|
8 | 8 | from langchain.retrievers.document_compressors import EmbeddingsFilter, DocumentCompressorPipeline |
9 | 9 | from langchain_community.document_transformers import EmbeddingsRedundantFilter |
10 | 10 | from langchain_community.vectorstores import FAISS |
11 | | -from langchain_community.embeddings import OllamaEmbeddings |
12 | | -from langchain_openai import OpenAIEmbeddings, AzureOpenAIEmbeddings |
13 | | -from langchain_community.embeddings.huggingface import HuggingFaceInferenceAPIEmbeddings |
14 | 11 |
|
15 | 12 | from .base_node import BaseNode |
16 | 13 |
|
@@ -86,33 +83,7 @@ def execute(self, state: dict) -> dict: |
86 | 83 | print("--- (updated chunks metadata) ---") |
87 | 84 |
|
88 | 85 | # check if embedder_model is provided, if not use llm_model |
89 | | - embedding_model = self.embedder_model if self.embedder_model else self.llm_model |
90 | | - |
91 | | - if isinstance(embedding_model, OpenAI): |
92 | | - embeddings = OpenAIEmbeddings( |
93 | | - api_key=embedding_model.openai_api_key) |
94 | | - elif isinstance(embedding_model, AzureOpenAIEmbeddings): |
95 | | - embeddings = embedding_model |
96 | | - elif isinstance(embedding_model, HuggingFaceInferenceAPIEmbeddings): |
97 | | - embeddings = embedding_model |
98 | | - |
99 | | - elif isinstance(embedding_model, AzureOpenAI): |
100 | | - embeddings = AzureOpenAIEmbeddings() |
101 | | - elif isinstance(embedding_model, Ollama): |
102 | | - # unwrap the kwargs from the model whihc is a dict |
103 | | - params = embedding_model._lc_kwargs |
104 | | - # remove streaming and temperature |
105 | | - params.pop("streaming", None) |
106 | | - params.pop("temperature", None) |
107 | | - |
108 | | - embeddings = OllamaEmbeddings(**params) |
109 | | - elif isinstance(embedding_model, HuggingFace): |
110 | | - embeddings = HuggingFaceHubEmbeddings(model=embedding_model.model) |
111 | | - elif isinstance(embedding_model, Bedrock): |
112 | | - embeddings = BedrockEmbeddings( |
113 | | - client=None, model_id=embedding_model.model_id) |
114 | | - else: |
115 | | - raise ValueError("Embedding Model missing or not supported") |
| 86 | + self.embedder_model = self.embedder_model if self.embedder_model else self.llm_model |
116 | 87 | embeddings = self.embedder_model |
117 | 88 |
|
118 | 89 | retriever = FAISS.from_documents( |
|
0 commit comments