labels of “good” and “bad/evil”. Overt, clear-cut aggression and harassment exist, and we will address them firmly. But many scenarios that can prove challenging to resolve are those where normal disagreements devolve into unhelpful or harmful behavior from multiple parties. Understanding the full context and finding a path that re-engages all is hard, but ultimately the most productive for our community.
+- We understand that email is a difficult medium and can be isolating. Receiving criticism over email, without personal contact, can be particularly painful. This makes it especially important to keep an atmosphere of open-minded respect for the views of others. It also means that we must be transparent in our actions, and that we will do everything in our power to make sure that all our members are treated fairly and with sympathy.
+- Discrimination can be subtle and it can be unconscious. It can show itself as unfairness and hostility in otherwise ordinary interactions. We know that this does occur, and we will take care to look out for it. We would very much like to hear from you if you feel you have been treated unfairly, and we will use these procedures to make sure that your complaint is heard and addressed.
+- Help increase engagement in good discussion practice: try to identify where discussion may have broken down, and provide actionable information, pointers, and resources that can lead to positive change on these points.
+- Be mindful of the needs of new members: provide them with explicit support and consideration, with the aim of increasing participation from underrepresented groups in particular.
+- Individuals come from different cultural backgrounds and native languages. Try to identify any honest misunderstandings caused by a non-native speaker and help them understand the issue and what they can change to avoid causing offence. Complex discussion in a foreign language can be very intimidating, and we want to grow our diversity also across nationalities and cultures.
+
+## Mediation
+
+Voluntary informal mediation is a tool at our disposal. In contexts such as when two or more parties have all escalated to the point of inappropriate behavior (something sadly common in human conflict), it may be useful to facilitate a mediation process. This is only an example: the Committee can consider mediation in any case, mindful that the process is meant to be strictly voluntary and no party can be pressured to participate. If the Committee suggests mediation, it should:
+
+- Find a candidate who can serve as a mediator.
+- Obtain the agreement of the reporter(s). The reporter(s) have complete freedom to decline the mediation idea or to propose an alternate mediator.
+- Obtain the agreement of the reported person(s).
+- Settle on the mediator: while parties can propose a different mediator than the suggested candidate, only if a common agreement is reached on all terms can the process move forward.
+- Establish a timeline for mediation to complete, ideally within two weeks.
+
+The mediator will engage with all the parties and seek a resolution that is satisfactory to all. Upon completion, the mediator will provide a report (vetted by all parties to the process) to the Committee, with recommendations on further steps. The Committee will then evaluate these results (whether a satisfactory resolution was achieved or not) and decide on any additional action deemed necessary.
+
+## How the Committee will respond to reports
+
+When the Committee (or a Committee member) receives a report, they will first determine whether the report is about a clear and severe breach (as defined below). If so, immediate action needs to be taken in addition to the regular report handling process.
+
+## Clear and severe breach actions
+
+We know that it is painfully common for internet communication to start at or devolve into obvious and flagrant abuse. We will deal quickly with clear and severe breaches like personal threats, violent, sexist or racist language.
+
+When a member of the Code of Conduct Committee becomes aware of a clear and severe breach, they will do the following:
+
+- Immediately disconnect the originator from all NumPy communication channels.
+- Reply to the reporter that their report has been received and that the originator has been disconnected.
+- In every case, the moderator should make a reasonable effort to contact the originator, and tell them specifically how their language or actions qualify as a “clear and severe breach”. The moderator should also say that, if the originator believes this is unfair or they want to be reconnected to NumPy, they have the right to ask for a review, as below, by the Code of Conduct Committee. The moderator should copy this explanation to the Code of Conduct Committee.
+- The Code of Conduct Committee will formally review and sign off on all cases where this mechanism has been applied to make sure it is not being used to control ordinary heated disagreement.
+
+## Report handling
+
+When a report is sent to the Committee they will immediately reply to the reporter to confirm receipt. This reply must be sent within 72 hours, and the group should strive to respond much quicker than that.
+
+If a report doesn’t contain enough information, the Committee will obtain all relevant data before acting. The Committee is empowered to act on the Steering Council’s behalf in contacting any individuals involved to get a more complete account of events.
+
+The Committee will then review the incident and determine, to the best of their ability:
+
+- What happened.
+- Whether this event constitutes a Code of Conduct violation.
+- Who are the responsible party(ies).
+- Whether this is an ongoing situation, and there is a threat to anyone’s physical safety.
+
+This information will be collected in writing, and whenever possible the group’s deliberations will be recorded and retained (i.e. chat transcripts, email discussions, recorded conference calls, summaries of voice conversations, etc).
+
+It is important to retain an archive of all activities of this Committee to ensure consistency in behavior and provide institutional memory for the project. To assist in this, the default channel of discussion for this Committee will be a private mailing list accessible to current and future members of the Committee as well as members of the Steering Council upon justified request. If the Committee finds the need to use off-list communications (e.g. phone calls for early/rapid response), it should in all cases summarize these back to the list so there’s a good record of the process.
+
+The Code of Conduct Committee should aim to have a resolution agreed upon within two weeks. In the event that a resolution can’t be determined in that time, the Committee will respond to the reporter(s) with an update and projected timeline for resolution.
+
+## Resolutions
+
+The Committee must agree on a resolution by consensus. If the group cannot reach consensus and deadlocks for over a week, the group will turn the matter over to the Steering Council for resolution.
+
+Possible responses may include:
+
+- Taking no further action:
+ - if we determine no violations have occurred;
+ - if the matter has been resolved publicly while the Committee was considering responses.
+- Coordinating voluntary mediation: if all involved parties agree, the Committee may facilitate a mediation process as detailed above.
+- Remind publicly, and point out that some behavior/actions/language have been judged inappropriate and why in the current context, or can but hurtful to some people, requesting the community to self-adjust.
+- A private reprimand from the Committee to the individual(s) involved. In this case, the group chair will deliver that reprimand to the individual(s) over email, cc’ing the group.
+- A public reprimand. In this case, the Committee chair will deliver that reprimand in the same venue that the violation occurred, within the limits of practicality. E.g., the original mailing list for an email violation, but for a chat room discussion where the person/context may be gone, they can be reached by other means. The group may choose to publish this message elsewhere for documentation purposes.
+- A request for a public or private apology, assuming the reporter agrees to this idea: they may at their discretion refuse further contact with the violator. The chair will deliver this request. The Committee may, if it chooses, attach “strings” to this request: for example, the group may ask a violator to apologize in order to retain one’s membership on a mailing list.
+- A “mutually agreed upon hiatus” where the Committee asks the individual to temporarily refrain from community participation. If the individual chooses not to take a temporary break voluntarily, the Committee may issue a “mandatory cooling off period”.
+- A permanent or temporary ban from some or all NumPy spaces (mailing lists, gitter.im, etc.). The group will maintain records of all such bans so that they may be reviewed in the future or otherwise maintained.
+
+Once a resolution is agreed upon, but before it is enacted, the Committee will contact the original reporter and any other affected parties and explain the proposed resolution. The Committee will ask if this resolution is acceptable, and must note feedback for the record.
+
+Finally, the Committee will make a report to the NumPy Steering Council (as well as the NumPy core team in the event of an ongoing resolution, such as a ban).
+
+The Committee will never publicly discuss the issue; all public statements will be made by the chair of the Code of Conduct Committee or the NumPy Steering Council.
+
+## Conflicts of Interest
+
+In the event of any conflict of interest, a Committee member must immediately notify the other members, and recuse themselves if necessary.
diff --git a/content/it/tabcontents.yaml b/content/it/tabcontents.yaml
new file mode 100644
index 00000000..ecfce140
--- /dev/null
+++ b/content/it/tabcontents.yaml
@@ -0,0 +1,275 @@
+params:
+ machinelearning:
+ paras:
+ - para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlow’s](https://www.tensorflow.org) deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing.
+ para2: Statistical techniques called [ensemble methods](https://scikit-learn.org/stable/modules/ensemble.html) such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://xgboost.readthedocs.io/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) — one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
+ arraylibraries:
+ intro:
+ - text: NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.
+ headers:
+ - text: Array Library
+ - text: Capabilities & Application areas
+ libraries:
+ - title: Dask
+ text: Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
+ img: /images/content_images/arlib/dask.png
+ alttext: Dask
+ url: https://dask.org/
+ - title: CuPy
+ text: NumPy-compatible array library for GPU-accelerated computing with Python.
+ img: /images/content_images/arlib/cupy.png
+ alttext: CuPy
+ url: https://cupy.dev
+ - title: JAX
+ text: "Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU."
+ img: /images/content_images/arlib/jax_logo_250px.png
+ alttext: JAX
+ url: https://jax.readthedocs.io/
+ - title: Xarray
+ text: Labeled, indexed multi-dimensional arrays for advanced analytics and visualization.
+ img: /images/content_images/arlib/xarray.png
+ alttext: xarray
+ url: https://xarray.pydata.org/en/stable/index.html
+ - title: Sparse
+ text: NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
+ img: /images/content_images/arlib/sparse.png
+ alttext: sparse
+ url: https://sparse.pydata.org/en/latest/
+ - title: PyTorch
+ text: Deep learning framework that accelerates the path from research prototyping to production deployment.
+ img: /images/content_images/arlib/pytorch-logo-dark.svg
+ alttext: PyTorch
+ url: https://pytorch.org/
+ - title: TensorFlow
+ text: An end-to-end platform for machine learning to easily build and deploy ML powered applications.
+ img: /images/content_images/arlib/tensorflow-logo.svg
+ alttext: TensorFlow
+ url: https://www.tensorflow.org
+ - title: Arrow
+ text: A cross-language development platform for columnar in-memory data and analytics.
+ img: /images/content_images/arlib/arrow.png
+ alttext: arrow
+ url: https://arrow.apache.org/
+ - title: xtensor
+ text: Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
+ img: /images/content_images/arlib/xtensor.png
+ alttext: xtensor
+ url: https://github.com/xtensor-stack/xtensor-python
+ - title: Awkward Array
+ text: Manipulate JSON-like data with NumPy-like idioms.
+ img: /images/content_images/arlib/awkward.svg
+ alttext: awkward
+ url: https://awkward-array.org/
+ - title: uarray
+ text: Python backend system that decouples API from implementation; unumpy provides a NumPy API.
+ img: /images/content_images/arlib/uarray.png
+ alttext: uarray
+ url: https://uarray.org/en/latest/
+ - title: tensorly
+ text: Tensor learning, algebra and backends to seamlessly use NumPy, PyTorch, TensorFlow or CuPy.
+ img: /images/content_images/arlib/tensorly.png
+ alttext: tensorly
+ url: http://tensorly.org/stable/home.html
+ scientificdomains:
+ intro:
+ - text: Nearly every scientist working in Python draws on the power of NumPy.
+ - text: "NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant."
+ libraries:
+ - title: Quantum Computing
+ alttext: A computer chip.
+ img: /images/content_images/sc_dom_img/quantum_computing.svg
+ links:
+ - url: https://qutip.org
+ label: QuTiP
+ - url: https://pyquil-docs.rigetti.com/en/stable
+ label: PyQuil
+ - url: https://qiskit.org
+ label: Qiskit
+ - url: https://pennylane.ai
+ label: PennyLane
+ - title: Statistical Computing
+ alttext: A line graph with the line moving up.
+ img: /images/content_images/sc_dom_img/statistical_computing.svg
+ links:
+ - url: https://pandas.pydata.org/
+ label: Pandas
+ - url: https://www.statsmodels.org/
+ label: statsmodels
+ - url: https://xarray.pydata.org/en/stable/
+ label: Xarray
+ - url: https://seaborn.pydata.org/
+ label: Seaborn
+ - title: Signal Processing
+ alttext: A bar chart with positive and negative values.
+ img: /images/content_images/sc_dom_img/signal_processing.svg
+ links:
+ - url: https://www.scipy.org/
+ label: SciPy
+ - url: https://pywavelets.readthedocs.io/
+ label: PyWavelets
+ - url: https://python-control.org/
+ label: python-control
+ - url: https://hyperspy.org/
+ label: HyperSpy
+ - title: Image Processing
+ alttext: An photograph of the mountains.
+ img: /images/content_images/sc_dom_img/image_processing.svg
+ links:
+ - url: https://scikit-image.org/
+ label: Scikit-image
+ - url: https://opencv.org/
+ label: OpenCV
+ - url: https://mahotas.rtfd.io/
+ label: Mahotas
+ - title: Graphs and Networks
+ alttext: A simple graph.
+ img: /images/content_images/sc_dom_img/sd6.svg
+ links:
+ - url: https://networkx.org/
+ label: NetworkX
+ - url: https://graph-tool.skewed.de/
+ label: graph-tool
+ - url: https://igraph.org/python/
+ label: igraph
+ - url: https://pygsp.rtfd.io/
+ label: PyGSP
+ - title: Astronomy
+ alttext: A telescope.
+ img: /images/content_images/sc_dom_img/astronomy_processes.svg
+ links:
+ - url: https://www.astropy.org/
+ label: AstroPy
+ - url: https://sunpy.org/
+ label: SunPy
+ - url: https://spacepy.github.io/
+ label: SpacePy
+ - title: Cognitive Psychology
+ alttext: A human head with gears.
+ img: /images/content_images/sc_dom_img/cognitive_psychology.svg
+ links:
+ - url: https://www.psychopy.org/
+ label: PsychoPy
+ - title: Bioinformatics
+ alttext: A strand of DNA.
+ img: /images/content_images/sc_dom_img/bioinformatics.svg
+ links:
+ - url: https://biopython.org/
+ label: BioPython
+ - url: http://scikit-bio.org/
+ label: Scikit-Bio
+ - url: https://github.com/openvax/pyensembl
+ label: PyEnsembl
+ - url: http://etetoolkit.org/
+ label: ETE
+ - title: Bayesian Inference
+ alttext: A graph with a bell-shaped curve.
+ img: /images/content_images/sc_dom_img/bayesian_inference.svg
+ links:
+ - url: https://pystan.readthedocs.io/en/latest/
+ label: PyStan
+ - url: https://docs.pymc.io/
+ label: PyMC
+ - url: https://arviz-devs.github.io/arviz/
+ label: ArviZ
+ - url: https://emcee.readthedocs.io/
+ label: emcee
+ - title: Mathematical Analysis
+ alttext: Four mathematical symbols.
+ img: /images/content_images/sc_dom_img/mathematical_analysis.svg
+ links:
+ - url: https://www.scipy.org/
+ label: SciPy
+ - url: https://www.sympy.org/
+ label: SymPy
+ - url: https://www.cvxpy.org/
+ label: cvxpy
+ - url: https://fenicsproject.org/
+ label: FEniCS
+ - title: Chemistry
+ alttext: A test tube.
+ img: /images/content_images/sc_dom_img/chemistry.svg
+ links:
+ - url: https://cantera.org/
+ label: Cantera
+ - url: https://www.mdanalysis.org/
+ label: MDAnalysis
+ - url: https://github.com/rdkit/rdkit
+ label: RDKit
+ - url: https://www.pybamm.org/
+ label: PyBaMM
+ - title: Geoscience
+ alttext: The Earth.
+ img: /images/content_images/sc_dom_img/geoscience.svg
+ links:
+ - url: https://pangeo.io/
+ label: Pangeo
+ - url: https://simpeg.xyz/
+ label: Simpeg
+ - url: https://github.com/obspy/obspy/wiki
+ label: ObsPy
+ - url: https://www.fatiando.org/
+ label: Fatiando a Terra
+ - title: Geographic Processing
+ alttext: A map.
+ img: /images/content_images/sc_dom_img/GIS.svg
+ links:
+ - url: https://shapely.readthedocs.io/
+ label: Shapely
+ - url: https://geopandas.org/
+ label: GeoPandas
+ - url: https://python-visualization.github.io/folium
+ label: Folium
+ - title: Architecture & Engineering
+ alttext: A microprocessor development board.
+ img: /images/content_images/sc_dom_img/robotics.svg
+ links:
+ - url: https://compas.dev/
+ label: COMPAS
+ - url: https://cityenergyanalyst.com/
+ label: City Energy Analyst
+ - url: https://nortikin.github.io/sverchok/
+ label: Sverchok
+ datascience:
+ intro: "NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:"
+ image1:
+ - img: /images/content_images/ds-landscape.png
+ alttext: Diagram of Python Libraries. The five catagories are 'Extract, Transform, Load', 'Data Exploration', 'Data Modeling', 'Data Evaluation' and 'Data Presentation'.
+ image2:
+ - img: /images/content_images/data-science.png
+ alttext: Diagram of three overlapping circles. The circles are labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
+ examples:
+ - text: "Extract, Transform, Load: [Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor-devs.github.io/pyjanitor/)"
+ - text: "Exploratory analysis: [Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
+ - text: "Model and evaluate: [scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC](https://docs.pymc.io), [spaCy](https://spacy.io)"
+ - text: "Report in a dashboard: [Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://voila.readthedocs.io/)"
+ content:
+ - text: For high data volumes, [Dask](https://dask.org) and [Ray](https://ray.io/) are designed to scale. Stable deployments rely on data versioning ([DVC](https://dvc.org)), experiment tracking ([MLFlow](https://mlflow.org)), and workflow automation ([Airflow](https://airflow.apache.org), [Dagster](https://dagster.io) and [Prefect](https://www.prefect.io)).
+ visualization:
+ images:
+ - url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
+ img: /images/content_images/v_matplotlib.png
+ alttext: A streamplot made in matplotlib
+ - url: https://github.com/yhat/ggpy
+ img: /images/content_images/v_ggpy.png
+ alttext: A scatter-plot graph made in ggpy
+ - url: https://www.journaldev.com/19692/python-plotly-tutorial
+ img: /images/content_images/v_plotly.png
+ alttext: A box-plot made in plotly
+ - url: https://altair-viz.github.io/gallery/streamgraph.html
+ img: /images/content_images/v_altair.png
+ alttext: A streamgraph made in altair
+ - url: https://seaborn.pydata.org
+ img: /images/content_images/v_seaborn.png
+ alttext: A pairplot of two types of graph, a plot-graph and a frequency graph made in seaborn"
+ - url: https://docs.pyvista.org/
+ img: /images/content_images/v_pyvista.png
+ alttext: A 3D volume rendering made in PyVista.
+ - url: https://napari.org
+ img: /images/content_images/v_napari.png
+ alttext: A multi-dimensionan image made in napari.
+ - url: https://vispy.org/gallery/index.html
+ img: /images/content_images/v_vispy.png
+ alttext: A Voronoi diagram made in vispy.
+ content:
+ - text: NumPy is an essential component in the burgeoning [Python visualization landscape](https://pyviz.org/overviews/index.html), which includes [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://napari.org/), and [PyVista](https://docs.pyvista.org/), to name a few.
+ - text: NumPy's accelerated processing of large arrays allows researchers to visualize datasets far larger than native Python could handle.
diff --git a/content/it/teams/index.md b/content/it/teams/index.md
new file mode 100644
index 00000000..f5be9dfd
--- /dev/null
+++ b/content/it/teams/index.md
@@ -0,0 +1,40 @@
+---
+title: NumPy Teams
+sidebar: false
+---
+
+We are an international team on a mission to support scientific and research
+communities worldwide by building quality, open-source software.
+[Join us](/contribute)!
+
+### Maintainers
+
+{{< grid file="maintainers.toml" columns="2 3 4 5" />}}
+
+### Docs team
+
+{{< grid file="docs-team.toml" columns="2 3 4 5" />}}
+
+### Web team
+
+{{< grid file="web-team.toml" columns="2 3 4 5" />}}
+
+### Triage team
+
+{{< grid file="triage-team.toml" columns="2 3 4 5" />}}
+
+### Survey team
+
+{{< grid file="survey-team.toml" columns="2 3 4 5" />}}
+
+### Translations team
+
+{{< grid file="translations-team.toml" columns="2 3 4 5" />}}
+
+### Emeritus maintainers
+
+{{< grid file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
+
+# Governance
+
+For the list of the Steering Council members, please see [here](https://numpy.org/about/).
diff --git a/content/it/user-survey-2020.md b/content/it/user-survey-2020.md
new file mode 100644
index 00000000..e822c661
--- /dev/null
+++ b/content/it/user-survey-2020.md
@@ -0,0 +1,23 @@
+---
+title: 2020 NUMPY COMMUNITY SURVEY
+sidebar: false
+---
+
+In 2020, the NumPy survey team in partnership with students and faculty from a
+Master’s course in Survey Methodology jointly hosted by the University of
+Michigan and the University of Maryland conducted the first official NumPy
+community survey. Over 1,200 users from 75 countries participated to help us
+map out a landscape of the NumPy community and voiced their thoughts about the
+future of the project.
+
+{{< figure >}}
+{{< /figure >}}
+
+**[Download the report](/surveys/NumPy_usersurvey_2020_report.pdf)**
+to take a closer look at the survey findings.
+
+For the highlights, check out
+**[this infographic](https://github.com/numpy/numpy-surveys/blob/master/images/2020NumPysurveyresults_community_infographic.pdf)**.
+
+Ready for a deep dive? Visit **https://numpy.org/user-survey-2020-details/**.
+
diff --git a/content/it/user-surveys.md b/content/it/user-surveys.md
new file mode 100644
index 00000000..529a6c1e
--- /dev/null
+++ b/content/it/user-surveys.md
@@ -0,0 +1,11 @@
+---
+title: NUMPY USER SURVEYS
+sidebar: false
+---
+
+**2020**
+The NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results [here](https://numpy.org/user-survey-2020/).
+
+**2021** The collected data is currently being analyzed.
