|
| 1 | +# coding=utf8, ErnestinaQiu |
| 2 | + |
| 3 | +# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. |
| 4 | +# |
| 5 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | +# you may not use this file except in compliance with the License. |
| 7 | +# You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, software |
| 12 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | +# See the License for the specific language governing permissions and |
| 15 | +# limitations under the License. |
| 16 | + |
| 17 | +import argparse |
| 18 | +import json |
| 19 | +import os |
| 20 | +import time |
| 21 | + |
| 22 | +from src.llm.llama import Ernie, Ernie_llm_list, llamaChatCompletion, llm_config |
| 23 | +from src.tot.methods.bfs import naive_solve, solve |
| 24 | +from src.tot.models import gpt_usage |
| 25 | +from src.tot.tasks import get_task |
| 26 | + |
| 27 | + |
| 28 | +def run(args, chatter): |
| 29 | + task = get_task(args.task) |
| 30 | + logs, cnt_avg, cnt_any = [], 0, 0 |
| 31 | + if args.naive_run: |
| 32 | + file = f"./logs/{args.task}/{args.backend}_{args.temperature}_naive_{args.prompt_sample}_sample_{args.n_generate_sample}_start{args.task_start_index}_end{args.task_end_index}.json" |
| 33 | + metric_fp = f"./logs/{args.task}/{args.backend}_{args.temperature}_{args.method_select}_{args.n_generate_sample}_start{args.task_start_index}_end{args.task_end_index}_metric.txt" |
| 34 | + else: |
| 35 | + file = f"./logs/{args.task}/{args.backend}_{args.temperature}_{args.method_generate}{args.n_generate_sample}_{args.method_evaluate}{args.n_evaluate_sample}_{args.method_select}{args.n_select_sample}_start{args.task_start_index}_end{args.task_end_index}.json" |
| 36 | + metric_fp = f"./logs/{args.task}/{args.backend}_{args.temperature}_{args.method_generate}{args.n_generate_sample}_{args.method_evaluate}{args.n_evaluate_sample}_{args.method_select}{args.n_select_sample}_start{args.task_start_index}_end{args.task_end_index}_metric.txt" |
| 37 | + os.makedirs(os.path.dirname(file), exist_ok=True) |
| 38 | + |
| 39 | + for i in range(args.task_start_index, args.task_end_index): |
| 40 | + args.log_fp = f"./logs/{args.task}/{args.backend}_{args.temperature}_{args.prompt_sample}_sample_{args.n_generate_sample}_start{args.task_start_index}_end{args.task_end_index}.log" |
| 41 | + args.query_fp = f"./logs/{args.task}/{args.backend}_{args.temperature}_{args.prompt_sample}_sample_{args.n_generate_sample}_start{args.task_start_index}_end{args.task_end_index}_query.log" |
| 42 | + f = open(args.log_fp, "a", encoding="utf8") |
| 43 | + f.write(f"------ index: {i}") |
| 44 | + f.close() |
| 45 | + |
| 46 | + f = open(args.query_fp, "a", encoding="utf8") |
| 47 | + f.write(f"------ index: {i}") |
| 48 | + f.close() |
| 49 | + |
| 50 | + chatter.query = [] |
| 51 | + chatter.tokenizer.init_chat_template( |
| 52 | + os.path.join(os.getcwd(), "pipelines", "examples", "tree-of-thought", "src", "llm", "chat_template.json") |
| 53 | + ) |
| 54 | + |
| 55 | + # solve |
| 56 | + if args.naive_run: |
| 57 | + ys, info = naive_solve(args, task, i, chatter=chatter, args=args) |
| 58 | + else: |
| 59 | + ys, info = solve(args, task, i, chatter=chatter, args=args) |
| 60 | + |
| 61 | + # log |
| 62 | + infos = [task.test_output(i, y) for y in ys] |
| 63 | + info.update({"idx": i, "ys": ys, "infos": infos, "usage_so_far": gpt_usage(args.backend)}) |
| 64 | + logs.append(info) |
| 65 | + with open(file, "w") as f: |
| 66 | + json.dump(logs, f, indent=4) |
| 67 | + |
| 68 | + # log main metric |
| 69 | + accs = [info["r"] for info in infos] |
| 70 | + cnt_avg += sum(accs) / len(accs) |
| 71 | + cnt_any += any(accs) |
| 72 | + mes = f"{i}, 'sum(accs)', {sum(accs)}, 'cnt_avg', {cnt_avg}, 'cnt_any', {cnt_any}, '\n'" |
| 73 | + f = open(metric_fp, "a", encoding="utf8") |
| 74 | + f.write(mes) |
| 75 | + f.close() |
| 76 | + |
| 77 | + f = open(args.query_fp, "a", encoding="utf8") |
| 78 | + f.write(json.dumps(chatter.query)) |
| 79 | + f.close() |
| 80 | + |
| 81 | + n = args.task_end_index - args.task_start_index |
| 82 | + mes2 = f"cnt_avg / n: {cnt_avg / n}, cnt_any / n: {cnt_any / n}" |
| 83 | + mes3 = f"'usage_so_far', {gpt_usage(args.backend)}" |
| 84 | + f = open(metric_fp, "a", encoding="utf8") |
| 85 | + f.write(mes2) |
| 86 | + f.write(mes3) |
| 87 | + f.close() |
| 88 | + |
| 89 | + |
| 90 | +llm_backend_choices = list(llm_config.keys()) |
| 91 | + |
| 92 | + |
| 93 | +def parse_args(): |
| 94 | + args = argparse.ArgumentParser() |
| 95 | + args.add_argument("--backend", type=str, choices=llm_backend_choices, default="llama-2-7b-chat") |
| 96 | + args.add_argument("--temperature", type=float, default=0.6) |
| 97 | + |
| 98 | + args.add_argument("--task", type=str, required=True, choices=["game24", "text", "crosswords"]) |
| 99 | + args.add_argument("--task_start_index", type=int, default=900) |
| 100 | + args.add_argument("--task_end_index", type=int, default=1000) |
| 101 | + |
| 102 | + args.add_argument("--naive_run", action="store_true") |
| 103 | + args.add_argument( |
| 104 | + "--prompt_sample", type=str, choices=["standard", "cot"] |
| 105 | + ) # only used when method_generate = sample, or naive_run |
| 106 | + |
| 107 | + args.add_argument("--method_generate", type=str, choices=["sample", "propose"]) |
| 108 | + args.add_argument("--method_evaluate", type=str, choices=["value", "vote"]) |
| 109 | + args.add_argument("--method_select", type=str, choices=["sample", "greedy"], default="greedy") |
| 110 | + args.add_argument("--n_generate_sample", type=int, default=1) # only thing needed if naive_run |
| 111 | + args.add_argument("--n_evaluate_sample", type=int, default=1) |
| 112 | + args.add_argument("--n_select_sample", type=int, default=1) |
| 113 | + |
| 114 | + args.add_argument("--query_fp", type=str, default=f"./logs/default/query_{int(time.time())}.log") |
| 115 | + |
| 116 | + args = args.parse_args() |
| 117 | + return args |
| 118 | + |
| 119 | + |
| 120 | +if __name__ == "__main__": |
| 121 | + args = parse_args() |
| 122 | + if args.backend in llm_backend_choices: |
| 123 | + chatter = llamaChatCompletion(args.backend) |
| 124 | + elif args.backend in Ernie_llm_list: |
| 125 | + chatter = Ernie(model=args.backend) |
| 126 | + run(args, chatter=chatter) |
0 commit comments