Skip to content

Commit 5eee934

Browse files
committed
Better package page.
1 parent 74b1fe4 commit 5eee934

File tree

2 files changed

+48
-42
lines changed

2 files changed

+48
-42
lines changed

R/dfms.R

Lines changed: 25 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -1,55 +1,60 @@
11
#' Dynamic Factor Models
22
#'
3-
#' *dfms* provides efficient estimation of Dynamic Factor Models via the EM Algorithm.
3+
#' @description
44
#'
5-
#' Estimation can be done in 3 different ways following:
5+
#' *dfms* provides efficient estimation of Dynamic Factor Models via the EM Algorithm --- following Doz, Giannone & Reichlin (2011, 2012) and Banbura & Modugno (2014). The package has the following contents:
66
#'
7-
#' - Doz, C., Giannone, D., & Reichlin, L. (2011). A two-step estimator for large approximate dynamic factor models based on Kalman filtering. *Journal of Econometrics, 164*(1), 188-205. <doi:10.1016/j.jeconom.2011.02.012>
7+
#' **Information Criteria**
88
#'
9-
#' - Doz, C., Giannone, D., & Reichlin, L. (2012). A quasi-maximum likelihood approach for large, approximate dynamic factor models. *Review of Economics and Statistics, 94*(4), 1014-1024. <doi:10.1162/REST_a_00225>
10-
#'
11-
#' - Banbura, M., & Modugno, M. (2014). Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data. *Journal of Applied Econometrics, 29*(1), 133-160. <doi:10.1002/jae.2306>
12-
#'
13-
#' The default is `em.method = "auto"`, which chooses `"BM"` following Banbura & Modugno (2014) with missing data or mixed frequency, and `"DGR"` following Doz, Giannone & Reichlin (2012) otherwise. Using `em.method = "none"` generates Two-Step estimates following Doz, Giannone & Reichlin (2011). This is extremely efficient on bigger datasets. PCA and Two-Step estimates are also reported in EM-estimation. All methods support missing data, but `em.method = "DGR"` does not model them in EM iterations.
14-
#'
15-
#' @section Package Contents:
16-
#'
17-
#' **Functions to Specify/Estimate Model and Key Methods**
18-
#'
19-
#' \code{\link[=ICr]{ICr()}} --- Information Criteria\cr
9+
#' \code{\link[=ICr]{ICr()}}\cr
2010
#'
2111
#' - \code{\link[=plot.ICr]{plot(<ICr>)}}\cr
2212
#' - \code{\link[=screeplot.ICr]{screeplot(<ICr>)}}\cr
2313
#'
24-
#' \code{\link[=DFM]{DFM()}} --- Estimate the Model\cr
14+
#' **Fit a Dynamic Factor Model**
15+
#'
16+
#' \code{\link[=DFM]{DFM()}}\cr
2517
#'
2618
#' - \code{\link[=summary.dfm]{summary(<dfm>)}}\cr
2719
#' - \code{\link[=plot.dfm]{plot(<dfm>)}}\cr
2820
#' - \code{\link[=as.data.frame.dfm]{as.data.frame(<dfm>)}}\cr
2921
#' - \code{\link[=residuals.dfm]{residuals(<dfm>)}}\cr
3022
#' - \code{\link[=fitted.dfm]{fitted(<dfm>)}}
3123
#'
32-
#' \code{\link[=predict.dfm]{predict(<dfm>)}} --- Generate Forecasts\cr
24+
#' **Generate Forecasts**
25+
#'
26+
#' \code{\link[=predict.dfm]{predict(<dfm>)}}\cr
3327
#'
3428
#' - \code{\link[=plot.dfm_forecast]{plot(<dfm_forecast>)}}\cr
3529
#' - \code{\link[=as.data.frame.dfm_forecast]{as.data.frame(<dfm_forecast>)}}\cr
3630
#'
37-
#' **Auxiliary Functions**
31+
#' **Fast Stationary Kalman Filtering and Smoothing**
3832
#'
39-
#' \code{\link[=.VAR]{.VAR()}} --- Estimate Vector Autoregression\cr
4033
#' \code{\link[=SKF]{SKF()}} --- Stationary Kalman Filter\cr
4134
#' \code{\link[=FIS]{FIS()}} --- Fixed Interval Smoother\cr
4235
#' \code{\link[=SKFS]{SKFS()}} --- Stationary Kalman Filter + Smoother\cr
36+
#'
37+
#' **Helper Functions**
38+
#'
39+
#' \code{\link[=.VAR]{.VAR()}} --- (Fast) Barebones Vector-Autoregression\cr
40+
#' \code{\link[=ainv]{ainv()}} --- Armadillo's Inverse Function\cr
41+
#' \code{\link[=apinv]{apinv()}} --- Armadillo's Pseudo-Inverse Function\cr
4342
#' \code{\link[=tsnarmimp]{tsnarmimp()}} --- Remove and Impute Missing Values in a Multivariate Time Series\cr
44-
#' \code{\link[=ainv]{ainv()}} --- Rcpp Armadillo's Inverse Function\cr
45-
#' \code{\link[=apinv]{apinv()}} --- Rcpp Armadillo's Pseudo-Inverse Function\cr
43+
#' \code{\link[=em_converged]{em_converged()}} --- Convergence Test for EM-Algorithm\cr
4644
#'
4745
#' **Data**
4846
#'
4947
#' \code{\link{BM14_M}} --- Monthly Series by Banbura and Modugno (2014)\cr
5048
#' \code{\link{BM14_Q}} --- Quarterly Series by Banbura and Modugno (2014)\cr
5149
#' \code{\link{BM14_Models}} --- Series Metadata + Small/Medium/Large Model Specifications\cr
5250
#'
51+
#' @references
52+
#' Doz, C., Giannone, D., & Reichlin, L. (2011). A two-step estimator for large approximate dynamic factor models based on Kalman filtering. *Journal of Econometrics, 164*(1), 188-205. <doi:10.1016/j.jeconom.2011.02.012>
53+
#'
54+
#' Doz, C., Giannone, D., & Reichlin, L. (2012). A quasi-maximum likelihood approach for large, approximate dynamic factor models. *Review of Economics and Statistics, 94*(4), 1014-1024. <doi:10.1162/REST_a_00225>
55+
#'
56+
#' Banbura, M., & Modugno, M. (2014). Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data. *Journal of Applied Econometrics, 29*(1), 133-160. <doi:10.1002/jae.2306>
57+
#'
5358
#' @docType package
5459
#' @name dfms-package
5560
#' @aliases dfms

man/dfms-package.Rd

Lines changed: 23 additions & 22 deletions
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

0 commit comments

Comments
 (0)