+
+If you have any questions or suggestions for the past or future surveys, please open an issue [here](https://github.com/numpy/numpy-surveys/issues).
diff --git a/content/ja/404.md b/content/ja/404.md
new file mode 100644
index 00000000..c830ac53
--- /dev/null
+++ b/content/ja/404.md
@@ -0,0 +1,8 @@
+---
+title: 404
+sidebar: false
+---
+
+おっとっと! 間違った所にアクセスしているようです。
+
+何かここに追加すべき項目がある場合は、GitHub で [イシューチケット](https://github.com/numpy/numpy.org/issues) を作成を作成してください。
diff --git a/content/ja/_index.md b/content/ja/_index.md
new file mode 100644
index 00000000..0ebdd1d2
--- /dev/null
+++ b/content/ja/_index.md
@@ -0,0 +1,51 @@
+---
+title: NumPy
+---
+
+{{< grid columns="1 2 2 3" >}}
+
+[[item]]
+type = 'card'
+title = '強力な多次元配列'
+body = '''
+NumPyの高速で多機能なベクトル化計算、インデックス処理、ブロードキャストの考え方は、現在の配列計算におけるデファクト・スタ>ンダードです。
+'''
+
+[[item]]
+type = 'card'
+title = '数値計算ツール群'
+body = '''
+NumPyは、様々な数学関数、乱数生成器、線形代数ルーチン、フーリエ変換などを提供しています。
+'''
+
+[[item]]
+type = 'card'
+title = 'オープンソース'
+body = '''
+NumPyは、寛容な[BSDライセンス](https://github.com/numpy/numpy/blob/main/LICENSE.txt)で公開されています。NumPyは活発で、互>いを尊重し、多様性を認め合う[コミュニティ](/ja/community)によって、 [GitHub](https://github.com/numpy/numpy)上でオープンに開発されていま
+す.
+
+[[item]]
+type = 'card'
+title = '相互運用性'
+body = '''
+NumPyは、幅広いハードウェアとコンピューティング・プラットフォームをサポートしており、分散処理、GPU、疎行列ライブラリにも対
+応しています。
+'''
+
+[[item]]
+type = 'card'
+title = '高パフォーマンス'
+body = '''
+NumPyの大部分は最適化されたC言語のコードで構成されています。これによりPythonの柔軟性とコンパイルされたコードの高速性の両方
+を享受できます。
+''' コンパイルされたコードのスピードでの Python の柔軟性をお楽しみください。
+
+[[item]]
+type = 'card'
+title = '使いやすさ'
+body = '''
+NumPyの高水準なシンタックスは、どんなバックグラウンドや経験を持つのプログラマーでも簡単に利用することができ、生産性を高め>ることができます。
+'''
+
+{{< /grid>}}
diff --git a/content/ja/about.md b/content/ja/about.md
new file mode 100644
index 00000000..e16b1065
--- /dev/null
+++ b/content/ja/about.md
@@ -0,0 +1,88 @@
+---
+title: 私達について
+sidebar: false
+---
+
+NumPy は、Python で数値計算を可能にするためのオープンソースプロジェクトです。 NumPyは、NumericやNumarrayといった初期のライブラリのコードをもとに、2005年から開発が開始されました。 NumPyは完全にオープンソースなソフトウェアです。 このソフトウェアは[修正BSDライセンス](https://github.com/numpy/numpy/blob/main/LICENSE.txt)のリベラルな条項の下で公開されています。
+
+NumPy は 、NumPyコミュニティやより広範な科学計算用Python コミュニティとの合意のもと、GitHub 上でオープンに開発されています。 私たちのガバナンスの取り組みについて詳しくは[ガバナンス文章](https://www.numpy.org/devdocs/dev/governance/index.html)をご覧ください。
+
+## 運営委員会
+
+Numpy運営委員会はこのプロジェクトの管理組織です。 その役割は、Numpy コミュニティと協力し、Numpyのソフトウェアサービスを確実にユーザに提供することです。 ソフトウェアパッケージとコミュニティの両方において、プロジェクトの長期的な持続可能性を保っていきます。 NumPy運営委員会は現在以下のメンバーで構成されています (姓のアルファベット順):
+
+- Sebastian Berg
+- Ralf Gommers
+- Charles Harris
+- Inessa Pawson
+- Matti Picus
+- Stéfan van der Walt
+- Melissa Weber Mendonça
+- Marten van Kerkwijk
+- Eric Wieser
+
+過去のメンバー
+
+- Alex Griffing (2015-2017)
+- Allan Haldane (2015-2021)
+- Travis Oliphant (プロジェクト創設者, 2005-2012)
+- Nathaniel Smith (2012-2021)
+- Julian Taylor (2013-2021)
+- Jaime Fernández del Río (2014-2021)
+- Pauli Virtanen (2008-2021)
+- Eric Wieser (2017-2025)
+- Stephan Hoyer (2017-2025)
+
+Numpy運営委員会に連絡するには、numpy-team@googlegroups.comまでメールしてください。
+
+## チーム
+
+NumPyプロジェクトのコアメンバーは、プロジェクトへの貢献の方法の多様化に積極的に取り組んでいます。
NumPyには現在以下のチームがあります
+NumPy には現在、以下のチームがあります:
+
+- 開発
+- ドキュメント
+- トリアージ
+- ウェブサイト
+- 調査
+- 翻訳
+- スプリントのメンター
+- 最適化
+- 資金と助成金
+
+詳細については[チーム](/teams) ページを参照してください。
+
+## NumFOCUSサブ委員会
+
+- Charles Harris
+- Ralf Gommers
+- Inessa Pawson
+- Sebastian Berg
+- 外部メンバー: Thomas Caswell
+
+## スポンサー情報
+
+{{< sponsors >}}
+
+## パートナー団体
+
+パートナー団体は、NumPyへの開発を仕事の一つとして、社員を雇っている団体です。 現在のパートナー団体としては、下記の通りです。
+
+- カルフォルニア大学 バークレー校 (Stéfan van der Walt)
+- Quansight (Nathan Goldbaum, Ralf Gommers, Matti Picus, Melissa Weber Mendonça)
+- NVIDIA (Sebastian Berg)
+
+{{< partners >}}
+
+## 寄付
+
+NumPy があなたの仕事や研究、ビジネスで役に立った場合、できる範囲で良いので、是非、NumPyプロジェクトへの寄付を検討して頂けると助かります。 少額の寄付でも大きな助けになります。 すべての寄付は、NumPyのオープンソースソフトウェア、ドキュメント、コミュニティの開発のために使用されることが約束されています。
+
+NumPy は NumFOCUS にスポンサーされたプロジェクトであり、米国の 501(c)(3) 非営利の慈善団体でもあります。 NumFOCUSは、NumPyプロジェクトに財政、法務、管理面でのサポートを提供し、プロジェクトの安定と持続可能性を保つ手助けをしています。 詳細については、[numfocus.org](https://numfocus.org) をご覧ください。
+
+NumPyへの寄付は [NumFOCUS](https://numfocus.org) によって管理されています。 米国の寄付提供者の場合、その人の寄付は法律によって定められる範囲で免税されます。 但し、他の寄付と同様に、あなたはあなたの税務状況について、あなたの税務担当と相談する必要があることを忘れないで下さい。
+
+NumPyの運営委員会は、受け取った資金をどのように使えば良いかを検討し、使用する方法について決定します. NumPyの技術とインフラへの投資の優先順位に関しては、[NumPyロードマップ](https://www.numpy.org/neps/index.html#roadmap) に記載されています。
+
+{{
+
+**配列演算** は **配列** のデータ構造に基づいています。 _配列_ は、関連する膨大なデータ群を簡単にかつ高速に、ソート、検索、変換、数学処理できるように構成されています。
+
+配列演算は_一度に_配列のデータの複数の要素を操作するため、とても _ユニーク_ な処理と言えます。 これは、配列操作が一回の処理で、配列内の 全ての値に適用されることを意味しています。 このベクトル化手法は、速さと単純さという恩恵をもたらします。 プログラマーはループを回して個々の要素のスカラー演算を行うことなく、データの集合を操作しコーディングすることができるのです。
diff --git a/content/ja/case-studies/blackhole-image.md b/content/ja/case-studies/blackhole-image.md
new file mode 100644
index 00000000..4d9293a4
--- /dev/null
+++ b/content/ja/case-studies/blackhole-image.md
@@ -0,0 +1,85 @@
+---
+title: ケーススタディ:世界初のブラックホール画像
+sidebar: false
+---
+
+{{< figure
+ src='/images/content_images/cs/blackhole.jpg'
+ title='ブラックホールM87'
+ alt='ブラックホールの画像'
+ attribution='(画像クレジット:イベントホライズン望遠鏡プロジェクト)'
+ attributionlink="https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg"
+>}}
+
+{{< blockquote
+ cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
+ by="{{< blockquote cite="https://www.youtube.com/watch?v=BIvezCVcsYs" by="_カリフォルニア工科大学 計算・数理学部_のKatie Bouman助教授""
+>}}
+{{< /blockquote >}}
+
+## 地球大の望遠鏡
+
+[Event Horizon telescope(EHT)](https:/eventhorizontelescope.org)は、地球サイズの解析望遠鏡を形成する8台の地上型電波望遠鏡から成るシステムで、これまでに前例のない感度と解像度で宇宙を研究することができます。 超長基線干渉法(VLBI) と呼ばれる手法を用いた巨大な仮想望遠鏡の角度分解能は、[20マイクロ秒][resolution]で、ニューヨークにある新聞をパリの歩道のカフェから読むのに十分な解像度です! 超長基線干渉法(VLBI) と呼ばれる手法を用いた巨大な仮想望遠鏡の角度分解能は、[20マイクロ秒][resolution]で、ニューヨークにある新聞をパリの歩道のカフェから読むのに十分な解像度です!
+
+[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
+
+### 主な目標と結果
+
+- **宇宙の新しい見方:** EHTの画期的な考え方の基礎が築かれたのは、100年前に [Sir Arthur Eddington][eddington]がアインシュタインの一般相対性理論に沿った最初の観測を実施したことが始まりでした。
+
+- **ブラックホール:** EHTは、おとめ座銀河団のメシエ87銀河 (M87) の中心にある、地球から約5500万光年の距離にある超巨大ブラックホールを観測しました。 その質量は、太陽の65億倍です。 [100年以上](https://www.jpl.nasa.gov/news/news.php?feature=7385)に渡る研究が行われてもなお、これまでに視覚的にブラックホールを観測できたことはありませんでした。 その質量は、太陽の6.5億倍です。
+ [100 年以上] (https://www.jpl.nasa.gov/news/news.php?feature=7385) かけて研究はされてきましたが、
+ 視覚的にブラックホールが観測されたことはありませんでした。
+
+- **観測と理論の比較:** 科学者たちの間で、アインシュタインの一般相対性理論から、重力による光の曲げや光の捕獲による影のような領域が観測できるのではないかと期待されていました。 これはブラックホールの巨大な質量を測定するために利用することができます。 **観測と理論の比較:** 科学者たちの間で、アインシュタインの一般相対性理論から、重力による光の曲げや光の捕獲による影のような領域が観測できるのではないかと期待されていました。 これはブラックホールの巨大な質量を測定するために利用することができます。
+
+[eddington]: https://en.wikipedia.org/wiki/Eddington_experiment
+
+### 課題
+
+- **大規模な計算**
+
+ EHTは膨大なデータ処理の課題を抱えていました。 大気の位相変動は急速で、記録帯域の幅は大きく、望遠鏡はそれぞれ異なっていて地理的にも分散しています。
+
+- **大量のデータ**
+
+ EHTは一日で350テラバイトを超える観測データを生成し、ヘリウムで満たされたハードドライブに保存しています。 この大量のデータとデータの複雑さを軽減することは非常に難しいことです。 大量のデータとデータの複雑さを軽減することは非常に難しいことです。
+
+- **よくわからないものを観測する**
+
+ 今までに見たことのないものを見るのが研究の目標なら、どうやって科学者はその画像が正しいと確信することができるのでしょうか?
+
+{{< figure >}}
+{{< /figure >}}
+
+## NumPyが果たした役割
+
+データに問題がある場合はどうなるでしょう? あるいは、アルゴリズムが特定の仮定に あまりにも大きく依存しているかもしれません。 もしあるパラメータを変更した場合、画像は大きく変化するのでしょうか?
+
+EHTの共同研究では、最先端の画像再構成技術を使用して、それぞれのチームがデータを評価することによって、これらの課題に対処しました。 それぞれのチームの解析結果が同じであることが証明されると、それらの結果を組み合わせることで、ブラックホール画像を得ることができました。
+
+彼らの研究は、共同のデータ解析を通じて科学を進歩させる、科学的なPythonエコシステムが果たす役割を如実に表しています。
+
+{{< figure >}}
+{{< /figure >}}
+
+例えば、 [`eht-imaging`][ehtim] というPython パッケージは VLBI データで画像の再構築をシミュレートし、実行するためのツールです。 NumPyは、以下のソフトウェア依存関係チャートで示されているように、このパッケージで使用される配列データ処理の中核を担っています。
+NumPyは、以下のソフトウェア依存関係チャートで示されているように、このパッケージで使用される配列データ処理の中核を担っています。
+
+{{< figure >}}
+{{< /figure >}}
+
+[ehtim]: https://github.com/achael/eht-imaging
+
+NumPyだけでなく、[SciPy](https://scipy.org)や[Pandas](https://pandas.pydata.org)などのパッケージもブラックホール画像化におけるデータ処理パイプラインに利用されています。
+NumPyだけでなく、[SciPy](https://www.scipy.org)や[Pandas](https://pandas.io)などのパッケージもブラックホール画像化におけるデータ処理パイプラインに利用されています。 天文学の標準的なファイル形式や時間/座標変換 は[Astropy][astropy]で実装され、ブラックホールの最終画像の生成を含め、解析パイプライン全体でのデータ可視化には [Matplotlib][mpl]が利用されました。
+
+[astropy]: https://www.astropy.org/
+[mpl]: https://matplotlib.org/
+
+## まとめ
+
+NumPyの中心的な機能である、効率的で適用性の高いn次元配列は、研究者が大規模な数値データを操作することを可能にし、世界で初めてのブラックホールの画像化の基礎を築きました。 アインシュタインの理論に素晴らしい視覚的証拠を与えたのは、科学の画期的な瞬間だといえます。 この科学的に偉大な達成には、技術的の飛躍的な進歩だけでなく、200人以上の科学者と世界で 最高の電波観測所の間での国際協力も寄与しました。 革新的なアルゴリズムとデータ処理技術は、既存の天文学モデルを改良し、宇宙の謎を解き明かす助けになったといえます。
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/ja/case-studies/cricket-analytics.md b/content/ja/case-studies/cricket-analytics.md
new file mode 100644
index 00000000..064328dd
--- /dev/null
+++ b/content/ja/case-studies/cricket-analytics.md
@@ -0,0 +1,79 @@
+---
+title: "ケーススタディ: クリケット分析、ゲームチェンジャー!"
+sidebar: false
+---
+
+{{< figure
+ src='/images/content_images/cs/ipl-stadium.png'
+ >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="{{< blockquote cite="https://www.scoopwhoop.com/sports/ms-dhoni/" by="M S Dhoni、 _インディアンチームの元キャプテン、インターナショナル・クリケットプレイヤー、チェンナイ・スーパー・キングスのためにIPLでプレイ_""
+ by="\*\* IPLT20、インド最大のクリケットフェスティバル\*\*"
+>}}
+{{< /blockquote >}}
+
+## クリケットについて
+
+インド人はクリケットが大好きだと言っても過言ではないでしょう。 この競技は、他のスポーツと異なり、インドの農村部や都市部を問わず、あらゆる場所でプレイされており、若者から年配の方まで広く人気があり、インドでは何十億人もの人々を結びつける役割を担っています。
+クリケットは多くのメディアの注目を集めています。 多くの[資金](https://www.statista.com/topics/4543/indian-premier-league-ipl/) と
+名声がかかっています。 過去数年間、テクノロジーは文字通りクリケットの試合を変えてきました。 視聴者はストリーミングメディア、トーナメント、モバイルベースの手頃なアクセスによるライブクリケット視聴などを享受しています。
+
+インドプレミアリーグ (IPL) は、2008年に設立された20チームから成るプロクリケットリーグです。 インドプレミアリーグ (IPL) は、2008年に設立された20チームから成るプロクリケットリーグです。 これは世界で最も参加者が多いクリケットイベントの1つで、2019年の市場規模は[67億ドル](https://en.wikipedia.org/wiki/Indian_Premier_League)だと評価されています。
+
+クリケットは数のゲームです。 バッツマンによってスコアされたランの数、ボウラーによって取られたウィケットの数、クリケットチームによって獲得した試合の数、バッツマンがボウリング攻撃に特定の方法で応答する回数。 クリケットの数字を掘り下げてパフォーマンスを向上させるとともに、NumPyなどの数値計算ソフトウェアを利用した強力な分析ツールを介して、クリケットのビジネスチャンス、市場全体、経済性を研究することは、大きな意味を持ちます。 クリケット分析は、試合に関する興味深い洞察と、ゲームの結果に関する予測AIを提供します。
+
+現在では、クリケットゲームの記録と 利用可能な統計データは豊富で、ほぼ無限の宝の山だと言えます。 : [ESPN cricinfo や](https://stats.espncricinfo.com/ci/engine/stats/index.html) [cricsheet](https://cricsheet.org). これらのクリケットデータベースは、最新の機械学習と予測モデリングアルゴリズムを使用して、[クリケット 分析](https://www.researchgate.net/publication/336886516_Data_visualization_and_toss_related_analysis_of_IPL_teams_and_batsmen_performances)に使用されています。
+メディアやプロスポーツ団体のエンターテインメントプラットフォームは、技術や分析を利用し、試合勝率を向上させるために、下記のような要素が主要なメトリックだと考え始めています。
+
+- バッティング成績の移動平均
+- スコア予測
+- プレイヤーの体力や、異なる相手に対するパフォーマンスについての洞察
+- チーム構成に戦略的な決定を下すための、各勝敗へのプレイヤーの貢献
+
+{{< figure >}}
+{{< /figure >}}
+
+### データ分析の主要な目標
+
+- スポーツデータ分析はクリケットだけでなく、チーム全体のパフォーマンスを向上させ、勝利率を最大限に高めるために、 [他のスポーツ](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx)でも使用されています。
+- リアルタイムデータ分析は、ゲーム中の洞察を得ることができ、チームや関連ビジネスが経済的利益と成長のために戦術を変更するためも役立ちます。
+- 履歴分析に加えて、予測モデルは可能性のある結果を求めることができますが、かなりの数のナンバークランチングとデータサイエンスのノウハウ、可視化ツール、および分析に新しい観測データを含める機能などが必要になります。
+
+{{< figure >}}
+{{< /figure >}}
+
+### 課題
+
+- **データのクリーニングと前処理**
+
+ IPLは、クリケットを古典的なテストマッチ形式から、はるかに大規模に拡大させました。 毎シーズン、様々なフォーマットで行われる試合の数は増加しており、データ、アルゴリズム、最新のスポーツデータ分析技術、シミュレーションモデルも増加しています。 クリケットのデータ分析には、フィールドマッピング、プレイヤートラッキング、ボールトラッキング、プレイヤーショット分析、そしてボールがどのように動くのか、その角度、スピン、速度、軌道など、他の沢山の種類のデータを必要とします。 これらの要因により、データクリーニングと前処理の複雑さが増加してしまいました。
+
+- **動的モデリング**
+
+ クリケットでは、他のスポーツと同様、フィールド上の選手の様々な数字を追跡するために、関連する変数の数が多くなってしまいがちです。 たとえば、ボールやその属性情報、およびいくつかの行動をとるアクションのいくつかの可能性などが変数となります。 データ分析とモデリングの複雑さは、分析中に必要となる予測のための質問の種類に正比例しており、データ表現とモデルにも大きく依存しています。 バッツマンが異なる角度や速度でボールを打った場合に何が起こるのかのような、動的なクリケットのプレーの予測が必要な場合、計算量やデータ評価が更に困難になります。
+
+- **予測分析の複雑さ**
+
+ クリケットにおいて、意思決定の多くは「ボウラーがある特定のタイプの場合、打者はどのくらいの頻度で特定の種類のショットを打つのか」「バッツマンが特定の方法であるボウラーに反応した場合、ボウラーはどのようにラインと長さを変更するのか 」などの質問に基づいています。 この種の予測分析クエリでは、精度の良いデータセットが利用できることと、データを合成して高精度な生成モデルを作成できることが必要とされます。
+ この種の予測分析クエリでは、精度の良いデータセットが利用できることと、データを合成して高精度な生成モデルを作成できることが必要とされます。
+
+## クリケット解析におけるNumPyの役割
+
+スポーツ分析は現在、非常に盛んな分野です。 スポーツ分析は現在、非常に盛んな分野です。 多くの研究者や企業は、最新の機械学習やAI技術以外にも、NumPyや、Scikit-learn, SciPy, Matplotlib, Jupyterなどの他のPyDataパッケージを[使っています](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx)。 NumPyは以下のように、クリケット関連の様々なスポーツ分析に使用されています。 NumPyは以下のように、クリケット関連の様々なスポーツ分析に使用されています。
+
+- **統計分析:** NumPyの数値計算機能は、様々なプレイヤーやゲーム戦術のコンテキストでの観測データで、試合中のイベントの統計的有意性を推定し、生成モデルや静的モデルと比較して試合結果を推定するのに役立ちます。 [因果分析](https://amplitude.com/blog/2017/01/19/causation-correlation) と [ビッグデータアプローチ](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996805/)が戦術的分析に使用されています。
+ [カジュアルな解析](https://amplitude.com/blog/2017/01/19/causation-correlation)
+ と [ビックデータのアプローチ](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996805/)
+ は戦術分析に使用されます。
+
+- **データ可視化:** データのグラフ化・可視化 は、さまざまなデータセット間の関係について、有益な洞察を与えてくれます。
+
+## まとめ
+
+スポーツアナリティクスは、プロの試合についてはまさにゲームチェンジャーです。 特に戦略的な意思決定については、最近まで主に「直感」や過去の伝統的な考え方に基づいて行われていたため、大きな影響があります。 NumPyは、データ分析・機械学習・人工知能のアルゴリズムに関連する高レベル関数を提供する沢山のPythonパッケージ群の、堅固な基盤となっています。
+これらのパッケージは、ゲームの結果を変えるような意思決定を支援するリアルタイムのインサイトを得るため、クリケットの試合だけでなく関連する推論やビジネスの推進にも広く使用されています。 クリケットの試合結果につながる隠れたパラメータや、パターン、属性を見つけることは、ステークホルダーが数字や統計に隠されているゲームの洞察方法を見つけるのにも役に立つのです。
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/ja/case-studies/deeplabcut-dnn.md b/content/ja/case-studies/deeplabcut-dnn.md
new file mode 100644
index 00000000..5ef30da0
--- /dev/null
+++ b/content/ja/case-studies/deeplabcut-dnn.md
@@ -0,0 +1,102 @@
+---
+title: "ケーススタディ: DeepLabCut 三次元姿勢推定"
+sidebar: false
+---
+
+{{< figure >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="{{< blockquote cite="https://news.harvard.edu/gazette/story/newsplus/harvard-researchers-awarded-czi-open-source-award/" by="Alexander Mathis、 _准教授、École polytechnology fe’rale de Lausanne_ ([EPFL](https://www.epfl.ch/en/))""
+ by="Alexander Mathis、_准教授、École polytechnology fe’rale de Lausanne_ ([EPFL](https://www.epfl.ch/en/))"
+>}}
+{{< /blockquote >}}
+
+## DeepLabCut について
+
+[DeepLabCut](https://github.com/DeepLabCut/DeepLabCut)は、ごくわずかなトレーニングデータで人間レベルの精度で実験動物の行動を追跡可能にするオープンソースのツールボックスです。 DeepLabCutの技術を使うことで、科学者は動物の種類と時系列のデータをもとに、運動制御と行動に関する科学的な理解を深めることができるようになりました。 DeepLabCutの技術を使うことで、科学者は動物の種類と時系列のデータをもとに、運動制御と行動に関する科学的な理解を深めることができるようになりました。
+
+神経科学、医学、生体力学などのいくつかの研究分野では、動物の動きを追跡したデータを使用しています。 DeepLabCutは、動画に記録された動きを解析することで、人間やその他の動物が何をしているのかを理解することができます。 タグ付けや監視などの、手間のかかる作業を自動化し、深層学習ベースのデータ解析を実施します。 DeepLabCutは、霊長類、マウス、魚、ハエなどの動物を観察する科学研究をより速く正確にしています。
+
+{{< figure >}}
+{{< /figure >}}
+
+DeepLabCutは、動物の姿勢を抽出することで非侵襲的な行動追跡を行います。 これは、生体力学、遺伝学、倫理学、神経科学などの分野での研究に必要不可欠です。 動的に変化する背景の中で、動物の姿勢をビデオデータから非侵襲的に測定することは、技術的にも、必要な計算リソースやトレーニングデータの点でも、非常に困難な計算処理です。 動的に変化する背景の中で、動物の姿勢をビデオデータから非侵襲的に測定することは、技術的にも、必要な計算リソースやトレーニングデータの点でも、非常に困難な計算処理です。
+
+DeepLabCutは、研究者が対象の姿勢を推定し、Pythonベースのソフトウェアを使って効率的に対象の行動を定量化することを可能にします。 DeepLabCutを使用すると、研究者は動画から異なるフレームを識別し、数十個のフレームの特定の身体部位を、よくできたGUIによってラベルづけできます。 すると、DeepLabCutの深層学習ベースのポーズ推定アーキテクチャにより、動画の残りの部分や動物の他の類似した動画から同じ特徴を抽出する方法を学習できます。 ハエやマウスなどの一般的な実験動物から[チーター][cheetah-movement]のようなより珍しい動物まで、動物の種類を問わず利用できます。
+
+[cheetah-movement]: https://www.technologynetworks.com/neuroscience/articles/interview-a-deeper-cut-into-behavior-with-mackenzie-mathis-327618
+
+DeepLabCutでは[転移学習](https://arxiv.org/pdf/1909.11229)という技術を使用しています。 これにより必要な学習データの量を大幅に削減し、学習の収束を加速させることができます。 必要に応じて、より高速な推論を提供するさまざまなネットワークアーキテクチャ(MobileNetV2など)を選択することができ、リアルタイムの実験データフィードバックと組み合わせることもできます。 DeepLabCutはもともと[DeeperCut](https://arxiv.org/abs/1605.03170)と呼ばれるパフォーマンスのよい、人間用のポーズ推定アーキテクチャの特徴検出器を使用しており、これが名前の由来になりました。 今ではこのパッケージは大幅に変更され、追加のアーキテクチャ・データの水増し・一通りのユーザー用フロントエンドを含んでいます。 さらに、 大規模な生物学的実験をサポートするため、DeepLabCutはオンライン学習の機能を提供しています。 これにより、動画の時間をこえて学習データを増やすことができ、エッジケースをカバーしたり、特定のコンテキスト内でポーズ推定アルゴリズムを堅牢にしたりできます。
+
+最近、[DeepLabCut model zoo](http://www.mousemotorlab.org/dlc-modelzoo)が発表されました。 これは、霊長類の顔分析から犬の姿勢まで、様々な種や実験条件に対応した事前訓練済みモデルを提供しています。 これにより、例えば、新しいデータのラベルを付けることなくクラウドで予測を実行することができたり、ニューラルネットワークの学習を実行することができます。 プログラミング経験は必要ありません。 これにより、例えば、新しいデータのラベルを付けることなくクラウドで予測を実行することができたり、ニューラルネットワークの学習を実行することができます。 プログラミング経験は必要ありません。
+
+### 主な目標と結果
+
+- **科学研究のための動物姿勢解析の自動化:**
+
+ DeepLabCutという技術の主な目的は、多様な環境で動物の姿勢を測定し追跡することです。 このデータは例えば神経科学の研究において、脳がどのように運動を制御しているかを理解するためのや、動物がどのように社会的に交流しているかを明らかにするために利用することができます。 研究者はDeepLabCutで [10倍のパフォーマンス向上](https://www.biorxiv.org/content/10.1101/457242v1) が可能であると発表しています。 オフラインでは最大1200フレーム/秒(FPS) で姿勢を推定することができます。 このデータは例えば神経科学の研究において、脳がどのように運動を制御しているかを理解ことや、動物がどのように社会的に交流しているかを明らかにするために利用することができます。 研究者はDeepLabCutで
+ [10倍のパフォーマンスの改善](https://www.biorxiv.org/content/10.1101/457242v1)
+ を得られることを報告しています。 オフラインでは最大1200フレーム/秒 (FPS) で姿勢を推定することができます。
+
+- **姿勢推定のための使いやすいPythonツールキットの作成:**
+
+ DeepLabCutは、動物の姿勢推定技術を研究者が簡単に利用できるツールとして共有したいという考えから開発されています。 そこで開発者らはプロジェクト管理機能を備えた、単独で機能し、使いやすいPythonツールボックスとしてこのツールを作成しました。 これにより、姿勢推定を自動化するだけでなく、DeepLabCutツールキットのユーザーを向けに、データセット収集段階から共有可能・再利用可能な分析パイプラインを作成する段階まで補助し、プロジェクトをエンドツーエンドで管理することも可能になりました。
+
+ この[ツールキット][DLCToolkit] はオープンソースとして利用できます。
+
+ 典型的なDeepLabCutワークフローは以下のようになります。
+
+ - オンライン学習によるトレーニングセットの作成と調整
+ - 特定の動物やシナリオに合わせたニューラルネットワークの構築
+ - 動画における大規模推論のためのコード作成
+ - 統合された可視化ツールを使用した推論の描画
+
+{{< figure >}}
+{{< /figure >}}
+
+[DLCToolkit]: https://github.com/DeepLabCut/DeepLabCut
+
+### 課題
+
+- **速度**
+
+ 動物行動動画の高速な処理は、動物の行動を測定し、科学実験をより効率的で正確にするために重要です。 動的に変化する背景の中で、マーカーを使用せずに、実験室での実験のために動物の詳細な姿勢を抽出することは、技術的にも、必要なリソース的にも、必要なトレーニングデータの面でも、困難な場合があります。 科学者が、より現実的な状況で研究を行うために、コンピュータビジョンなどの専門知識のスキルを必要とせずに使うことができるツールを開発することは、解決すべき重要な問題です。
+ 動的に変化する背景の中で、マーカーを使用せずに、実験室での実験のために動物の詳細な姿勢を抽出することは、技術的にも、必要なリソース的にも、必要なトレーニングデータの面でも、困難な場合があります。
+ 科学者が、より現実的な状況で研究を行うために、コンピュータビジョンなどの専門知識のスキルを必要とせずに使うことができるツールを開発することは、解決すべき重要な問題です。
+
+- **組み合わせ問題**
+
+ 組合せ問題とは、複数の四肢の動きを個々の動物行動に統合することを指します。 組合せ問題とは、複数の四肢の動きを個々の動物行動に統合することを指します。 キーポイントと、その個々の動物行動との関連性を組み合わせ、時間的に結びつけることは、複雑なプロセスであり、非常に膨大な数値解析が必要となります。 特に、実験映像の中で複数の動物の動きを追跡する場合は大変です。
+
+- **データ処理**
+
+ 最後に、配列の操作もかなり難しい問題です。 様々な画像や、目標のテンソル、キーポイントに対応する大きな配列のスタックを処理しなければならないからです。
+
+{{< figure >}}
+{{< /figure >}}
+
+## 姿勢推定の課題に対応するためのNumPyの役割
+
+NumPy は DeepLabCutにおける、行動分析の高速化のための数値計算の核となっています。 NumPy は DeepLabCutにおける、行動分析の高速化のための数値計算の核となっています。 NumPyだけでなく、DeepLabCutは様々なNumPyをベースとしているPythonライブラリを利用しています。 [SciPy](https://www.scipy.org)、[Pandas](https://pandas.pydata.org)、[matplotlib](https://matplotlib.org)、[Tensorpack](https://github.com/tensorpack/tensorpack), [imgaug](https://github.com/aleju/imgaug)、[scikit-learn](https://scikit-learn.org/stable/)、[scikit-image](https://scikit-image.org)、[Tensorflow](https://www.tensorflow.org)などです。
+
+以下に挙げるNumPyの特徴が、DeepLabCutの姿勢推定アルゴリズムでの画像処理・組み合わせ処理・高速計算において、重要な役割を果たしました。
+
+- ベクトル化
+- マスクされた配列操作
+- 線形代数
+- ランダムサンプリング
+- 大きな配列の再構成
+
+DeepLabCutは、ツールキットが提供するワークフローを通じてNumPyの配列機能を利用しています。 特に、NumPyはヒューマンアノテーションのラベル付けや、アノテーションの書き込み、編集、処理のために、特定のフレームをサンプリングするために使用されています。 TensorFlowを使ったニューラルネットワークは、DeepLabCutの技術によって何千回も訓練され、 フレームから真のアノテーション情報を予測します。 この目的のため、姿勢推定問題を画像-画像変換問題として変換する目標密度(スコアマップ) を作成します。 ニューラルネットワークのロバスト化のため、データの水増しを使用していますが、このためには幾何学・画像的処理を施したスコアマップの計算を行うことが必要になります。 また学習を高速化するため、NumPyのベクトル化機能が利用されています。 推論には、目標のスコアマップから最も可能性の高い予測値を抽出し、効率的に「予測値をリンクさせて個々の動物を組み立てる」ことが必要になります。
+
+{{< figure >}}
+{{< /figure >}}
+
+## まとめ
+
+行動を観察し、効率的に表現することは、現代倫理学、神経科学、医学、工学の根幹です。
+行動を観察し、効率的に表現することは、現代倫理学、神経科学、医学、工学の根幹です。 [DeepLabCut](http://orga.cvss.cc/wp-content/uploads/2019/05/NathMathis2019.pdf) により、研究者は対象の姿勢を推定し、行動を効率的に定量化できるようになりました。 DeepLabCutというPythonツールボックスを使えば、わずかな学習画像のセットでニューラルネットワークを人間レベルのラベリング精度で学習することができ、実験室での行動分析だけでなく、スポーツ、歩行分析、医学、リハビリテーション研究などへの応用が可能になります。 DeepLabCutアルゴリズムに必要な複雑な組み合わせ処理やデータ処理の問題を、NumPyの配列操作機能が解決しています。 DeepLabCutというPythonツールボックスを使えば、わずかな学習画像のセットでニューラルネットワークを人間レベルのラベリング精度で学習することができ、実験室での行動分析だけでなく、スポーツ、歩行分析、医学、リハビリテーション研究などへの応用が可能になります。 DeepLabCutアルゴリズムに必要な複雑な組み合わせ処理やデータ処理の問題を、NumPyの配列操作機能が解決しています。
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/ja/case-studies/gw-discov.md b/content/ja/case-studies/gw-discov.md
new file mode 100644
index 00000000..0533508e
--- /dev/null
+++ b/content/ja/case-studies/gw-discov.md
@@ -0,0 +1,76 @@
+---
+title: "ケーススタディ: 重力波の発見"
+sidebar: false
+---
+
+{{< figure >}}
+{{< /figure >}}
+
+{{< blockquote
+ cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
+ by="David Shoemaker, _LIGOサイエンティフィック・コラボレーション_" >}}
+{{< /blockquote >}}
+
+## [重力波](https://www.nationalgeographic.com/news/2017/10/what-are-gravitational-waves-ligo-astronomy-science/) と [LIGO](https://www.ligo.caltech.edu) について
+
+重力波は、空間と時間の基本構造の波紋です。 2つのブラックホールの衝突や合体、2連星や超新星の合体など、大きな変動現象によって生成されます。 重力波の観測は、重力を研究する上で重要なだけでなく、遠い宇宙におけるいくつかの不明瞭な現象と、その影響を理解するためにも役立ちます。
+
+\[レーザー干渉計重力波天文台(LIGO)\](https://www. ligo. caltech. edu)は、アインシュタインの一般相対性理論によって予測された重力波の直接検出を通して、重力波天体物理学の分野を切り開くために設計されました。 このシステムは、アメリカのワシントン州ハンフォードとルイジアナ州リビングストンにある2つの干渉計が一体となって構成され、重力波を検出します。 それぞれのシステムには、レーザー干渉法を用いた数キロ規模の重力波検出器が設置されています。 LIGO Scientific Collaboration(LSC)は、米国をはじめとする14カ国の大学から1000人以上の科学者が集まり、90以上の大学・研究機関によって支援されています。 また、約250人の学生も参加しています。 今回のLIGOの発見は、重力波が地球を通過する際に生じる空間と時間の微小な乱れの測定により、重力波そのものを初めて観測しました。 これにより、新しい天体物理学のフロンティアが開かれました。 これは、宇宙の歪んだ側面、つまり歪んだ時空から作られた物体とそれに現象を切り拓くものです。 このシステムは、アメリカのワシントン州ハンフォードとルイジアナ州リビングストンにある2つの干渉計が一体となって構成され、重力波を検出します。 それぞれのシステムには、レーザー干渉法を用いた数キロ規模の重力波検出器が設置されています。 LIGO Scientific Collaboration(LSC)は、米国をはじめとする14カ国の大学から1000人以上の科学者が集まり、90以上の大学・研究機関によって支援されています。 また、約250人の学生も参加しています。 今回のLIGOの発見は、重力波が地球を通過する際に生じる空間と時間の微小な乱れの測定により、重力波そのものを初めて観測しました。 これにより、新しい天体物理学のフロンティアが開かれました。 これは、宇宙の歪んだ側面、つまり歪んだ時空から作られた物体とそれに現象を切り拓くものです。
+
+### 主な目的
+
+- LIGOの[ミッション](https://www.ligo.caltech.edu/page/what-is-ligo)は、宇宙で最も激しくエネルギーに満ちたプロセスからの重力波を検出することですが、LIGOが収集するデータは、重力、相対性理論、天体物理学、宇宙論、素粒子物理学、原子核物理学など、物理学の多くの分野に広く影響を与える可能性があります。
+- 複雑な数学を含む相対性理論の数値計算によって観測データを解析し、信号とノイズを識別し、関連性のある信号をフィルタリングし、観測データの有意性を統計的に推定することで、宇宙の始まりのクランチを観測できるようになります。
+- バイナリや数値の結果を理解しやすいようにデータを可視化することも必要です。
+
+### 課題
+
+- **計算**
+
+ 重力波はごくわずかな影響しか与えず、物質との相互作用も非常に小さいため、検出が困難です。 LIGO のすべてのデータを処理・解析するには、膨大な計算インフラが必要です。\
+ ノイズは信号の数十億倍にもおよび、これを取り除いた後でも、非常に複雑な相対性理論の方程式や大量のデータが計算上の課題となります:\
+ 例えば[連星合体の解析には約 1,000 万 CPU 時間が必要](https://youtu.be/7mcHknWWzNI)で、これは LIGO の6つの専用クラスターに分散されています。
+
+- **データの氾濫**
+
+ 観測装置がより高感度で信頼性を持つようになると、データの大洪水によって、干し草の中から針を探すような問題が、頻繁に発生することがわかります。
+ LIGOは毎日テラバイトのデータを生成しているのです! この大量のデータを解釈するには、各検出ごとに多大な労力が必要なのです。 例えば、LIGOによって収集される信号は、数十万個の重力波シグネチャのテンプレートで構成されており、スーパーコンピュータでしか解析できません。
+
+- **可視化**
+
+ アインシュタイン方程式を元にスーパーコンピュータでデータを解析できるようになったら、次はデータを人間の脳で理解できるようにしなければなりません。 シミュレーションのモデリングや信号の検出には、わかりやすい可視化技術が必要です。 解析結果をより多くの人に理解してもらえる状態になる前の段階において、画像処理やシミュレーションの可視化は、数値相対性をあまり重要視していなかった純粋な科学愛好家の目に、数値相対性がより信頼性の高いものとして映るようにするという役割も果たしています。
+ 複雑な計算と描画を行い、また最新の実験結果と洞察に基づいてシミュレーションと再描画を行う作業は時間のかかるもので、この分野の研究者にとっての大きな課題です。
+
+{{< figure >}}
+{{< /figure >}}
+
+## 重力波の検出におけるNumPyの役割
+
+ブラックホール合成により放出される重力波は、スーパーコンピュータを用いたブルートフォースの数値相対性処理以外の手法では計算できません。
+重力波は非常に小さい効果を生み、物質と微小な相互作用を持つため、検出が困難です。 LIGOのすべてのデータを処理・分析するには、膨大な計算インフラが必要です。 信号の数十億倍のノイズを除去した後も、非常に複雑な相対性理論の方程式と膨大な量のデータがあり、計算上の課題となっています。
+
+Python用の標準的な数値解析パッケージNumPyは、LIGOの重力波検出プロジェクトで実行される様々なタスクに使用されるソフトウェアで利用されています。 NumPyは、複雑な数学処理や高速なデータ操作に役立ちました。 次にいくつかの例を示します。
+
+- [信号処理](https://www.uv.es/virgogroup/Denoising_ROF.html): グリッジ検出、[ノイズ同定とデータ判定](https://ep2016.europython.eu/media/conference/slides/pyhton-in-gravitational-waves-research-communities.pdf) (NumPy, scikit-learn, scipy, matplotlib, pandas, pyCharm)。
+- データ取得: どのデータが解析できるかを決定し、干し草の中の針のような信号が入っているかどうかを突き止める。
+- 統計解析: 観測データの統計的有意性を推定し、モデルとの比較により信号パラメータ(星の質量、スピン速度、距離など)を推定する。
+- データ可視化
+ - 時系列データ
+ - スペクトログラム
+- 相関計算
+- 重力波データ解析のために開発された[ソフトウェア群](https://github.com/lscsoft): [GwPy](https://gwpy.github.io/docs/stable/overview.html)や [PyCBC](https://pycbc.org)は、NumPyやAstroPyを用いて、重力波検出器データを研究するためのユーティリティー・ツール・関数へのオブジェクト指向インターフェースを提供しています。
+
+{{< figure >}}
+{{< /figure >}}
+
+----
+
+{{< figure >}}
+{{< /figure >}}
+
+## まとめ
+
+一方で、これまで知られてきた深遠な天体物理学の現象に、多くに新たな洞察を提供しました。 数値処理とデータの可視化は、科学者が科学的な観測から収集したデータについての洞察を得て、その結果を理解するのに役立つ重要なステップです。 しかし、その計算は複雑であり、実際の観測データと分析を用いたコンピュータシミュレーションを用いて可視化されない限り、人間が理解することはできませんでした。 NumPyは、matplotlib、pandas・、scikit-learnなどのPythonパッケージとともに、研究者が宇宙に関する複雑な質問に答え、理解し、新しい地平を発見することを[可能にしています](https://www.gw-openscience.org/events/GW150914/) 。
+
+{{< figure >}}
+{{< /figure >}}
diff --git a/content/ja/citing-numpy.md b/content/ja/citing-numpy.md
new file mode 100644
index 00000000..648be984
--- /dev/null
+++ b/content/ja/citing-numpy.md
@@ -0,0 +1,34 @@
+---
+title: 引用する
+sidebar: false
+---
+
+もしあなたの研究においてNumPyが重要な役割を果たし、論文でこのプロジェクトについて言及したい場合は、こちらの論文を引用して下さい。
+
+- Harris, C.R., Millman, K.J., van der Walt, S.J. 他、_NumPyを使った配列プログラミング_ Nature 585, 357–362 (2020). DOI: [10.1038/s41586-020-2649-2](https://doi.org/10.1038/s41586-020-2649-2). ([リンク](https://www.nature.com/articles/s41586-020-2649-2)).
+
+_BibTeX形式:_
+
+ ```
+ @Article{ harris2020array,
+ title = {Array programming with {NumPy}},
+ author = {Charles R. Harris and K. Jarrod Millman and St{'{e}}fan J. van der Walt and Ralf Gommers and Pauli Virtanen and David
+ Cournapeau and Eric Wieser and Julian Taylor and Sebastian
+ Berg and Nathaniel J. Smith and Robert Kern and Matti Picus
+ and Stephan Hoyer and Marten H. van Kerkwijk and Matthew
+ Brett and Allan Haldane and Jaime Fern{'{a}}ndez del
+ R{'{\i}}o and Mark Wiebe and Pearu Peterson and Pierre
+ G{'{e}}rard-Marchant and Kevin Sheppard and Tyler Reddy and
+ Warren Weckesser and Hameer Abbasi and Christoph Gohlke and
+ Travis E. Oliphant},
+ year = {2020},
+ month = sep,
+ journal = {Nature},
+ volume = {585},
+ number = {7825},
+ pages = {357--362},
+ doi = {10.1038/s41586-020-2649-2},
+ publisher = {Springer Science and Business Media {LLC}},
+ url = {https://doi.org/10.1038/s41586-020-2649-2}
+ }
+ ```
diff --git a/content/ja/code-of-conduct.md b/content/ja/code-of-conduct.md
new file mode 100644
index 00000000..dec60413
--- /dev/null
+++ b/content/ja/code-of-conduct.md
@@ -0,0 +1,83 @@
+---
+title: NumPy行動規範
+sidebar: false
+aliases:
+ - /ja/conduct/
+---
+
+### はじめに
+
+この行動規範は、NumPy プロジェクトによって管理されるすべての場所で適用されます。 この場所とは、すべてのパブリックおよびプライベートのメーリングリスト、イシュートラッカー、Wiki、ブログ、Twitter、コミュニティで使用されているその他の通信チャンネルなどを含みます。 NumPy プロジェクトでは対面でのイベントは開催していません。 しかし、我々のコミュニティに関連するものであれば、対面のイベントでも同様の行動規範を持つ必要があります。
+
+この行動規範は、NumPy コミュニティに正式または非公式に参加するすべての人が順守する必要があります。 その他にも、NumPyとの提携・関連するプロジェクト活動においては、特にそれらのプロジェクトを代表する場合、同様の行動規範に従う必要があります。
+
+この行動規範は完全ではありません。 しかし、行動規範は我々が理解すべき、互いの協力の仕方や、共通の場所のあるべき姿、我々のゴールなどをまとめるのに重要な役目を果たします。 フレンドリーで生産的な環境を生み出し、周囲のコミュニティにより良い影響を与えるため、ぜひこの行動規範に従ってください。
+
+### ガイドラインの概要
+
+私たちは下記の内容に真摯に取り組みます。
+
+1. 開けたコミュニティにしましょう。 私たちは、誰でもコミュニティに参加できるようにします。 私たちは、公にすべきではない内容を議論する場合以外、プロジェクトに関連するメッセージを公の場で告知することを選びます。 これは、NumPyに関するヘルプやプロジェクトサポートにも適用されます。公式なサポートだけでなく、NumPyに関する質問に答える場合もです。 これにより、質問に答えた際の意図しない間違いを、より簡単に検出し、訂正できるようになります。
+2. 共感し、歓迎し、友好的で、そして我慢強くありましょう。 私たちは互いに争いを解決し合い、互いの善意を信じ合います。 私たちは時折り不満を感じるかもしれません。 しかしそのような場合も、不満を個人的な攻撃に変えることは許容されません。 人々が不快や脅威を感じるコミュニティは、生産的ではないからです。
+3. 互いに協力し合おう。 私たちの開発成果は他の人々によって利用され、一方で、たちは他の人々の開発成果に依存しているのです。 私たちがプロジェクトために何かを作るとき、私たちはそれがどのように動作するかを他の人に説明する必要があります。 しかし、この作業により、より良いものを作り上げることができるのです。 私たちが下す全ての決断は、ユーザと開発コミュニティに影響を与えうるし、その決断がもたらす結果を私たちは真摯に受け止めます。
+4. 好奇心を大事にしよう。 全てを知っている人はいないのです! 早め早めに質問をすることで、後に生じうる多くの問題を回避できます。 そのため私たちは質問を奨励しています。 私たちは、出来るだけ質問に良く対応し、手助けできるよう努力します。
+5. 使う言葉に注意しましょう。 私たちは、コミュニティにおけるコミュニケーションに注意と敬意を払います。 そして、私たちは自分の言葉に責任を持ちます。 他人に優しくしましょう。 他のコミュニティの参加者を侮辱しないでください。 私たちは、以下のようなハラスメントやその他の排斥行為を許しません。 :
+ - 他の人に向けられた暴力的な行為や言葉。
+ - 性差別や人種差別、その他の差別的なジョークや言動。
+ - 性的または暴力的な内容の投稿。
+ - 他のユーザーの個人情報を投稿すること。 (または投稿すると脅すこと)。
+ - 公開目的のない電子メールや、ICRチャットのようなログの残らないフォーラムの履歴など、プライベートなコンテンツを送信者の同意なしに共有すること。
+ - 個人的な侮辱, 特に人種差別や性差別的な用語を使用して侮辱すること。
+ - 不快な思いをさせる性的な言動。
+ - 過度に粗暴に振る舞うこと。 ひどいな言葉を使うのを避けてください。 人々は怒りを覚える感度が、それぞれ大きく異なります。
+ - 他人に対するハラスメントの繰り返し。 一般的に、誰かがあなたにある言動を止めるように要求した場合、その言動をやめて下さい。
+ - 上記のいずれかの行動を擁護すること、または奨励すること。
+
+### 多様性に関する声明
+
+NumPyプロジェクトは、全ての人々の参加を歓迎しています。 私たちは、誰もがコミュニティの一員であることを楽しめるように尽力します。 全ての人の好みを満足はさせられないかもしれませんが、全員に対し出来るだけ親切な対応ができるよう最善を尽くします。
+
+あなたの自己認識や、他者のあなたへの認識は関係ありません。 私たちはあなたを歓迎します。 民族、遺伝、性同一性あるいは関連する表現、言語、国籍、神経学的な差異、生物学的な差異、 政治的信条、職業、人種、宗教、性的指向、社会経済的地位、文化的な差異、技術的な能力。
+
+私たちはすべての種類の言語言語話者の参加を歓迎しますが、NumPy 開発は英語で行われます。
+
+NumPy コミュニティの標準的なルールは、上記の行動規範で説明されています。 NumPyコミュニティの参加者は、これらの行動基準をすべてのコミュニケーションにおいて順守し、他の人々にも同様な行動をすることを推奨すべきです (次のセクションを参照)。
+
+### 報告ガイドライン
+
+私たちは、インターネットでの会話が簡単にひどい誹謗中傷になってしまうことを、痛いほど知っています。 私たちはまた、嫌な日を過ごしてむしゃくしゃしている人や、行動規範ガイドラインの項目を見落としている人がいることも知っています。 行動規範の違反にどのように対処するかを決定する際には、このことを心に留めておく必要があります。
+
+意図的な行動規範違反については、行動規範委員会に報告してください (下記参照)。 もし、違反が意図的でない可能性がある場合、その人にこの行動規範の存在を知らせることも可能です (パブリックでもプライベートでも、適切な方法で)。 もし直接指摘したくない場合は、ぜひ、行動規範委員会に直接連絡するか、違反の確度について助言を求めて下さい。
+
+NumPy行動規範委員会に問題を報告する場合は、こちらにご連絡下さい: numpy-conduct@googlegroups.com。
+
+現在、行動規範委員会は以下のメンバーで構成されています:
+
+- Stefan van der Walt
+- Melissa Weber Mendonça
+- Rohit Goswami
+
+もしあなたの違反報告に委員会のメンバーが含まれている場合, または彼らがそれを処理する上で利益相反をしていると感じる場合、そのメンバーはあなたの報告を評価する立場からは辞退してもらいます。 もしくは、行動規範委員会に報告するのが躊躇われる場合は、こちらからNumFOCUSのシニアスタッフに連絡することも可能です : [conduct@numfocus.org](https://numfocus.org/code-of-conduct#persons-responsible)
+
+### インシデント報告の解決と行動規範の実行
+
+_本章では、最も重要な点のみをまとめています。 詳細については、[NumPy行動規範 - レポートの対応方法](report-handling-manual) をご覧ください。
+
+私たちはすべての訴えを調査し、対応するようにします。 NumPy行動規範委員会およびNumPy運営委員会(もし関係する場合) は、報告者の身元を保護します。 また(報告者が同意しない限り) 苦情の内容を機密として扱うこととします。
+
+もし深刻で明らかな違反の場合、例えば、 個人的な脅し、または暴力的、性差別的または人種差別的な発言などの場合、我々は直ちにNumPyのコミュニケーションの場から発言者を退場させます。詳細についてはマニュアルを参照してください。
+
+もし、行動規範に対して明白な違反がみられない場合、受領された行動規範違反報告に対するプロセスは以下の通りです。
+
+1. 報告書の受領を確認
+2. 建設的な議論/フィードバック
+3. 調停(報告者と報告を受けたものの両方がフィードバックが役に立たなかったと同意した場合に限る)
+4. 行動規範委員会による透明性のある方針決定と執行( [決議](report-handling-manual/#解決方法)を参照)
+
+行動規範委員会は、可能な限り速やかに対応し、最大で72時間以内に対応する様にします。
+
+### 文末脚注:
+
+私たちは下記のドキュメントを作成したグループに感謝します。 内容・発想ともに大いに影響されています。
+
+- [SciPy行動規範](https://docs.scipy.org/doc/scipy/dev/conduct/code_of_conduct.html)
diff --git a/content/ja/community.md b/content/ja/community.md
new file mode 100644
index 00000000..33a05ee9
--- /dev/null
+++ b/content/ja/community.md
@@ -0,0 +1,66 @@
+---
+title: コミュニティ
+sidebar: false
+---
+
+NumPy は 常に多様な[コントリビュータ](/ja/teams/) のグループによって開発されている、コミュニティ主導のオープンソースプロジェクトです。 NumPy を主導するグループは、オープンで協力的でポジティブなコミュニティを作ることを、約束しました。 NumPy 行動規範 をぜひ参照してください。コミュニティの繁栄につながるようなかたちで、人々と交流する方法について書いてあります。
+
+私たちは、NumPyコミュニティ内で学んだり、知識を共有したり、他の人と交流するためのいくつかのコミュニケーション方法を提供しています。
+
+## オンラインで参加する方法
+
+NumPy プロジェクトやコミュニティと直接交流する方法は次の通りです。
+_ 一点重要な点として、私たちはユーザとコミュニティメンバーに互いにNumPyの使い方の質問に関して助言し合って欲しいと思っています。 詳細は[サポートをある方法](/gethelp)を参照して下さい。_
+
+### [NumPyメーリングリスト](https://mail.python.org/mailman/listinfo/numpy-discussion)
+
+このメーリングリストは、NumPy に新しい機能を追加するなど、より長い期間の議論のための主なコミュニケーションの場です。 NumPyのRoadmapに変更を加えたり、プロジェクト全体での意思決定を行います。
+このメーリングリストでは、リリース、開発者会議、スプリント、カンファレンストークなど、NumPy についてのアナウンスなどにも利用されます。
+
+このメーリングリストでは、一番下のメールを使用し、メーリングリストに返信して下さい( 他の送信者ではなく)。 このメーリングリストの検索可能なアーカイブは [こちら](https://mail.python.org/archives/list/numpy-discussion@python.org/) にあります。
+
+***
+
+### [GitHub イシュートラッカー](https://github.com/numpy/numpy/issues)
+
+- バグレポート(例:”`np.arange(3).shape` が`(5,)`を返しています。ここでは`(3,)`が返るべきです。");
+- ドキュメントの問題 (例: "I find this section unclear");
+- 機能追加リクエスト (例: "np.percentile に新しい補間方法を追加したいと考えています。").
+
+ちなみに、セキュリティの脆弱性を報告するには、GitHubのイシュートラッカーは適切な場所ではないことに注意してください。 NumPyのセキュリティ上の脆弱性を発見したと思われる場合は、 [ここ](https://tidelift.com/docs/security)に報告してください。
+
+***
+
+### [Slack](https://numpy-team.slack.com)
+
+NumPyへの_貢献_ について質問するリアルタイムのチャットルーム。
+具体的には、 公開のメーリングリストやGitHubで質問やアイデアを持ち出すことを躊躇している人々のためのものです。
+詳細と招待の取得方法については、
+[こちら](https://numpy.org/devdocs/dev/index.html#contributing-to-numpy) を参照してください。
+
+## 勉強会とミートアップ
+
+NumPyや、データサイエンス、科学技術計算などのより広いエコシステムのためのPythonパッケージついて、もっと学ぶためのローカルミートアップや勉強会を見つけたい場合、 [PyData ミートアップ](https://www.meetup.com/pro/pydata/) (150人以上のミートアップ、10万人以上のメンバーをまとめたもの) を調べてみることをお勧めします。
+
+加えて、NumPy では開発チームと参加に興味があるコントリビュータのために、対面でのスプリントを時折開催しています。 加えて、NumPy では開発チームと参加に興味があるコントリビュータのために、対面でのスプリントを時折開催しています。 この開発スプリントは通常数ヶ月に一度に開催されており、 [メーリングリスト](https://mail.python.org/mailman/listinfo/numpy-discussion) で開催連絡されます。
+
+## カンファレンス
+
+NumPy プロジェクトは独自のカンファレンスは開催していません。 NumPy の管理者や、コントリビュータ、ユーザーに最も人気があったカンファレンスは、SciPy および PyDataのカンファレンスです。
+
+- SciPy US
+- EuroSciPy
+- SciPy Latin America
+- SciPy India
+- SciPyData Japan
+- PyData conference (年に15~20のイベントが様々な国で開催されています。 )
+
+これらのカンファレンスの多くは、NumPyの使い方や関連するオープンソースプロジェクトに貢献する方法を学ぶことができるチュートリアルを開催しています。
+
+## NumPy コミュニティに参加する
+
+NumPyプロジェクトを成功させるには、あなたの専門知識とプロジェクトに関する熱意が必要です。 プログラマーじゃないから参加できない? そんなことはありません! NumPy に貢献する様々な方法があります。
+
+Numpy コントリビューターになることに興味があるなら(やった!) [貢献する方法](/contribute) のページを確認することをお勧めします。
+
+また、私たちのコミュニティミーティングにもぜひ参加してみてください。 コミュニティミーティングの活動を確認するには、[こちら](https://scientific-python.org/calendars/)のイベントカレンダーを確認ください。
diff --git a/content/ja/config.yaml b/content/ja/config.yaml
new file mode 100644
index 00000000..72680784
--- /dev/null
+++ b/content/ja/config.yaml
@@ -0,0 +1,109 @@
+languageName: 日本語 (Japanese)
+params:
+ description: NumPyが広く利用される理由 強力な多次元配列、数値計算ツール群、相互運用性、高いパフォーマンス、オープンソース
+ navbarlogo:
+ image: logo.svg
+ text: NumPy
+ link: /ja/
+ hero:
+ # Main hero title
+ title: NumPy
+ # Hero subtitle (optional)
+ subtitle: Pythonによる科学技術計算の基礎パッケージ
+ # Button text
+ buttontext: "最新リリース: Numpy 1.26. すべてのリリースを表示する"
+ # Where the main hero button links to
+ buttonlink: "/ja/news/#releases"
+ # Hero image (from static/images/___)
+ image: logo.svg
+ shell:
+ title: placeholder
+ intro:
+ - title: NumPy を試す
+ text: インタラクティブシェルを使用して、ブラウザ上で Numpy を試してみてください。
+ docslink: ドキュメント を確認することを忘れないでください。
+ casestudies:
+ title: ケーススタディ
+ features:
+ - title: 世界初のブラックホール画像
+ text: NumPyはどのように、SciPyやMatplotlibなどのNumPyに依存するライブラリとともに、イベントホライズンテレスコープによる世界初のブラックホール画像の作成を可能にしたのでしょうか。
+ img: /images/content_images/case_studies/blackhole.png
+ alttext: 世界初のブラックホール画像。黒い背景にオレンジ色の円で描かれています。
+ url: /ja/case-studies/blackhole-image
+ - title: 重力波の検知
+ text: 1916年、アルバート・アインシュタインは重力波を予言しました。100年後、LIGOの研究者たちはNumPyを使ってその存在を確認しました。
+ img: /images/content_images/case_studies/gravitional.png
+ alttext: 2つのオーブがお互いに周回し、周りの重力を変位させています。
+ url: /ja/case-studies/gw-discov
+ - title: スポーツ分析
+ text: クリケット分析は、統計的モデリングと予測分析によって選手やチームのパフォーマンスを向上させることで、クリケットの試合を変えようとしています。多くの分析が、NumPyにより可能になりました。
+ img: /images/content_images/case_studies/sports.jpg
+ alttext: 緑のフィールド上にあるクリケットボール。
+ url: /ja/case-studies/cricket-analytics
+ - title: 深層学習による姿勢推定
+ text: DeepLabCutはNumPyを利用し、動物の種類や時間スケールによらない運動制御の理解へ向け、動物の行動観察を含む科学技術研究を加速させています。
+ img: /images/content_images/case_studies/deeplabcut.png
+ alttext: チータの姿勢推定
+ url: /ja/case-studies/deeplabcut-dnn
+ tabs:
+ title: NumPyのエコシステム
+ section5: false
+ navbar:
+ - title: インストール
+ url: /ja/install
+ - title: ドキュメント
+ url: https://numpy.org/doc/stable
+ - title: NumPyの学び方
+ url: /ja/learn
+ - title: コミュニティ
+ url: /ja/community
+ - title: 私達について
+ url: /ja/about
+ - title: ニュース
+ url: /ja/news
+ - title: NumPyに貢献する
+ url: /ja/contribute
+ footer:
+ logo: logo.svg
+ socialmediatitle: ""
+ socialmedia:
+ - link: https://github.com/numpy/numpy
+ icon: github
+ - link: https://www.youtube.com/channel/UCguIL9NZ7ybWK5WQ53qbHng
+ icon: youtube
+ quicklinks:
+ column1:
+ title: ""
+ links:
+ - text: インストール
+ link: /ja/install
+ - text: ドキュメント
+ link: https://numpy.org/doc/stable
+ - text: NumPyの学び方
+ link: /ja/learn
+ - text: 引用する
+ link: /ja/citing-numpy
+ - text: ロードマップ
+ link: https://numpy.org/neps/roadmap.html
+ column2:
+ links:
+ - text: 私達について
+ link: /ja/about
+ - text: コミュニティ
+ link: /ja/community
+ - text: ユーザーの調査
+ link: /ja/user-surveys
+ - text: NumPyに貢献する
+ link: /ja/contribute
+ - text: 行動規範
+ link: /ja/code-of-conduct
+ column3:
+ links:
+ - text: サポートを得る方法
+ link: /ja/gethelp
+ - text: 利用規約
+ link: /ja/terms
+ - text: プライバシーポリシー
+ link: /ja/privacy
+ - text: プレス用資料
+ link: /ja/press-kit
diff --git a/content/ja/contribute.md b/content/ja/contribute.md
new file mode 100644
index 00000000..848da978
--- /dev/null
+++ b/content/ja/contribute.md
@@ -0,0 +1,81 @@
+---
+title: NumPy に貢献する
+sidebar: false
+---
+
+NumPyプロジェクトを成功させるには、あなたの専門知識とプロジェクトに関する熱意が必要です。
+あなたの貢献の方法の選択肢はプログラミングに限ったものではありません。
+
+どこから始めればよいか、または自分のスキルがどのように役立つかわからない場合は、ぜひ声をかけてください!
+[mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion) や[GitHub](http://github.com/numpy/numpy) で質問できます([issue](https://github.com/numpy/numpy/issues)を作成したり、関連する issue にコメントしたりしてください)。
+
+これらが私たちにとって好ましい連絡手段ですが(元来、オープンソースプロジェクトはオープンなコミュニケーション方法を好みます)、もしどうしても非公開の方法で連絡を取りたい場合は、コミュニティコーディネーターに連絡して下さい。連絡先としては、
追加の説明に関しては、私たちの[Youtube チャンネル](https://www.youtube.com/playlist?list=PLCK6zCrcN3GXBUUzDr9L4__LnXZVtaIzS)もご覧ください。
+
+### プルリクエストのレビュー
+
+NumPyプロジェクトには現時点で250以上のオープンなプルリクエストがあり、多くの 改善要求と多くのレビュワーからのフィードバックを待っています。 もしあなたがNumPy を使ったことがある場合、 たとえNumPyコードベースに慣れていない場合でも貢献する方法はあります。 例えば、
+
+- 長期にわたる議論をまとめる
+- ドキュメントのPRをトリアージする
+- 提案された変更をテストする
+
+### 教育用の資料を作成する
+
+NumPy の [ユーザガイド](https://numpy.org/devdocs) は現在、大規模な再設計中です。
+新しいNumPyのWebページは、新しいチュートリアルや、NumPyの使い方、NumPy内部の深い説明など必要としており、サイト全体にも再設計と再構築が必要です。 このウェブサイトの再構築の作業は、ドキュメントを書くだけではありません。 コード例や、ノートブック、ビデオなどの作成も歓迎しています。 [NEP 44 — Restructuring the NumPyのドキュメントの再構成](https://numpy.org/neps/nep-0044-restructuring-numpy-docs.html)に、我々のウェブサイトの再構築についての詳細が説明されています。
+
+### イシューのトリアージ
+
+[NumPyのイシュートラッカー](https://github.com/numpy/numpy/issues) には、 _沢山の_未解決状態のイシューがあります。 すでに解決されたもの、優先順位付けされるべきもの、 初心者が取り組むのに適したものがあります。 例えば、
+
+- 古いバグがまだ残っているか確認する
+- 重複したイシューを見つけ、お互いに関連づける
+- 問題を再現するコードを作成する
+- イシューに正しいラベル付けをする (トリアージ権が必要なので、連絡下さい)
+
+ぜひ、やってみて下さい。
+
+### ウェブサイトの開発
+
+私たちはちょうどウェブサイトを作り直し始めたところですが、それらはまだ完了していません。 Web開発が好きなら、これらの[イシュー](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign) に未解決な課題や要求が列挙されています。 ぜひ、あなたのアイデアを共有してください。
+
+### グラフィックデザイン
+
+グラフィックデザイナーの方が可能な貢献は、枚挙にいとまがありません。
+しかし、私たちのドキュメントは説明のために可視化が重要であり、私たちの拡大しているウェブサイトは良い画像を求めていることから、 貢献する機会が沢山あると言えます。
+
+### ウェブサイトの翻訳
+
+私たちは、[numpy.org](https://numpy.org) を複数言語に翻訳し、NumPyに母国語でアクセスできるようにしたいと思っています。 これを実現するには、ボランティアの翻訳者が必要です。 詳しくは[このイシュー](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n)を参照してください。もしくは、こちらの [ イシュー](https://github.com/numpy/numpy.org/issues/55) にコメントしてサインアップしてください。
+
+### コミュニティとの連携とアウトリーチ
+
+コミュニティとのコミュニケーションを通じて、私たちは、NumPyより広く知ってもらい、どこに問題があるのかを知りたいと思っています。 私たちは、NumPyの[コードスプリント](https://scisprints.github.io/)の開催、ニュースレターの発行、そしておそらくブログなどを通じて、より沢山の人にコミュニティに参加して欲しいと思っていす。
+
+### 資金調達
+
+NumPyは何年にも渡ってボランティアだけ活動していましたが、その重要性が高まるにつれ、安定性と成長のためには資金面での支援が必要であることがわかってきました。
+この[SciPy'19の発表](https://www.youtube.com/watch?v=dBTJD_FDVjU) では、サポートでどれだけ変わったかを説明しています。 他の非営利団体のように、私たちは助成金や、スポンサーシップ、その他の資金支援を常に探しています。 私たちはすでにいくつかの資金調達のアイデアを持っていますが、他にもより多くを資金調達を受けたいと思っています。
+資金調達に関する知識は、我々には不足しているスキルです。 是非、あなたのサポートをお待ちしています。
+
+### 寄付
+
+寄付をすることでNumpy に貢献したい場合は、 [寄付のページ](https://numpy.org/about/#donate)をご覧ください。
+
+
diff --git a/content/ja/gethelp.md b/content/ja/gethelp.md
new file mode 100644
index 00000000..125ad4aa
--- /dev/null
+++ b/content/ja/gethelp.md
@@ -0,0 +1,20 @@
+---
+title: サポートを得る方法
+sidebar: false
+---
+
+**開発関連の問題:** NumPyの開発関連の問題 (例: バグレポート) については、[コミュニティ](/community) のページを参照してください。
+
+**ユーザーからの質問:** ユーザーからの質問に対して回答を得る最も良い方法は、[StackOverflow](http://stackoverflow.com/questions/tagged/numpy)や[Reddit](https://www.reddit.com/r/Numpy/)に質問を投稿することです。 私たちはこれらのサイトを定期的に確認して、直接質問に答えるようにしていますが、質問の数は膨大なのが現実です。
+
+### [StackOverflow](http://stackoverflow.com/questions/tagged/numpy)
+
+NumPyの使用方法に関する質問をするためのフォーラムです。 例えば、「NumPyでXをするにはどうすればいいですか? 質問には [`#numpy` tag]を使って下さい。(https://stackoverflow.com/help/tagging)
+
+***
+
+### [Reddit](https://www.reddit.com/r/Numpy/)
+
+もう一つの使い方に関する質問の場です。
+
+***
diff --git a/content/ja/history.md b/content/ja/history.md
new file mode 100644
index 00000000..9625ba6f
--- /dev/null
+++ b/content/ja/history.md
@@ -0,0 +1,22 @@
+---
+title: NumPyの歴史
+sidebar: false
+---
+
+NumPy は配列データ構造と配列に関連する高速な数値ルーチンを提供する Python 基礎的なライブラリです。 開始当初は資金も少なく、主に大学院生により開発されていました。その多くはコンピュータサイエンスの教育を受けておらず、指導教官のサポートも受けていませんでした。少数の "野良"学生プログラマーのグループが、すでに確立されていた商用研究ソフトウェアのエコシステムをひっくり返すなんて、想像することすら馬鹿げていました。
+商用ソフトは、何百万もの資金と何百人もの優秀なエンジニアに支えられていましたから。それでも、独特の視点を持つ熱狂的でフレンドリーなコミュニティに助けられ、完全にオープンなツールスタックの背後にある哲学的な動機は、長い目では日の目を見てきました。現在では、NumPyは科学者、技術者、および世界中の多くの専門家によって信頼され、使われています。 例えば、重力波の解析に用いられた公開スクリプトはNumPyを利用していますし、「M87ブラックホール画像化プロジェクト」では、直接NumPyを引用しています。 このライブラリの開発開始当初は資金も少なく、主に大学院生が開発していましたが、その多くはコンピュータサイエンスの教育を受けておらず、指導教官のサポートも受けていませんでした。 何百万もの資金調達と何百人もの優秀なエンジニアに支えられている当時の商用研究ソフトウェアのエコシステムを、少数の "野良"学生プログラマーのグループがひっくり返すことができると想像することさえ、当時は馬鹿げていると考えられていました。 それでも、独特の視点を持つ熱狂的でフレンドリーなコミュニティに助けられ、完全にオープンなツールスタックの背後にある哲学的な動機は、長い目では日の目を見てきました。 現在では、Numpy は科学者、技術者、および世界中の多くの専門家によって信頼され、使われています。 例えば、重力波の解析に用いられた公開スクリプトはNumPyを利用していますし、「M87ブラックホール画像化プロジェクト」では、直接NumPyを引用しています。
+
+NumPy および関連ライブラリの開発におけるマイルストーンの詳細については、 [arxiv.org](arxiv.org/abs/1907.10121) を参照してください。
+
+NumPyのベースとなったNumericとNumarrayライブラリのコピーを入手したい場合は、以下のリンクを参照してください。
+
+[ _Numeric_](https://sourceforge.net/projects/numpy/files/Old%20Numeric/) のダウンロード\*\*
+
+[\*Numarray \*](https://sourceforge.net/projects/numpy/files/Old%20Numarray/) のダウンロード\*\*
+
+\*これらの古いパッケージはもはや保守されていないことに注意してください。 配列関連の処理をしたい場合は、NumPyを使用するか、NumPyライブラリを利用するために、古いパッケージを使っていた既存のコードをリファクタリングすることを強くお勧めします。
numpyをインストールできます)、一緒に動作することもできます。
+
+2つ目の違いは、pipはPython Packaging Index(PyPI) からパッケージをインストールするのに対し、condaは独自のチャンネル(一般的には "defaults "や "conda-forge "など) からインストールすることです。 PyPIは最大のパッケージ管理システムですが、人気のある全てのパッケージがcondaでも利用可能です。
+
+3つ目の違いは、condaはパッケージ、依存関係、環境を管理するための統合されたソリューションであるのに対し、pipでは環境や複雑な依存関係を扱うために別のツールであることです。(他にもたくさん存在しています!) これらのツールは様々な環境や複雑な依存関係を取り扱うことができます
+
+- **Conda:** conda を使用している場合、デフォルトの設定先、または conda-forge チャンネルから NumPyをインストールできます。
+ ```bash
+ conda create -n my-env
+ conda activate my-env
+ conda conda install numpy
+ ```
+- **Pip:**
+ ```bash
+ pip install numpy
+ ```
+
+{{< admonition >}}
+{{< /admonition >}}
+
+ ```bash
+ python -m venv my-env
+ source my-env/bin/activate # macOS/Linux
+ my-env\Scripts\activate # Windows
+ pip install numpy
+ ```
+
+
+
+[[tab]]
+name = 'システムパッケージマネージャを利用'
+content = '''
+ほとんどのユーザーには推奨されませんが、こちらの方が便利な人向けに利用可能です。
+
+**macOS (Homebrew):**
+
+```bash
+# base envにインストールするのでなく、environmentを作成するのがベストプラクティスです
+conda create -n my-env
+conda activate my-env
+# conda-forgeからインストールする場合
+conda config --env --add channels conda-forge
+# インストールコマンド
+conda install numpy
+```
+
+**Linux (APT):**
+
+```bash
+sudo apt install python3-numpy
+```
+
+**Windows (Chocolatey):**
+
+```bash
+choco install numpy
+```
+
+
+
+[[tab]]
+name = 'ソースコードからビルドする'
+content = '''
+**NumPy**をカスタマイズやデバッグしたい、経験豊富なユーザーや開発者向け
+
+警告:ソースコードからNumPyをビルドすることは簡単では無い場合があります。
+前述のいずれかの方法であなたの環境NumPyを使用できる場合は、バイナリを使用することをお勧めします.
+ソースからのビルドの詳細な方法については、[Numpy docsのソースガイドからのビルド](https://numpy.org/devdocs/building/)を参照してください。
+
+{{< /tabs >}}
+
+## 推奨方法
+
+NumPy をインストールした後、以下のコードをPython シェルまたはスクリプトで実行して、インストールが正しく実施されているか確認してください。
+
+```python
+import numpy as np
+print(np.__version__)
+```
+
+インストールに問題が無い場合は、インストールされているNumPyのバージョンが表示されるはずです。
+
+## トラブルシューティング
+
+以下のメッセージが表示されてインストールに失敗した場合は、トラブルシューティング
+ImportErrorを参照してください。
+
+```
+重要:この問題を解決する方法についてのアドバイスを読む前に、こちらを必ずお読みください!
+
+NumPy の C 拡張モジュールのインポートに失敗しました。このエラーは、さまざまな理由で発生する可能性があり、多くの場合は環境セットアップの問題が原因です。
+```
+
diff --git a/content/ja/learn.md b/content/ja/learn.md
new file mode 100644
index 00000000..70600d1d
--- /dev/null
+++ b/content/ja/learn.md
@@ -0,0 +1,76 @@
+---
+title: NumPyの学び方
+sidebar: false
+---
+
+**公式の NumPy ドキュメント** については [numpy.org/doc/stable](https://numpy.org/doc/stable)を参照してください。
+
+***
+
+以下は、Numpyへの貢献者とコミュニティによって開発された、NumPyの自己学習と他人への教育のための資料です。
+
+## 初心者向け
+
+NumPyについての資料は多数存在しています。 初心者の方にはこちらの資料を強くお勧めします:
+
+ **チュートリアル**
+
+- [NumPy Quickstart チュートリアル](https://numpy.org/devdocs/user/quickstart.html)
+- [NumPyチュートリアル](https://numpy.org/numpy-tutorials) Jupyter Notebook 形式で作成され、NumPy ドキュメントチームによって開発・管理されているチュートリアルおよび教育用資料のコレクションです。 もし独自のコンテンツを追加したい場合は、[GitHubのnumpy-tutorialリポジトリ](https://github.com/numpy/numpy-tutorials)を参照してください。
+- [NumPy Illustrated: イラストで学ぶNumPy _by Lev Maximov_](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
+- [科学技術向けPythonレクチャー](https://lectures.scientific-python.org/) NumPyだけでなく、科学技術用のPythonソフトウェアエコシステムを広く紹介しています。
+- [NumPy: 初心者のための基礎](https://numpy.org/devdocs/user/absolute_beginners.html)
+- [NumPy チュートリアル _by Nicolas Rougier_](https://github.com/rougier/numpy-tutorial)
+- [スタンフォード大学 CS231 _by Justin Johnson_](http://cs231n.github.io/python-numpy-tutorial/)
+- [NumPyユーザーガイド](https://numpy.org/devdocs)
+
+ **書籍**
+
+- [NumPガイド _Travelis E. Oliphant著_](http://web.mit.edu/dvp/Public/numpybook.pdf) これは2006年の無料版の初版です。 最新のバージョンについては、 [こちら](https://dl.acm.org/doi/10.5555/2886196) を参照してください。
+- [Python から NumPy へ _Nicolas P. Rougier_] (https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
+- [エレガントなSciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877) _Juan Nunez-Iglesias・Stefan van der Walt・Harriet Dashnow 著_
+
+また、「Python+SciPy」を題材にした[推薦本リスト](https://www.goodreads.com/shelf/show/python-scipy) もチェックしてみてください。 ほとんどの本にはNumPyを核とした「SciPyエコシステム」が説明されています。
+
+ **動画**
+
+- [NumPy を使った数値計算入門](http://youtu.be/ZB7BZMhfPgk) _by Alex Chabot-Leclerc_
+
+***
+
+## 上級者向け
+
+高度なインデックス指定、分割、スタッキング、線形代数など、NumPyの概念をより深く理解するためには、これらの上級者向け資料を試してみてください。
+
+ **チュートリアル**
+
+- [NumPy 演習100本ノック](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html) _Nicolas P. Rougier_
+- [NumPyとSciPy入門](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf) _M. Scott Shell_
+- [NumPy救急キット](http://mentat.za.net/numpy/numpy_advanced_slides/) _Stéfan van der Walt_
+- [NumPyチュートリアル](https://numpy.org/numpy-tutorials) Jupyter Notebook 形式で作成され、NumPy ドキュメントチームによって開発・管理されているチュートリアルおよび教育用資料のコレクションです。 もし独自のコンテンツを追加したい場合は、[GitHubのnumpy-tutorialリポジトリ](https://github.com/numpy/numpy-tutorials)を参照してください。
+
+ **書籍**
+
+- [Pythonデータサイエンスハンドブック](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1491912057) _Jake Vanderplas著_
+- [Pythonによるデータ解析](https://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1491957662) _Wes McKinney著_
+- [Pythonによる数値解析: NumPy, SciPy, Matplotlibによる数値計算とデータサイエンスアプリケーション](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) _Robert Johansson著_
+
+ **動画**
+
+- [アドバンスドNumPy - ブロードキャストルール・ストライド・高度なインデックス指定](https://www.youtube.com/watch?v=cYugp9IN1-Q) _Fan Nunuz-Iglesias著_
+
+***
+
+## NumPyに関する講演
+
+- [NumPyにおけるインデクシングの未来](https://www.youtube.com/watch?v=o0EacbIbf58) _Jaime Fernadez_ (2016)
+- Pythonにおける配列計算の進化 _Ralf Gommers_ (2019)
+- [NumPy: 今までどう変わってきて、今後どう変わっていくのか? ](https://www.youtube.com/watch?v=YFLVQFjRmPY) _Matti Picus_ (2019)
+- [NumPyの内部](https://www.youtube.com/watch?v=dBTJD_FDVjU) _Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stefan van der Walt, Charles Harris_ (2019)
+- [Pythonにおける配列計算の概要](https://www.youtube.com/watch?v=f176j2g2eNc) _Travis Oliphant_ (2019)
+
+***
+
+## 引用する
+
+もし、あなたの研究においてNumPyが重要な役割を果たし、論文でこのプロジェクトについて言及したい場合は、こちらの[ページ](/ja/citing-numpy)を参照して下さい。
diff --git a/content/ja/news.md b/content/ja/news.md
new file mode 100644
index 00000000..bdf1ba1a
--- /dev/null
+++ b/content/ja/news.md
@@ -0,0 +1,340 @@
+---
+title: ニュース
+sidebar: false
+newsHeader: NumPy 1.26.0 がリリースされました。
+date: 2023-09-16
+---
+
+### NumPy 2.2.0 がリリースされました。
+
+_2024年12月8日_ -- NumPy 2.2.0のリリースは通常の一年に二回のサイクルのリリースです。 今回のリリースでは、いくつかの小さなコードクリーンアップや、StringDTypeの改善、そしてPythonのフリースレッドに対するサポートの向上を実施しています。 このリリースの目玉機能は下記の通りです。
+
+- 新しい関数である`matvec`と`vecmat`の追加
+- 多数のアノテーションの改善
+- 新しいStringDTypeのサポートの改善
+- Pythonのフリースレッドサポートの改善
+- f2pyの修正
+
+今回のリリースでは Python のバージョン 3.10から3.13 がサポートされています。
+
+### NumPy 1.26.0 がリリースされました。
+
+_2024 Aug, 2024_ -- Numpy 2.1.0 は Python 3.13 をサポートし、Python 3.9をサポート外としました。 今回のリリースは通常のバグ修正やPythonサポートの更新に加えて、NumPyが2.0の長期開発を経て、通常のリリースサイクルに戻るためのリリースでもあります。 今回のリリースのハイライトは下記の通りです。 今回のリリースは通常のバグ修正やPythonサポートの更新に加えて、NumPyが2.0の長期開発を経て、通常のリリースサイクルに戻るためのリリースでもあります。 今回のリリースのハイライトは下記の通りです。
+
+- Python 3.12.0 のサポート
+- 多くの期限切れの非推奨(Deprecation)の削除
+- Array-api 2023.12 標準のサポート
+
+Python バージョン 3.10-3.13 か、このリリースでサポートされています。
+
+### 多くの新しい非推奨(Deprecation)の追加
+
+_2024年6月16日_ -- Numpy 2.0.0 は2006年以来のメジャーリリースです。 これは、前回の機能リリースから11か月間の開発の成果であり、1078件のプルリクエストにわたる212人の貢献者の成果となります。 このリリースには、大きく、エキサイティングな新機能と、PythonとCの両方のAPIへの変更が含まれています。 今回のリリースが、通常のマイナーリリースでは実施できなかった互換性を破壊する変更を含んでいます。これには、ABIの破壊、型昇格ルールの変更、および1.26.xでは非推奨警告が出されていなかった可能性のあるAPIの変更が含まれています。 NumPy 2.0の変更に対応する方法に関する主要なドキュメントは次のとおりです。
+
+- [NumPy 2.0移行ガイド](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- [2.0.0 リリースノート](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- ステータス更新のお知らせイシューチケット: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+ブログ記事 ["NumPy 2.0: 進化のマイルストーン"](https://blog.scientific-python.org/numpy/numpy2/) は、今回のメジャーバージョンリリースがどのようにして決定されたかについてのストーリーを少し伝えています。
+
+### NumPy 1.25.0 リリース
+
+_2024年5月23日_ -- NumPy 2.0が2024年6月16日にリリースされる予定になりました! このリリースは1年以上かけて我々が準備してきたもので、2006年以来のメジャーリリースとなります。 このリリースで重要なことは、多くの新機能とパフォーマンスの向上に加えて、 このリリースは、
+**破壊的な変更** である Python と C API を含む、ABI への変更 が含まれています。 NumPyに依存しているパッケージやエンドユーザーのコードがこのは破壊的変更に適応する必要がある可能性があります。可能であれば、あなたのコードがNumPy '2.0.0rc2'で動作するかどうか確認をお願いします。 **詳細は下記をご覧ください:**
+
+- [NumPy 2.0移行ガイド](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- [2.0.0 リリースノート](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- ステータス更新のお知らせイシューチケット: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+### NumFOCUSの年末の資金調達
+
+_2023年12月19日_ -- NumFOCUSは、年末キャンペーンでPyCharmチームと協力し、PyCharmライセンスの初回購入に30%の割引を提供しています。 2023年12月23日までのPyCharm購入による1年目の収益は全てNumFOCUSのプログラムに直接寄付されます。
+
+購入される方はこちらのURLか: https://lp.jetbrains.com/support-data-science/ こちらのクーポンコードを利用してください: ISUPPORTDATASCIENCE
+
+### NumPy 1.20.0 リリース
+
+_2023年9月16日_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)がリリースされました。 今回のリリースのハイライトは次のとおりです。
+
+- Python 3.12.0 のサポート
+- Cython 3.0.0 との互換性
+- Mesonビルドシステムの利用
+- SIMD サポートの改善
+- f2py のバグ修正, meson と bind(x) のサポート
+- 更新された BLAS/LAPACK の高速化ライブラリのサポート
+
+Numpy 1.26.0 は 1.25 からの互換性を保持しています。Mesonビルドシステムへの移行とCython 3.0.0へのサポートが目的のリリースです。
+合計20人がこのリリースに貢献し、59個のプルリクエストがマージされました。
+
+このリリースでサポートされている Python のバージョンは3.9から 3.12 です。
+
+### numpy.orgが日本語とポルトガル語で利用可能になりました
+
+_2023年4月2日_ -- numpy.orgが2つの言語で利用可能になりました: 日本語とポルトガル語。 熱心なボランティアがいなければ、このプロジェクトは不可能でした: 熱心なボランティアがいなければ、このプロジェクトは不可能でした:
+
+_ポルトガル語_
+
+- Melissa Weber Mendonça (melissawm)
+- Ricardo Prins (ricardoprins)
+- Getúlio Silva (getuliosilva)
+- Julio Batista Silva (jbsilva)
+- Alexandre de Siqueira (alexdesiqueira)
+- Alexandre B A Villares (villares)
+- Vini Salazar (vinisalazar)
+
+_日本語:_
+
+- Atsushi Sakai (AtsushiSakai)
+- KKunai
+- Tom Kelly (TomKellyGenetics)
+- Yuji Kanagawa (kngwyu)
+- Tetsuo Koyama (tkoyama010)
+
+翻訳インフラストラクチャに関するプロジェクトは、CZIからの資金援助でサポートされています。
+
+今後も、NumPyのウェブサイトをより多くの言語に翻訳したいと思っています。
+もし手伝える場合は、Slack上のNumPy翻訳チームに連絡をお願います: https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
+(#translation チャンネルを探してください) (#translation チャンネルを探してください) また、Scientific Pythonエコシステム全体のドキュメントや教育コンテンツのローカライズに取り組む翻訳チームも 立ち上げています。 このプロジェクトにも興味がある場合は、是非Scientific Python Discordに参加してください: https://discord.gg/khWtqY6RKr. (#translation チャンネルを探してください)
+
+### Numpy 1.23.0 リリース
+
+_2023年6月17日_ -- [Numpy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) がリリースされました。 今回のリリースの目玉機能は次のとおりです。 今回のリリースのハイライトは次のとおりです。
+
+- MUSLのサポート。 MUSLのWheelが準備されました。
+- 富士通のC/C++コンパイラサポート
+- einsum でオブジェクト配列がサポートされるようになりました.
+- 行列の置き換え(inplace)掛け算のサポート (`@=`).
+
+Numpy 1.25. リリースは引き続きdtypeの取り扱いと dtypeのプロモーションを改善し、実行速度を向上させ、 ドキュメントを明確化するための継続的な作業を続けて行く予定です。 将来の NumPy 2.0.0 に向けた準備作業も行われており、 多数の新規および期限切れの機能廃止が可能となってきています。
+
+合計148人がこのリリースに貢献し、530個のプルリクエストが マージされました。
+
+このリリースでサポートされている Python のバージョンは3.3.9 - 3.11 です。
+
+### インクルーシブな文化の育成: 参加の募集
+
+_2023年5月10日_ -- インクルーシブ・カルチャーの育成: 参加募集
+
+NumPyプロジェクトの多様性とインクルージョンに関して、我々はどのようなことを実施すればいいでしょうか?
+[こちら](https://contributor-experience.org/docs/posts/dei-report/) のレポートを読んで、参加する方法を確認してください。
+
+### NumPy ドキュメンテーションチームのリーダーの変更
+
+_2023年1月6日_ –- Mukulika PahariとRoss Barnowskiは、Melissa MendoncAudioに代わるNumPyドキュメンテーションチームの新しいリーダーとして任命されました。 私たちは、MelissaにNumPyの公式ドキュメントと教育資料に対するすべての貢献に感謝し、MukulikaとRossに新しい役割にステップアップしてもらったことに感謝します。 私たちは、MelissaにNumPyの公式ドキュメントと教育資料に対するすべての貢献に感謝し、MukulikaとRossに新しい役割にステップアップしてもらったことに感謝します。
+
+### NumPy 1.24.0 リリース
+
+_2022年12月18日_ -- [Numpy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) がリリースされました。 今回のリリースのハイライトは次のとおりです。
+
+- スタッキング関数のための新しい"dtype"と"casting"キーワードの追加
+- F2PYの新機能追加とバグ修正
+- 多くの新しい非推奨(Deprecation)の追加
+- 多くの期限切れの非推奨(Deprecation)の削除
+
+Numpy 1.25. リリースは引き続きdtypeの取り扱いと dtypeのプロモーションを改善し、実行速度を向上させ、 ドキュメントを明確化するための継続的な作業を続けて行く予定です。
+dtype のプロモーションとクリーンアップの変更により、多数の新規と期限切れの非推奨が存在しています。 今回のリリースは、444個のプルリクエストと177人のコントリビューターによるものです。 サポートされている Python のバージョンは 3.8-3.11 です。
+
+### Numpy 1.26.0 は 1.25 からの互換性を保持しています。
+
+_2022年6月22日_ -- [Numpy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) がリリースされました。 今回のリリースのハイライトは次のとおりです。
+
+- `loadtxt` がCで実装されたことによる、大幅なパフォーマンス向上
+- より簡単なデータ交換のためのPythonレベルでのDLPackの公開
+- 構造化されたdtypesのプロモーションと比較方法の変更
+- f2pyの改善
+
+Numpy 1.23. リリースでは引き続きdtypeの取り扱いと
+dtypeのプロモーションを改善し、実行速度を向上させ、
+ドキュメントを明確化するための継続的な作業を続けて行く予定です。 今回のリリースは、494個のプルリクエストと151人のコントリビューターによるものです。 このリリースでサポートされている Python のバージョンは 3.8 - 3.10 です。
+Python 3.11がrc ステージに到達すると Python 3.11 もサポートされます。
+
+### NumFOCUS DEI研究への参加募集
+
+_2022年4月13日_ -- NumPyは、[NumFOCUS](http://numfocus.org/)と協力して、ある研究プロジェクトを進めており、これはGordon & Betty Moore Foundationによって資金提供されています。 この研究チームは、新しい貢献者、プロジェクトの開発者およびメンテナー、そして過去に貢献した方々に、NumPyに参加し貢献した経験について話を聞きたいと考えています。 この研究チームは、新しい貢献者、プロジェクトの開発者およびメンテナー、そして過去に貢献した方々に、NumPyに参加し貢献した経験について話を聞きたいと考えています。
+
+**あなたの経験を共有することに興味がありますか?**
+
+もし興味がある場合は、研究目標、プライバシー、および 守秘義務に関する追加情報が記載されている、この簡単な[参加者の興味分野のアンケート](https://numfocus.typeform.com/to/WBWVJSqe)に記入をお願いします。 多様で包括的なオープンソースソフトウェアコミュニティの 成長と持続可能性のために、このプロジェクトへのあなたの参加は非常に大きな価値があります。 参加を受け入れられた人は、研究チームメンバーと30分間のインタビューに参加することになります。
+
+### NumPy 1.19.2 リリース
+
+_2021年12月31日_ -- [Numpy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) がリリースされました。 今回のリリースのハイライトは次のとおりです。
+
+- メインの名前空間の型アノテーションは基本的に完了しました。 上流のコードは常に変化するものなので、さらなる改良が必要でしょうが、大きな作業は終わったと考えています。 これはおそらく、今回のリリースで最も目に見える改良でしょう。
+- 以前から提案されていた [array API 標準](https://data-apis.org/array-api/latest/) のベータ版が提供されています ( [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html) を参照) 。 これは、CuPy や JAX などのライブラリで使用できる 関数の標準的なコレクションを作成するために必要なステップです。
+ これは、CuPy や JAX などのライブラリ間で使用できる標準的な関数コレクションを作成するための第一歩です。
+- NumPy に DLPack バックエンドが追加されました。 DLPack は、配列(テンソル)データの共通な交換フォーマットを提供します。
+- `quantile`, `percentile`, および関連する関数に新しいメソッドが追加されました。 これらの新しいメソッドは、論文で一般的に見られる一通りの処理を提供します。 新しい関数では、文献で一般的に見られる方法と同様の関数群を提供します。
+- ユニバーサル関数は、[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html) の多くを実装するためにリファクタリングされました。 これにより将来の DType API の処理も可能にします。
+ これにより将来の DType API の処理も可能にします。
+- ダウンストリームのプロジェクトで使用するための新しい設定可能なメモリー・アロケーターが追加されました。
+
+NumPy 1.22.0は、153人の貢献者が609のプルリクエストを作成した 非常に大きなリリースです。 このリリースでサポートされている Python のバージョンは 3.8 - 3.10 です。
+
+### 科学的なPythonエコシステムにおける包括的な文化の前進
+
+_ 2021年8月31日_ -- この度、Chan Zuckerberg Initiativeより、科学的なPythonプロジェクトにおいて、歴史的に疎外されてきたグループの人々のオンボーディング、インクルージョン、リテンションを支援し、NumPy、SciPy、Matplotlib、Pandasのコミュニティダイナミクスを構造的に改善するための [ 助成金を授与されました ](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) ことをお知らせします。
+
+[ CZIのEssential Open Source Software for Scienceプログラム ](https://chanzuckerberg.com/eoss/)の一環として、この[ Diversity & Inclusion補助金 ](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)は、開けたなオープンソースコミュニティを育成するためにやるべきことを特定したり、文書化したり、実施したりするためのコントリビュータ体験のリーダー専任職の創設を支援することになります。 このプロジェクトは、Melissa Mendonça (NumPy) が中心となって、下記の方々の追加のメンタリングとサポートにより実施されます。 Ralf Gommers (NumPy、SciPy)、Hannah AizenmanとThomas Caswell (Matplotlib)、Matt Haberland (SciPy)、そして Joris Van den Bossche (Pandas)。 このプロジェクトは、Melissa Mendonça (NumPy) が中心となって、下記の方々の追加のメンタリングとサポートにより実施されます。 Ralf Gommers (NumPy、SciPy)、Hannah AizenmanとThomas Caswell (Matplotlib)、Matt Haberland (SciPy)、そして Joris Van den Bossche (Pandas)。
+
+このプロジェクトは私たちのOSSプロジェクトのコミュニティダイナミクスを構造的に改善する方法を発見し、実施することを目指す野心的なプロジェクトです。 このような複数のプロジェクトの横断的な役割を確立することで、Scientific Pythonコミュニティに新しいコラボレーションモデルを導入し、エコシステム内のコミュニティ構築作業をより効率的に、より大きな成果を生めるようにしたいと考えています。 特にこのプロジェクトにより、歴史的にこれまで代表的ではなかったグループからの新しいコントリビュータを引き付け、貢献を維持するために、何がうまくいき、何がうまくいかないかを、より明確に把握できるようになると期待しています。 最後に、実施したアクションについて詳細な報告書を作成し、プロジェクトの代表者やコミュニティとの交流の面で、プロジェクトにどのような影響を与えたかを説明する予定です。
+
+2021年11月から2年間のプロジェクトが始まると予想されており、このプロジェクトの成果を楽しみにしています!
+このプロジェクトの提案書に関しては、[こちら](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063) から全文を読むことができます.
+
+### 2021年度NumPyアンケート
+
+_2021年7月12日_ -- NumPy ではコミュニティの力を信じています。 昨年の第1回アンケートには、75カ国から1,236名のNumPyユーザーが参加してくれました。
+この調査結果により、今後12ヶ月間、私たちがどのようなことに集中すべきかを、非常に良く理解することができました。
+
+今年もアンケートの時間が来ました。もう一度アンケートへの回答をお願いいたします。 アンケートへの回答は15分ほどで終了します。 アンケートは英語以外にも、ベンガル語、フランス語、ヒンディー語、日本語、マンダリン、ポルトガル語、ロシア語、スペイン語の8ヶ国語に対応しています。
+
+こちらのリンク先から、アンケートを始めることができます: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSL4q.
+
+### Numpy 1.18.0 リリース
+
+_2021年1月23日_ -- [Numpy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) がリリースされました。 今回のリリースのハイライトは下記の通りです。 今回のリリースのハイライトは次のとおりです。
+
+- より多くの機能やプラットフォームをカバーするためのSIMD関連の改善が実施されました。
+- dtypeのための新しいインフラとキャストの準備
+- Mac 版の Python 3.8 と Python 3.9 用 universal2 wheel
+- ドキュメントの改善
+- アノテーションの改善
+- 乱数生成用の新しい `PCG64DXSM` ビット生成機
+
+今回のNumpy リリースは、175人による581件のプルリクエストのマージの結果です。 このリリースでサポートされている Python のバージョンは 3.7-3.9 です。 Python 3.10 がリリースされた後、Python 3.10 のサポートが追加されます。
+
+### 2020年度 NumPy アンケート結果
+
+_2021年6月22日_ -- NumPyの調査チームは、2020年に ミシガン大学とメリーランド大学の学生や教員と協力して、最初の公式NumPyコミュニティ調査を実施しました。 アンケートの結果はこちらから確認できます。 https://numpy.org/user-survey-2020/ アンケートの結果はこちらから確認できます。 https://numpy.org/user-survey-2020/
+
+### NumPy 1.19.2 リリース
+
+_2021年1月30日_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) がリリースされました。 今回のリリースは180 人以上のコントリビューターのおかげで、これまでで最大の NumPyのリリースとなりました。 最も重要な2つの新機能は次のとおりです。
+
+- NumPyの大部分のコードに型注釈が追加されました。 そして新しいサブモジュールである`numpy.typing`が追加されました。 このサブモジュールは`ArrayLike` や`DtypeLike`という型注釈のエイリアスが定義されており、これによりユーザーやダウンストリームのライブラリはこの型注釈を使うことができます。
+- X86(SSE、AVX)、ARM64(Neon)、およびPowerPC (VSX) 命令をサポートするマルチプラットフォームSIMDコンパイラの最適化が実施されました。 これにより、多くの関数で大きく パフォーマンスが向上しました (例: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)). これにより、多くの関数で、大きく
+ パフォーマンスが向上しました (例:
+ [sin/cos](https://github.com/numpy/numpy/pull/17587),
+ [einsum](https://github.com/numpy/numpy/pull/18194))。
+
+### NumPyプロジェクトの多様性
+
+_2020年9月20日に_ 、私たちは[ NumPyプロジェクトにおけるダイバーシティやインクルージョンの状況や、ソーシャルメディア上での議論についての宣言 ](/diversity_sep2020)について書きました。
+
+### Natureに初の公式NumPy論文が掲載されました!
+
+_2020年9月16日_ — 私たちは、[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2) が Nature 誌にレビュー記事として掲載されたことをお知らせできることを嬉しく思います。 これはNumPy 1.0のリリースから14年後のことになりました。
+この論文では、配列プログラミングのアプリケーションと基本的なコンセプト、NumPyの上に構築された様々な科学的Pythonエコシステム、そしてCuPy、Dask、JAXのような外部の配列およびテンソルライブラリとの相互運用を容易にするために最近追加された配列プロトコルについて説明しています。
+
+### Python 3.9のリリースに伴い、いつNumPyのバイナリwheelがリリースされるのですか?
+
+_2020年9月14日_ -- Python 3.9 は数週間後にリリースされる予定です。 もしあなたが新しいPythonのバージョンをいち早く利用している場合、NumPy(およびSciPyのような他のパッケージ)がリリース当日にバイナリwheelを用意していないことを知ってがっかりしたかもしれませんね。 ビルド用のインフラを新しいPythonのバージョンに適応させるのは非常に大変な作業で、PyPIやconda-forgeにパッケージが掲載されるまでには通常数週間かかります。 今後のwheelのリリースに備えて、以下を確認してください。 もしあなたが新しいPythonのバージョンをいち早く利用している場合、NumPy(およびSciPyのような他のパッケージ)がリリース当日にバイナリwheelを用意していないことを知ってがっかりしたかもしれませんね。 ビルド用のインフラを新しいPythonのバージョンに適応させるのは非常に大変な作業で、PyPIやconda-forgeにパッケージが掲載されるまでには通常数週間かかります。 今後のwheelのリリースに備えて、以下を確認してください。
+
+- `pip` が`manylinux2010` と `manylinux2014` をサポートするためにpipを少なくともバージョン 20.1 に更新する。
+- [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) または `--only-binary=:all:` を`pip`がソースからビルドしようとするのを防ぐために使用します。
+
+### NumPy 1.19.2 リリース
+
+_2020年9月10日_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html)がリリースされました。
+_2020年9月10日_ -- [NumPy 19.2.0](https://numpy.org/devdocs/release/1.19.2-notes.html) がリリースされました。 この 1.19 シリーズの最新リリースでは、いくつかのバグが修正され、[ 来るべき Cython 3.xリリース ](http:/docs.cython.orgenlatestsrcchanges.html)への準備が行われ、アップストリームの修正が進行中の間も distutils の動作を維持するためのsetuptoolsのバージョンの固定が実施されています。 aarch64 wheelは最新のmanylinux2014リリースでビルドされており、異なるLinuxディストリビューションで使用される異なるページサイズの問題が修正されています。
+aarch64 wheelは最新のmanylinux2014リリースでビルドされており、異なるLinuxディストリビューションで使用される異なるページサイズの問題が修正されています。
+
+### 初めてのNumPyの調査が公開されました!!
+
+_2020年7月2日_ -- このアンケート調査は、NumPyにおける、ソフトウェア開発とコミュニティの両方における意思決定の指針となり、開発の優先順位を決定するのに大きく役に立ちました。
+この調査結果は英語以外のこれらの8つの言語で利用可能です: バングラ, ヒンディー語, 日本語, マンダリン, ポルトガル語, ロシア語, スペイン語とフランス語.
+
+NumPy をより良くするために、こちらの \[アンケート\](https://umdsurvey. umd. edu/jfe/form/SV_8bJrXjbhXf7saAl) に協力してもらえると助かります。
+
+### NumPy に新しいロゴができました!
+
+_2020年6月24日_ -- NumPyのロゴが新しくなりました:
+
+numpy). No entanto, elas também podem trabalhar juntas.
+
+A primeira diferença é que "conda" é multilinguagens e pode instalar o Python, enquanto o pip é instalado em um determinado Python em seu sistema e instala outros pacotes apenas para essa mesma instalação de Python. Isto também significa que o conda pode instalar bibliotecas e ferramentas não-Python das quais você pode precisar (por exemplo, compiladores, CUDA, HDF5), enquanto pip não pode.
+
+A terceira diferença é que conda é uma solução integrada para gerenciar pacotes, dependências e ambientes, enquanto com pip você pode precisar de outra ferramenta (há muitas!) para lidar com ambientes ou dependências complexas.
+
+- **Conda:** se você usar o conda, você pode instalar o NumPy do canal default ou do conda-forge:
+ ```bash
+ conda create -n my-env
+ conda activate my-env
+ conda install numpy
+ ```
+- **Pip:**
+ ```bash
+ pip install numpy
+ ```
+
+{{< admonition >}}
+{{< /admonition >}}
+
+ ```bash
+ python -m venv my-env
+ source my-env/bin/activate # macOS/Linux
+ my-env\Scripts\activate # Windows
+ pip install numpy
+ ```
+
+'''
+{{< /card >}}
+
+[[tab]]
+name = 'Gerenciadores de Pacotes do Sistema'
+conteúdo = '''
+Não recomendado para a maioria dos usuários, mas disponível por conveniência.
+
+**macOS (Homebrew):**
+
+```bash
+# Recomenda-se usar um ambiente novo ao invés de instalar no ambiente-base
+conda create -n my-env
+conda activate my-env
+# Se quiser instalar do conda-forge
+conda config --env --add channels conda-forge
+# O comando para instação
+conda install numpy
+```
+
+**Linux (APT):**
+
+```bash
+sudo apt install python3-numpy
+```
+
+**Windows (Chocolatey):**
+
+```bash
+choco install numpy
+```
+
+'''
+{{< /card >}}
+
+[[tab]] name = 'A partir do código-fonte' conteúdo = ''' Para usuários avançados e desenvolvedores que querem personalizar ou depurar o **NumPy**.
+
+Um pequeno aviso: construir o Numpy a partir do código-fonte pode ser um exercício não-trivial.
+Recomendamos o uso de binários se eles estiverem disponíveis para a sua plataforma através de um dos métodos anteriores.
+Para obter detalhes sobre como construir a partir do código-fonte, consulte [o guia de construção a partir do código-fonte na documentação do Numpy](https://numpy.org/devdocs/building/).
+
+{{< /tabs >}}
+
+## Recomendações
+
+Depois de instalar o NumPy, verifique a instalação, executando o seguinte em um shell ou script Python:
+
+```python
+import numpy as np
+print(np.__version__)
+```
+
+Isto deve imprimir a versão instalada do NumPy sem erros.
+
+## Solução de problemas
+
+Se sua instalação falhar com a mensagem abaixo, consulte [Solucionando ImportError](https://numpy.org/doc/stable/user/troubleshooting-importerror.html).
+
+```
+IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
+
+Importing the numpy c-extensions failed. This error can happen for
+different reasons, often due to issues with your setup.
+```
+
diff --git a/content/pt/learn.md b/content/pt/learn.md
new file mode 100644
index 00000000..c8da2bbf
--- /dev/null
+++ b/content/pt/learn.md
@@ -0,0 +1,76 @@
+---
+title: Aprenda
+sidebar: false
+---
+
+Para a **documentação oficial do NumPy** visite [numpy.org/doc/stable](https://numpy.org/doc/stable).
+
+***
+
+Abaixo está uma coleção de recursos educacionais, tanto para autoaprendizado como para ensinar outras pessoas, desenvolvidos pelos colaboradores do NumPy e selecionados pela comunidade.
+
+## Iniciantes
+
+Há uma tonelada de informações sobre o NumPy lá fora. Se você está começando, recomendamos fortemente estes:
+
+ **Tutoriais**
+
+- [NumPy Quickstart Tutorial (Tutorial de Início Rápido)](https://numpy.org/devdocs/user/quickstart.html)
+- [NumPy Tutorials](https://numpy.org/numpy-tutorials) Uma coleção de tutoriais e materiais educacionais no formato de Notebooks Jupyter desenvolvidos e mantidos pelo time de documentação do NumPy. Se você tiver interesse em adicionar o seu próprio conteúdo, verifique o repositório [numpy-tutorials no GitHub](https://github.com/numpy/numpy-tutorials).
+- [NumPy Illustrated: The Visual Guide to NumPy _por Lev Maximov_](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
+- [Scientific Python Lectures](https://lectures.scientific-python.org/) Além de incluir conteúdo sobre o NumPy, estas aulas oferecem uma introdução mais ampla ao ecossistema científico do Python.
+- [NumPy: the absolute basics for beginners ("o básico absoluto para inciantes")](https://numpy.org/devdocs/user/absolute_beginners.html)
+- [NumPy tutorial _por Nicolas Rougier_](https://github.com/rougier/numpy-tutorial)
+- [Stanford CS231 _por Justin Johnson_](http://cs231n.github.io/python-numpy-tutorial/)
+- [NumPy User Guide (Guia de Usuário NumPy)](https://numpy.org/devdocs)
+
+ **Livros**
+
+- [Guide to NumPy _de Travis E. Oliphant_](http://web.mit.edu/dvp/Public/numpybook.pdf) Essa é uma versão 1 livre de 2006. Para a última versão (2015) veja aqui](https://www.barnesandnoble.com/w/guide-to-numpy-travis-e-oliphant-phd/1144670472).
+- [From Python to NumPy _por Nicolas P. Rougier_](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
+- [Elegant SciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877) _por Juan Nunez-Iglesias, Stefan van der Walt, e Harriet Dashnow_
+
+Você também pode querer conferir a [lista Goodreads](https://www.goodreads.com/shelf/show/python-scipy) sobre o tema "Python+SciPy". A maioria dos livros lá será sobre o "ecossistema SciPy", que tem o NumPy em sua essência.
+
+ **Vídeos**
+
+- [Introduction to Numerical Computing with NumPy](http://youtu.be/ZB7BZMhfPgk) _por Alex Chabot-Leclerc_
+
+***
+
+## Avançado
+
+Experimente esses recursos avançados para uma melhor compreensão dos conceitos da NumPy, como indexação avançada, splitting, stacking, álgebra linear e muito mais.
+
+ **Tutoriais**
+
+- [100 NumPy Exercises](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html) _por Nicolas P. Rougier_
+- [An Introduction to NumPy and Scipy](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf) _por M. Scott Shell_
+- [Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/) _por Stéfan van der Walt_
+- [NumPy Tutorials](https://numpy.org/numpy-tutorials) Uma coleção de tutoriais e materiais educacionais no formato de Notebooks Jupyter desenvolvidos e mantidos pelo time de documentação do NumPy. Se você tiver interesse em adicionar o seu próprio conteúdo, verifique o repositório [numpy-tutorials no GitHub](https://github.com/numpy/numpy-tutorials).
+
+ **Livros**
+
+- [Python Data Science Handbook](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1098121228) _por Jake Vanderplas_
+- [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1491957662) _por Wes McKinney_
+- [Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) _por Robert Johansson_
+
+ **Vídeos**
+
+- [Advanced NumPy - broadcasting rules, strides, and advanced indexing](https://www.youtube.com/watch?v=cYugp9IN1-Q) _por Juan Nunuz-Iglesias_
+
+***
+
+## Palestras sobre NumPy
+
+- [The Future of NumPy Indexing](https://www.youtube.com/watch?v=o0EacbIbf58) _por Jaime Fernández_ (2016)
+- Evolution of Array Computing in Python _por Ralf Gommers_ (2019)
+- [NumPy: what has changed and what is going to change?](https://www.youtube.com/watch?v=YFLVQFjRmPY) _por Matti Picus_ (2019)
+- [Inside NumPy](https://www.youtube.com/watch?v=dBTJD_FDVjU) _por Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stefan van der Walt, Charles Harris_ (2019)
+- [Brief Review of Array Computing in Python](https://www.youtube.com/watch?v=f176j2g2eNc) _por Travis Oliphant_ (2019)
+
+***
+
+## Citando o Numpy
+
+Se a NumPy é importante na sua pesquisa, e você gostaria de dar reconhecimento ao projeto na sua publicação acadêmica, por favor veja [estas informações sobre citações](/pt/citing-numpy).
diff --git a/content/pt/news.md b/content/pt/news.md
new file mode 100644
index 00000000..5f806c50
--- /dev/null
+++ b/content/pt/news.md
@@ -0,0 +1,341 @@
+---
+title: Notícias
+sidebar: false
+newsHeader: Lançado o NumPy versão 2.2.0!
+date: 2024-12-08
+---
+
+### Lançado o NumPy versão 2.2.0
+
+_8 de dezembro de 2024_ -- A NumPy 2.2.0 é uma versão que nos traz de volta para o calendário habitual de lançamento duas vezes por ano. Ela inclui um número de pequenas limpezas, melhorias para o StringDType, e melhor suporte para
+o free-threaded Python. Alguns dos destaques são:
+
+- Novas funções `matvec` e `vecmat`,
+- Várias melhorias nas anotações de tipos,
+- Suporte melhorado para o novo StringDType,
+- Suporte aprimorado para Python free-threaded,
+- Correções para o f2py.
+
+Esta versão suporta as versões 3.10-3.13 do Python.
+
+### Lançado o NumPy versão 2.1.0
+
+_18 de agosto de 2024_ -- NumPy 2.1.0 fornece suporte para Python 3.13 e remove suporte para Python 3.9. Além das habituais correções de erros e suporte a Python atualizado, esta versão ajuda a trazer o NumPy de volta ao ciclo habitual de lançamento após o longo desenvolvimento da versão 2.0. Os destaques desta versão são:
+
+- Suporte ao Python 3.13.
+- Suporte preliminar para Python 3.13 free threaded.
+- Suporte para o padrão array-api 2023.12.
+
+As versões 3.10-3.13 do Python são suportadas por esta versão.
+
+### NumPy 2.0.0 lançada
+
+_16 de junho de 2024_ -- NumPy 2.0.0 é a primeira grande versão desde 2006. É o resultado de 11 meses de desenvolvimento desde a última feature release e é o trabalho de 212 contribuidores espalhado por 1078 pull requests. Esta versão contém um grande número de novas funcionalidades interessantes, bem como mudanças nas APIs Python e C. As mudanças incluem quebras de compatibilidade que não puderam acontecer em uma versão regular menor - incluindo uma quebra na ABI, mudanças nas regras de promoção de tipo e mudanças na API
+que poderiam não estar emitindo alertas de fim de suporte nas versões 1.26.x. Documentos-chave, relacionados a como se adaptar às mudanças no NumPy 2.0, incluem:
+
+- O [guia de migração NumPy 2.0](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- As [notas de lançamento da versão 2.0.0](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Issue de anúncio para atualizações de estado: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+A postagem de blog ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) conta um pouco da história sobre como esta versão foi construída.
+
+### Data de lançamento da NumPy 2.0: 16 de junho
+
+_23 de maio de 2024_ -- Estamos animados em anunciar que planejamos lançar a NumPy 2.0 em 16 de junho de 2024. Este lançamento está em desenvolvimento há mais de um ano, e
+é o primeiro grande lançamento desde 2006. Importantly, in addition to many new
+features and performance improvement, it contains **breaking changes** to the
+ABI as well as the Python and C APIs. Importante, além de muitas funcionalidades novas e melhoria de desempenho, esta versão contém **quebras de compatibilidade** com a ABI e com as APIs Python e C. É provável que os pacotes downstream e o código de usuário final precisem ser adaptados - se você puder, por favor, verifique se o seu código funciona com NumPy `2.0.0rc2`. **Por favor, veja o seguinte para mais detalhes:**
+
+- O [guia de migração NumPy 2.0](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- As [notas de lançamento da versão 2.0.0](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Issue de anúncio para atualizações de estado: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+### Arrecadação de fundos de fim de ano da NumFOCUS
+
+_19 de dezembro de 2023_ -- A NumFOCUS se juntou ao PyCharm durante sua campanha de final de ano para oferecer 30% de desconto em licenças de PyCharm para novos usuários. Todas as receitas do primeiro ano das compras do PyCharm a partir de agora
+até 23 de dezembro de 2023 irão diretamente para os programas NumFOCUS.
+
+Use a URL única que permitirá rastrear as compras https://lp.jetbrains.com/support-data-science/ ou um código de cupom ISUPPORTDATASCIENCE
+
+### Lançada versão 1.26.0 do NumPy
+
+_17 de junho de 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) está disponível agora. Os destaques desta versão são:
+
+- Suporte ao Python 3.12.0.
+- Compatibilidade com Cython 3.0.0.
+- Utilização do sistema Meson para compilação
+- Suporte a SIMD atualizado
+- Melhorias para f2py, suporte a meson e bind(x)
+- Suporte à versão mais recente da biblioteca Accelerate BLAS/LAPACK
+
+A versão 1.26.0 é uma continuação da série de versões 1.25.x que marcam a transição para o sistema de compilação Meson e o fornecimento de suporte para o Cython 3.0.0.
+Um total de 20 pessoas contribuíram para este lançamento e 59 pull requests foram incorporadas.
+
+As versões do Python suportadas por esta versão são 3.9-3.12.
+
+### numpy.org agora está disponível em japonês e português
+
+_2 de agosto de 2023_ -- numpy.org agora está disponível em 2 idiomas adicionais: japonês e português. Isto não seria possível sem nossos voluntários dedicados:
+
+_Português:_
+
+- Melissa Weber Mendonça (melissawm)
+- Ricardo Prins (ricardoprins)
+- Getúlio Silva (getuliosilva)
+- Julio Batista Silva (jbsilva)
+- Alexandre de Siqueira (alexdesiqueira)
+- Alexandre B A Villares (villares)
+- Vini Salazar (vinisalazar)
+
+_Japonês:_
+
+- Atsushi Sakai (AtsushiSakai)
+- KKunai
+- Tom Kelly (TomKellyGenetics)
+- Yuji Kanagawa (kngwyu)
+- Tetsuo Koyama (tkoyama010)
+
+O trabalho na infraestrutura de tradução é apoiado com financiamento da CZI.
+
+No futuro, adoraríamos traduzir o site para mais línguas.
+Se você quiser ajudar, por favor entre em contato com o time de traduções do NumPy no Slack:
+https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
+(Procure pelo canal de #translations.) Também estamos construindo uma Equipe de Traduções que vai trabalhar na localização da documentação e conteúdo educacional por todo o ecossistema de Python científico. Se esse trabalho te interessa, junte-se a nós no Discord do projeto Scientific Python: https://discord.gg/khWtqY6RKr. (Procure pelo canal #translation)
+
+### Lançado o NumPy 1.25.0
+
+_31 de dezembro de 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) está agora disponível. Os destaques desta versão são:
+
+- Suporte para MUSL, agora existem rodas MUSL.
+- Suporte para o compilador Fujitsu C/C++.
+- Arrays de objetos agora são suportados em einsum.
+- Suporte para a multiplicação da matriz inplace (`@=`).
+
+A versão 1.25.0 do NumPy continua o trabalho de melhorias no suporte e promoção de dtypes, na velocidade e execução, e na documentação. Também tem havido trabalho preparatório para a futura versão 2.0.0, resultando em um grande número de depreciações novas e expiradas.
+
+Um total de 148 pessoas contribuíram para este lançamento e 530 pull requests foram incorporadas.
+
+As versões do Python suportadas por esta versão são 3.9-3.11.
+
+### Promovendo uma cultura inclusiva: Chamada de participação
+
+_10 de maio de 2023_ -- Promovendo uma Cultura Inclusiva: Chamada de Participação
+
+Como podemos ser melhores quando se trata de diversidade e de inclusão?
+Leia o relatório e descubra como colaborar [aqui](https://contributor-experience.org/docs/posts/dei-report/).
+
+### Transição de liderança do time de documentação do NumPy
+
+_6 de janeiro de 2023_ –- Mukulika Pahari e Ross Barnowski são nomeados como lideres do time de documentação do NumPy, substituindo Melissa Mendonça. Agradecemos a Melissa por todas suas contribuições para a documentação oficial do NumPy e materiais educacionais, e Mukulika e Ross por aceitarem o desafio.
+
+### NumPy versão 1.23.0
+
+_16 de setembro de 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) está disponível. Os destaques desta versão são:
+
+- Novas palavras-chave "dtype" e "casting" para funções que atuam com stacking.
+- Novas funcionalidades e correções do F2PY.
+- Muitas depreciações novas, confira.
+- Muitas depreciações expiradas.
+
+A versão 1.24.0 do NumPy continua o trabalho de melhorias no suporte e promoção de dtypes, na velocidade e execução, e na documentação.
+Há um grande número de depreciações novas e expiradas devido a mudanças na promoção de dtypes e limpezas no código. É o trabalho de 177 contribuidores espalhados em 444 pull requests. As versões suportadas do Python são 3.8-3.11.
+
+### NumPy versão 1.23.0
+
+_22 de junho de 2022_ -- O [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) está disponível. Os destaques desta versão são:
+
+- Implementação de `loadtxt` em C, melhorando muito seu desempenho.
+- Exposição do DLPack ao nível de Python para facilitar a troca de dados.
+- Mudanças na promoção e comparações de dtypes estruturados.
+- Melhorias no f2py.
+
+A versão 1.23.0 do NumPy continua o trabalho de melhorias no suporte e promoção de dtypes, na velocidade de execução, na documentação e na expiração de depreciações. É o trabalho de 151 contribuidores espalhados em 494 pull requests. As versões do Python suportadas por esta versão são 3.8-3.10.
+Python 3.11 será suportado quando chegar na etapa rc.
+
+### Pesquisa NumFOCUS DEI: chamada para participação
+
+_13 de abril de 2022_ -- O NumPy está trabalhando com a [NumFOCUS](http://numfocus.org/) em um projeto de pesquisa financiado pela Gordon & Betty Moore Foundation para entender as barreiras à participação que contribuidores, especialmente aqueles de grupos historicamente subrepresentados, enfrentam na comunidade open source. A equipe da pesquisa gostaria de falar com novos colaboradores, desenvolvedores e mantenedores, e aqueles que contribuíram no passado sobre suas experiências contribuindo para o NumPy.
+
+**Quer compartilhar suas experiências?**
+
+Por favor, preencha este breve formulário: ["Participant Interest form"](https://numfocus.typeform.com/to/WBWVJSqe) que contém informações adicionais sobre os objetivos da pesquisa, privacidade e considerações de confidencialidade. Sua participação será valiosa para o crescimento e sustentabilidade de comunidades de software de código aberto diversas e inclusivas. Os participantes aceitos participarão de uma entrevista de 30 minutos com um membro da equipe de pesquisa.
+
+### NumPy versão 1.22.0
+
+_23 de junho de 2021_ -- O [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) está disponível. Os destaques desta versão são:
+
+- Anotações de tipo do namespace principal estão praticamente completas. Upstream é um alvo em movimento, então provavelmente haverá mais melhorias, mas a maior parte do trabalho está feita. Esta é provavelmente a melhoria mais visível para os usuários nesta versão.
+- Uma versão preliminar da proposta do [array API Standard](https://data-apis.org/array-api/latest/) está disponível (veja [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
+ Este é um passo na criação de uma coleção padrão de funções que podem ser compartilhadas entre bibliotecas como CuPy e JAX.
+- NumPy agora tem um backend de DLPack. DLPack fornece um formato comum de compartilhamento para dados de arrays (tensores).
+- Novos métodos para `quantile`, `percentile`, e funções relacionadas. Os novos métodos fornecem um conjunto completo dos métodos comumente encontrados na literatura.
+- As funções universais foram refatoradas para implementar a maior parte da [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
+ Isso também desbloqueia a capacidade de experimentar a futura API DType.
+- Um novo alocador de memória configurável para uso pelos projetos downstream.
+
+NumPy 1.22.0 é uma versão importante com o trabalho de 153 contribuidores espalhados por mais de 609 pull requests. As versões do Python suportadas por esta versão são 3.8-3.10.
+
+### Promovendo uma cultura inclusiva no ecossistema científico de Python
+
+_31 de agosto de 2021_ -- Estamos felizes em anunciar que a Chan Zuckerberg Initiative [vai financiar](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) um projeto para apoiar a integração, inclusão, e retenção de pessoas de grupos marginalizados historicamente em projetos científicos em Python, e para estruturalmente melhorar a dinâmica das comunidades para o NumPy, SciPy, Matplotlib, e Pandas.
+
+Como parte do programa [CZI's Essential Open Source Software for Science](https://chanzuckerberg.com/eoss/), esse [financiamento adicional para diversidade e inclusão](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) vai apoiar a criação de posições de Contributor Experience Lead para identificar, documentar e implementar práticas para fomentar comunidades open source inclusivas. Este projeto será liderado por Melissa Mendonça (NumPy), com apoio adicional de Ralf Gommers (NumPy, SciPy), Hannah Aizenman e Thomas Caswell (Matplotlib), Matt Haberland (SciPy), e Joris Van den Bossche (Pandas).
+
+Esse é um projeto ambicioso que visa descobrir e implementar atividades que devem estruturalmente melhorar a dinâmica da comunidade de nossos projetos. Ao criar essas novas funções entre projetos, esperamos introduzir um novo modelo de colaboração às comunidades de Python científico, permitir que o trabalho de construção da comunidade no ecossistema seja feito de forma mais eficiente e com maiores resultados. Também esperamos desenvolver uma imagem mais clara do que funciona e o que não funciona em nossos projetos para engajar e reter novos colaboradores, especialmente de grupos historicamente sub-representados. Finalmente, planejamos produzir relatórios detalhados sobre as ações executadas, explicando como eles afetaram nossos projetos em termos de representação e interação com nossas comunidades.
+
+O projeto de dois anos deverá começar em novembro de 2021 e estamos animados para ver os resultados deste trabalho!
+[Você pode ler a proposta completa aqui](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### Pesquisa NumPy 2021
+
+_12 de julho de 2021_ -- Nós do NumPy acreditamos no poder da nossa comunidade. 1.236 usuários do NumPy de 75 países participaram da nossa primeira pesquisa ano passado.
+Os resultados da pesquisa nos ajudaram a compreender muito bem o que devemos fazer pelos 12 meses seguintes.
+
+Chegou a hora de fazer outra pesquisa e estamos contando com você novamente. Vai levar cerca de 15 minutos do seu tempo. Além de Inglês, o questionário de pesquisa está disponível em 8 idiomas adicionais: Bangla, Francês, Hindi, Japonês, Mandarim, Português, Russo e Espanhol.
+
+Siga o link para começar: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+### NumPy versão 1.19.0
+
+_23 de junho de 2021_ -- O [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) está disponível. Os destaques desta versão são:
+
+- continuamos o trabalho com SIMD para suportar mais funções e plataformas,
+- trabalho inicial na infraestrutura e conversão de novos dtypes,
+- wheels universal2 para Python 3.8 e Python 3.9 no Mac,
+- melhorias na documentação,
+- melhorias nas anotações de tipos,
+- novo bitgenerator `PCG64DXSM` para números aleatórios.
+
+Esta versão do NumPy é o resultado de 581 pull requests aceitos, a partir das contribuições de 175 pessoas. As versões do Python suportadas por esta versão são 3.7-3.9; o suporte para o Python 3.10 será adicionado após o lançamento do Python 3.10.
+
+### Resultados da pesquisa NumPy 2020
+
+_22 de junho de 2021_ -- Em 2020, o time de pesquisas NumPy, em parceria com estudantes e professores da Universidade de Michigan e da Universidade de Maryland, realizou a primeira pesquisa oficial sobre a comunidade NumPy. Confira os resultados da pesquisa aqui: https://numpy.org/user-survey-2020/.
+
+### NumPy versão 1.20.0
+
+_30 de janeiro de 2021_ -- O [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) está disponível. Este é o maior lançamento do NumPy até hoje, graças a mais de 180 colaboradores. As duas novidades mais emocionantes são:
+
+- Anotações de tipos para grandes partes do NumPy, e um novo submódulo `numpy.typing` contendo aliases `ArrayLike` e `DtypeLike` que usuários e bibliotecas downstream podem usar quando quiserem adicionar anotações de tipos em seu próprio código.
+- Otimizações de compilação SIMD multi-plataforma, com suporte para instruções x86 (SSE, AVX), ARM64 (Neon) e PowerPC (VSX). Isso rendeu melhorias significativas de desempenho para muitas funções (exemplos: [sen/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### Diversidade no projeto NumPy
+
+_20 de setembro de 2020_ -- Escrevemos uma [declaração sobre o estado da diversidade e inclusão no projeto NumPy e discussões em redes sociais sobre isso.](/diversity_sep2020).
+
+### Primeiro artigo oficial do NumPy publicado na Nature!
+
+_16 de setembro de 2020_ -- Temos o prazer de anunciar a publicação do [primeiro artigo oficial do NumPy](https://www.nature.com/articles/s41586-020-2649-2) como um artigo de revisão na Nature. Isso ocorre 14 anos após o lançamento do NumPy 1.0.
+O artigo abrange aplicações e conceitos fundamentais da programação de matrizes, o rico ecossistema científico de Python construído em cima do NumPy, e os protocolos de array recentemente adicionados para facilitar a interoperabilidade com bibliotecas externas para computação com matrizes e tensores, como CuPy, Dask e JAX.
+
+### O Python 3.9 está chegando, quando o NumPy vai liberar wheels binárias?
+
+_14 de setembro de 2020_ -- Python 3.9 será lançado em algumas semanas. Se você for querer usar imediatamente a nova versão do Python, você pode ficar desapontado ao descobrir que o NumPy (e outros pacotes binários como SciPy) não terão wheels no dia do lançamento. É um grande esforço adaptar a infraestrutura de compilação a uma nova versão de Python e normalmente leva algumas semanas para que os pacotes apareçam no PyPI e no conda-forge. Em preparação para este evento, por favor, certifique-se de
+
+- atualizar seu `pip` para a versão 20.1 pelo menos para suportar `manylinux2010` e `manylinux2014`
+- usar [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) ou `--only-binary=:all:` para impedir `pip` de tentar compilar a partir do código fonte.
+
+### NumPy versão 1.18.0
+
+_10 de setembro de 2020_ -- O [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) está disponível.
+Essa última versão da série 1.19 corrige vários bugs, inclui preparações para o lançamento [do Cython 3](http://docs.cython.org/en/latest/src/changes.html) e fixa o setuptools para que o distutils continue funcionando enquanto modificações upstream estão sendo feitas.
+As wheels para aarch64 são compiladas com a manylinux2014 mais recente que conserta o problema da diferença no tamanho das páginas usadas por distribuições linux diferentes.
+
+### A primeira pesquisa NumPy está aqui!
+
+_2 de julho de 2020_ -- Esta pesquisa tem como objetivo guiar e definir prioridades para tomada de decisões sobre o desenvolvimento do NumPy como software e como comunidade.
+A pesquisa está disponível em mais 8 idiomas além do inglês: Bangla, Hindi, Japonês, Mandarim, Português, Russo, Espanhol e Francês.
+
+Ajude-nos a melhorar o NumPy respondendo à pesquisa [aqui](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+### O NumPy tem um novo logo!
+
+_24 de junho de 2020_ -- NumPy agora tem um novo logo:
+
+numpy),但他们也可以一起工作。
+
+第一点不同是conda是跨语言的,它可以安装 Python,然而 pip 安装在您的系统的特定的 Python 之上, 并只为那一个特定的Python安装其他的软件包。 这也意味着conda 可以安装非Python 库和其他您可能需要的工具(例如编译器、CUDA、HDF5),pip则不行。
+
+The third difference is that conda is an integrated solution for managing packages, dependencies and environments, while with pip you may need another tool (there are many!) for dealing with environments or complex dependencies.
+
+- **Conda:** If you use conda, you can install NumPy from the defaults or conda-forge channels:
+ ```bash
+ conda create -n my-env
+ conda activate my-env
+ conda install numpy
+ ```
+- **Pip:**
+ ```bash
+ pip install numpy
+ ```
+
+{{< admonition >}}
+{{< /admonition >}}
+
+ ```bash
+ python -m venv my-env
+ source my-env/bin/activate # macOS/Linux
+ my-env\Scripts\activate # Windows
+ pip install numpy
+ ```
+
+'''
+
+[[tab]]
+name = 'System Package Managers'
+content = '''
+Not recommended for most users, but available for convenience.
+
+**macOS (Homebrew):**
+
+```bash
+# 最佳练习 使用环境而不是在基础环境中安装
+conda create -n my-env
+conda activer my-env
+
+# 如果你想从conda-forge频道安装
+conda config --env --add channel conda-full
+
+# 实际的安装命令
+conda install numpy
+```
+
+**Linux (APT):**
+
+```bash
+sudo apt install python3-numpy
+```
+
+**Windows (Chocolatey):**
+
+```bash
+choco install numpy
+```
+
+'''
+
+[[tab]] name = 'Building from Source' content = ''' For advanced users and developers who want to customize or debug **NumPy**.
+
+A word of warning: building Numpy from source can be a nontrivial exercise.
+We recommend using binaries instead if those are available for your platform via one of the above methods.
+For details on how to build from source, see [the building from source guide in the Numpy docs](https://numpy.org/devdocs/building/).
+
+{{< /tabs >}}
+
+## 建议
+
+After installing NumPy, verify the installation by running the following in a Python shell or script:
+
+```python
+import numpy as np
+print(np.__version__)
+```
+
+This should print the installed version of NumPy without errors.
+
+## 故障排查
+
+如果您的安装失败并显示如下信息,请参阅 [故障排查 ImportError](https://numpy.org/doc/stable/user/troubleshooting-importerror.html)。
+
+```
+IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
+
+Importing the numpy c-extensions failed. This error can happen for different reasons, often due to issues with your setup.
+```
+
diff --git a/content/zh/learn.md b/content/zh/learn.md
new file mode 100644
index 00000000..96de63ae
--- /dev/null
+++ b/content/zh/learn.md
@@ -0,0 +1,76 @@
+---
+title: 学习指南
+sidebar: false
+---
+
+有关 **官方NumPy文档**,请访问 [numpy.org/doc/stable](https://numpy.org/doc/stable)。
+
+***
+
+Below is a curated collection of educational resources, both for self-learning and teaching others, developed by NumPy contributors and vetted by the community.
+
+## 初学者
+
+外部有大量关于 NumPy 的信息。 If you are just starting, we'd strongly recommend the following:
+
+ **教程**
+
+- [NumPy 快速入门教程](https://numpy.org/devdocs/user/quickstart.html)
+- [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
+- [NumPy图解: _Lev Maximov编写的_NumPy可视化指南](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
+- [Scientific Python Lectures](https://lectures.scientific-python.org/) Besides covering NumPy, these lectures offer a broader introduction to the scientific Python ecosystem.
+- [NumPy:初学者的必读基础课](https://numpy.org/devdocs/user/absolute_beginners.html)
+- [_Nicolas Rougier的_NumPy 教程](https://github.com/rougier/numpy-tutorial)
+- [_由 Justin Johnson 编写的_斯坦福 CS231。](http://cs231n.github.io/python-numpy-tutorial/)
+- [NumPy用户指南](https://numpy.org/devdocs)
+
+ **图书**
+
+- [Guide to NumPy _by Travis E. Oliphant_](https://web.mit.edu/dvp/Public/numpybook.pdf) This is a free version 1 from 2006. For the latest copy (2015) see [here](https://dl.acm.org/doi/10.5555/2886196).
+- [_Nicolas P. Rougier的_从 Python 到 NumPy](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
+- _由 Juan Nunez-Iglesias, Stefan van der Walt, and Harriet Dashnow编写的_[优雅的SciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877)
+
+You may also want to check out the [Goodreads list](https://www.goodreads.com/shelf/show/python-scipy) on the subject of "Python+SciPy." Most books there are about the "SciPy ecosystem," which has NumPy at its core.
+
+ **视频**
+
+- _由Alex Chabot-Leclerc制作的_[NumPy数值计算导论](http://youtu.be/ZB7BZMhfPgk)
+
+***
+
+## 进阶资源
+
+学习这些进阶资源以更好地理解 NumPy 概念,例如高级索引、拆分、堆叠、线性代数等。
+
+ **教程**
+
+- _Nicolas P. Rougier的_[100 NumPy练习题](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html)
+- M. Scott Shell的\*[NumPy 和 Scipy 介绍](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf)
+- _Stéfan van der Walt的_[Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/)
+- [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
+
+ **图书**
+
+- [Python Data Science Handbook](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1098121228) _by Jake Vanderplas_
+- [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-Jupyter/dp/109810403X) _by Wes McKinney_
+- _Robert Johansson的_[数值Python: 使用 Numpy、SciPy 和 Matplotlib 进行科学计算和数据科学应用](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459)
+
+ **视频**
+
+- _Juan Nunez-Iglesias的_[NumPy进阶 - 广播机制、步幅和高级索引](https://www.youtube.com/watch?v=cYugp9IN1-Q)
+
+***
+
+## NumPy演讲
+
+- _Jaime Fernadez的_[NumPy索引的未来](https://www.youtube.com/watch?v=o0EacbIbf58) (2016)
+- _Ralf Gommers的_Python数组计算的演变史 (2019)
+- _Matti Picus的_[NumPy:什么已经改变,什么将要改变?](https://www.youtube.com/watch?v=YFLVQFjRmPY) (2019)
+- _Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stefan van der Walt, Charles Harris谈谈_[NumPy揭秘](https://www.youtube.com/watch?v=dBTJD_FDVjU) (2019)
+- _Travis Oliphant的_ [ Python 数组计算概述](https://www.youtube.com/watch?v=f176j2g2eNc) (2019)
+
+***
+
+## 引用 NumPy
+
+如果NumPy在您的研究中具有重要意义,您希望在您的学术出版物中向该项目致谢。 请参阅 [此引用信息](/citing-numpy)。
diff --git a/content/zh/news.md b/content/zh/news.md
new file mode 100644
index 00000000..b100b29d
--- /dev/null
+++ b/content/zh/news.md
@@ -0,0 +1,400 @@
+---
+title: 社区快讯
+sidebar: false
+newsHeader: NumPy 2.2.0 released!
+date: 2024-12-08
+---
+
+### NumPy 2.2.0 released
+
+_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back into sync with the usual twice yearly release cycle. There have been a number
+of small cleanups, improvements to the StringDType, and better support for free
+threaded Python. Highlights are:
+
+- New functions `matvec` and `vecmat`,
+- Many improved annotations,
+- Improved support for the new StringDType,
+- Improved support for free threaded Python,
+- Fixes for f2py.
+
+This release supports Python versions 3.10-3.13.
+
+### NumPy 2.1.0 released
+
+_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and drops support for Python 3.9. In addition to the usual bug fixes and
+updated Python support, it helps get NumPy back to its usual release
+cycle after the extended development of 2.0. The highlights for this
+release are:
+
+- Support for Python 3.13.
+- Preliminary support for free threaded Python 3.13.
+- Support for the array-api 2023.12 standard.
+
+Python versions 3.10-3.13 are supported by this release.
+
+### NumPy 2.0.0 released
+
+_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
+result of 11 months of development since the last feature release and is the
+work of 212 contributors spread over 1078 pull requests. It contains a large
+number of exciting new features as well as changes to both the Python and C
+APIs. It includes breaking changes that could not happen in a regular minor
+release - including an ABI break, changes to type promotion rules, and API
+changes which may not have been emitting deprecation warnings in 1.26.x. Key
+documents related to how to adapt to changes in NumPy 2.0 include:
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) tells a bit of the story about how this release came together.
+
+### NumPy 2.0 release date: June 16
+
+_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be released on June 16, 2024. This release has been over a year in the making, and
+is the first major release since 2006. Importantly, in addition to many new features and performance improvement, it contains **breaking changes** to the ABI as well as the Python and C APIs. It is likely that downstream packages and end user code needs to be adapted - if you can, please verify whether your code works with NumPy `2.0.0rc2`. **Please see the following for more details:**
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+### NumFOCUS end of the year fundraiser
+
+_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
+until December 23rd, 2023 will go directly to the NumFOCUS programs.
+
+Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/ or a coupon code ISUPPORTDATASCIENCE
+
+### NumPy 1.26.0 released
+
+_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) is now available. 此次发布的重点是:
+
+- Python 3.12.0 support.
+- Cython 3.0.0 compatibility.
+- Use of the Meson build system
+- Updated SIMD support
+- f2py fixes, meson and bind(x) support
+- Support for the updated Accelerate BLAS/LAPACK library
+
+The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
+transition to the Meson build system and provision of support for Cython 3.0.0.
+A total of 20 people contributed to this release and 59 pull requests were
+merged.
+
+The Python versions supported by this release are 3.9-3.12.
+
+### numpy.org is now available in Japanese and Portuguese
+
+_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages: Japanese and Portuguese. This wouldn’t be possible without our dedicated volunteers:
+
+_Portuguese:_
+
+- Melissa Weber Mendonça (melissawm)
+- Ricardo Prins (ricardoprins)
+- Getúlio Silva (getuliosilva)
+- Julio Batista Silva (jbsilva)
+- Alexandre de Siqueira (alexdesiqueira)
+- Alexandre B A Villares (villares)
+- Vini Salazar (vinisalazar)
+
+_Japanese:_
+
+- Atsushi Sakai (AtsushiSakai)
+- KKunai
+- Tom Kelly (TomKellyGenetics)
+- Yuji Kanagawa (kngwyu)
+- Tetsuo Koyama (tkoyama010)
+
+The work on the translation infrastructure is supported with funding from CZI.
+
+Looking ahead, we’d love to translate the website into more languages.
+If you’d like to help, please connect with the NumPy Translations Team on Slack:
+https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
+(Look for the #translations channel.) We are also building a Translations Team who will be
+working on localizing documentation and educational content across the Scientific Python
+ecosystem. If this piqued your interest, join us on the Scientific Python
+Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
+
+### NumPy 1.25.0 released
+
+_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) is now available. 此次发布的重点是:
+
+- Support for MUSL, there are now MUSL wheels.
+- Support for the Fujitsu C/C++ compiler.
+- Object arrays are now supported in einsum.
+- Support for the inplace matrix multiplication (`@=`).
+
+The NumPy 1.25.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase the execution speed, and clarify the
+documentation. There has also been preparatory work for the future NumPy 2.0.0,
+resulting in a large number of new and expired deprecations.
+
+A total of 148 people contributed to this release and 530 pull requests were
+merged.
+
+The Python versions supported by this release are 3.9-3.11.
+
+### Fostering an Inclusive Culture: Call for Participation
+
+_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
+
+How can we be better when it comes to diversity and inclusion?
+Read the report and find out how to get involved [here](https://contributor-experience.org/docs/posts/dei-report/).
+
+### NumPy documentation team leadership transition
+
+_Jan 6, 2023_ –- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
+contributions to the NumPy official documentation and educational materials,
+and Mukulika and Ross for stepping up.
+
+### NumPy 1.24.0 released
+
+_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) is now available. 此次发布的重点是:
+
+- New "dtype" and "casting" keywords for stacking functions.
+- New F2PY features and fixes.
+- Many new deprecations, check them out.
+- Many expired deprecations,
+
+The NumPy 1.24.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase execution speed, and clarify the documentation.
+There are a large number of new and expired deprecations due to changes in
+dtype promotion and cleanups. It is the work of 177 contributors spread over
+444 pull requests. The supported Python versions are 3.8-3.11.
+
+### Numpy 1.23.0 released
+
+_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) is now available. 此次发布的重点是:
+
+- Implementation of `loadtxt` in C, greatly improving its performance.
+- Exposure of DLPack at the Python level for easy data exchange.
+- Changes to the promotion and comparisons of structured dtypes.
+- Improvements to f2py.
+
+The NumPy 1.23.0 release continues the ongoing work to improve the handling and
+promotion of dtypes, increase the execution speed, clarify the documentation,
+and expire old deprecations. It is the work of 151 contributors spread over
+494 pull requests. The Python versions supported by this release 3.8-3.10.
+Python 3.11 will be supported when it reaches the rc stage.
+
+### NumFOCUS DEI research study: call for participation
+
+_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a research project funded by the Gordon & Betty Moore Foundation to understand the barriers to participation that contributors, particularly those from historically underrepresented groups, face in the open-source software community. The research team would like to talk to new contributors, project
+developers and maintainers, and those who have contributed in the past about
+their experiences joining and contributing to NumPy.
+
+**Interested in sharing your experiences?**
+
+Please complete this brief [“Participant Interest” form](https://numfocus.typeform.com/to/WBWVJSqe) which contains additional information on the research goals, privacy, and confidentiality considerations. Your participation will be valuable to the
+growth and sustainability of diverse and inclusive open-source software
+communities. Accepted participants will participate in a 30-minute interview
+with a research team member.
+
+### NumPy 1.22.0 发布
+
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
+is now available. 此次发布的重点是:
+
+- 主命名空间的注释类型基本上已完成。 Upstream is
+ a moving target, so there will likely be further improvements, but the major
+ work is done. This is probably the most user visible enhancement in this
+ release.
+- A preliminary version of the proposed [array API Standard](https://data-apis.org/array-api/latest/) is provided (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
+ 这是创建一个可以在 CuPy 和 JAX 等库中使用的函数的标准收藏的一个步骤。
+- NumPy 现在有一个 DLPack 后端。 DLPack provides a common interchange format
+ for array (tensor) data.
+- `量化`, `百分比`以及相关函数的新方法。 新的 方法提供了一整套常见于 文献中的方法。 The new
+ methods provide a complete set of the methods commonly found in the
+ literature.
+- 通用函数已被重新考虑,以实现大多数的 [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html) 这也会解锁实验未来DType API的能力。
+ 这也会解锁实验未来DType API的能力。
+- 一个新的可配置内存分配器,供下游项目使用。
+
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
+over 609 pull requests. 此版本支持的 Python 版本是
+3.8-3.10。
+
+### 促进Python科学生态系统中的包容性文化
+
+_8月31日, 2021_ — 我们很高兴宣布Chan Zuckerberg倡议 [授予赠款](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) 以支持历史上被边缘化群体的人在科学Python项目中的融入、包容和留存,并为NumPy、SciPy、Matplotlib和Pandas的社区动态进行结构性改善。
+
+作为 [CZI 基本开放源码科学程序](https://chanzuckerberg.com/eoss/)的一部分, 这 个[多样性 & 包容性补充赠款](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) 将支持创建专门的负责人职位,以确定、记录和实施促进包容性开源社区的实践。 这个项目将由Melissa Mendoncstima (NumPy) 领导,由Ralf Gommers (NumPy, SciPy) Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and Joris Van den Bossche (Pandas), 提供 额外的辅导和指导 这个项目将由Melissa Mendoncstima (NumPy) 领导,由Ralf Gommers (NumPy, SciPy)
+Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
+Joris Van den Bossche (Pandas), 提供
+额外的辅导和指导
+
+这是一个雄心勃勃的项目,旨在发现和执行
+应该从结构上改善我们项目的社区动态的活动。 通过
+建立这些新的跨项目角色,我们希望在Scientific Python社区引进一个新的
+协作模型。 使生态系统中的
+社区建设工作能够更有效地开展,
+取得更大的成果。 我们还希望在项目中了解什么有效,什么无效,以吸引和留住来自历史上未被代表的群体的新贡献者,建立更清晰的认知。 最后,我们计划制作详细的报告,说明我们采取的措施如何在代表性和与社区互动方面对我们的项目产生影响。
+
+这个为期两年的项目预计将于2021年11月开始,我们很期待看到这项工作的成果!
+[您可以在这里阅读完整的提案](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063)。
+
+### 2021 Numpy调查
+
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 来自75个国家的1236 名用户参加了我们去年的首次调查。
+调查结果使我们对今后12个月应该集中注意的问题有了很好的了解。
+
+现在是时候进行另一次调查了,我们将再度尋求您的合作。 这份调查将耗费您大约15分钟的时间。 除英文外,调查问卷还提供另外8种语文:孟加拉语、法语、印地语、日语、普通话、葡萄牙语、俄语和西班牙语。
+
+点击链接开始:https://berkeley.qualtrics.com/jfe/form/SV_aOONjgcBXDSl4q。
+
+### NumPy 1.21.0 发布
+
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
+is now available. 此次发布的重点是:
+
+- 继续开展SIMD工作,涵盖更多的功能和平台
+- 新dtype的基础和型态转换初步工作
+- 适用于Mac平台的Python 3.8和Python 3.9的universal2 wheels
+- 改进文档
+- 改进注释
+- 新的 `PCG64DXSM` 位元生成器,用于生成随机数字
+
+这个NumPy版本包含175人所贡献的581个合并请求。 此发布版本支持Python 3.7-3.9,将在Python 3.10发布后添加Python 3.10支持。
+
+### 2020 Numpy调研结果结果
+
+_2021年6月22日_ -- 在2020年, NumPy调研小组与密歇根大学和马里兰大学的学生和教职员工合作,进行了第一次官方NumPy社区调查。 在这里可以查看调研结果:https://numpy.org/user-survey-2020/。 在这里可以查看调研结果:https://numpy.org/user-survey-2020/。
+
+### NumPy 1.20.0 发布
+
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
+is now available. 这是 NumPy到目前为止最大的一次版本更新,感谢180+位贡献者。 最令人振奋的两个特点是:
+
+- 为大部分Numpy代码做了类型注解,並添加了一个全新的`numpy.typing` 子模块,其中包含 `ArrayLike` 和 `DtypeLike`别名 ,使得用户和下游依赖库可以为自己的代码添加类型注解。
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
+ AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
+ performance improvements for many functions (examples:
+ [sin/cos](https://github.com/numpy/numpy/pull/17587),
+ [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### NumPy项目的多样性
+
+_2020年9月20日_ -- 我们就NumPy项目的社交媒体、多样性和包容性的现状以及相关的讨论撰写了一份[声明](/diversity_sep2020)。
+
+### NumPy官方第一次在Nature发表论文!
+
+_Sep 16, 2020_ -- We are pleased to announce the publication of
+[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
+as a review article in Nature. 这离NumPy 1.0发布已经过去了整整14年。
+这篇论文涵盖了数组编程的应用和基本概念,基于NumPy构建的丰富科学Python生态系统,以及最近添加的数组协议,以促进与外部数组和张量库(如CuPy、Dask和JAX)的互操作性。
+
+### Python 3.9 即将来临,新版本的NumPy 将在何时发布?
+
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. 如果您是这个Python版本的早期采用者, 您可能会失望的发现NumPy(以及其他二进制软件包,如SciPy) 在Python新版发布当天还不会发布相应的版本。 构建兼容新的 Python 版本的基础设施需要付出重大努力,通常需要几周时间才能让新版本出现在 PyPI 和 conda-forge 上。 为了这次版本升级得以顺利进行,请确保:
+
+- 将您的 `pip` 升级到 20.1 版本,至少要支持`manylinux2010` 和 `manylinux2014`
+- 使用 [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) 或 `--only-binary=:all:` 选项来防止 `pip` 尝试从源码构建。
+
+### NumPy 1.19.2 发布
+
+_Sep 10, 2020_ -- NumPy
+1.19.2 is now available.
+_2020年9月10日_ -- [NumPy 19.2.0](https://numpy.org/devdocs/release/1.19.2-notes.html) 正式发布。 这个最新版本修复了1.19 系列中的几个漏洞,为 [即将发布的Cython3.x](http://docs.cython.org/en/latest/src/changes.html) 做准备,並固定设置工具以在上游修改正在进行时保持 distutils 工作。 Aarch64架构的安装包是用最新的 manylinux2014 版本构建的,它修复了 linux 发行版之间使用不同大小内存页的问题。
+Aarch64架构的安装包是用最新的 manylinux2014 版本构建的,它修复了
+linux 发行版之间使用不同大小内存页的问题。
+
+### 首次NumPy调研即将开始!
+
+_Jul 2, 2020_ - 本次调查旨在指导并确定 关于开发NumPy 作为软件和社区的决策重点。 除英文外,调查还提供了另外8种语言的版本:孟加拉语、印地语、日语、普通话、葡萄牙语、俄语、西班牙语和法语。
+除英文外,调查还提供了另外8种语言的版本:孟加拉语、印地语、日语、普通话、葡萄牙语、俄语、西班牙语和法语。
+
+请帮助我们让 NumPy 变得更好,在[这里](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl)参与调查。
+
+### NumPy 有新标志了!
+
+_2020年7月24日_ -- NumPy 现在有一个新的标志:
+
+