@@ -70,9 +70,7 @@ summary(mod)
7070```
7171
7272```
73- ## Mixed Frequency Dynamic Factor Model
74- ## n = 92, nm = 92, nq = 0, T = 356, r = 6, p = 3
75- ## %NA = 25.8366, %NAm = NA
73+ ## Dynamic Factor Model: n = 92, T = 356, r = 6, p = 3, %NA = 25.8366
7674##
7775## Call: DFM(X = diff(BM14_M), r = 6, p = 3)
7876##
@@ -86,27 +84,20 @@ summary(mod)
8684## f6 356 -0.8361 -0.304 3.1406 -11.6611 15.4897
8785##
8886## Factor Transition Matrix [A]
89- ## L1.f1 L1.f2 L1.f3 L1.f4 L1.f5 L1.f6 L2.f1 L2.f2
90- ## f1 0.53029 -0.53009 0.367302 0.04607 -0.06351 0.10310 0.02457 0.11673
91- ## f2 -0.28380 0.07421 -0.032292 0.29741 -0.10094 0.21989 0.09958 -0.09149
92- ## f3 0.17607 0.12979 0.378798 -0.06662 -0.12236 0.06685 -0.08068 0.09101
93- ## f4 0.02711 0.08936 0.004643 0.37159 0.12100 -0.02763 0.01234 -0.05147
94- ## f5 -0.26227 -0.03469 -0.046294 0.12712 0.26847 0.03141 0.06400 0.01971
95- ## f6 0.08251 0.17619 -0.013374 -0.08731 -0.03875 0.27812 -0.01662 0.04877
96- ## L2.f3 L2.f4 L2.f5 L2.f6 L3.f1 L3.f2 L3.f3 L3.f4
97- ## f1 -0.12638 0.23135 0.117184 0.21941 0.18478 0.02259 -0.03719 -0.07236
98- ## f2 0.06708 -0.09768 -0.043057 0.08489 0.21107 0.16261 0.03057 0.04835
99- ## f3 -0.22232 0.09799 -0.060666 -0.18028 -0.02773 0.01798 0.10143 -0.12420
100- ## f4 0.02195 0.01266 0.050912 0.05144 -0.05601 0.04665 0.05710 -0.11412
101- ## f5 0.04806 -0.03965 -0.009952 -0.18471 0.08332 -0.04640 -0.02047 0.02458
102- ## f6 0.02279 0.01163 -0.100859 0.07152 0.00792 0.06071 0.11381 0.02520
103- ## L3.f5 L3.f6
104- ## f1 -0.03026 -0.12606
105- ## f2 0.12249 0.13357
106- ## f3 0.04207 -0.07011
107- ## f4 -0.05680 -0.01609
108- ## f5 0.16397 0.07820
109- ## f6 -0.17897 0.30328
87+ ## L1.f1 L1.f2 L1.f3 L1.f4 L1.f5 L1.f6 L2.f1 L2.f2 L2.f3
88+ ## f1 0.53029 -0.53009 0.367302 0.04607 -0.06351 0.10310 0.02457 0.11673 -0.12638
89+ ## f2 -0.28380 0.07421 -0.032292 0.29741 -0.10094 0.21989 0.09958 -0.09149 0.06708
90+ ## f3 0.17607 0.12979 0.378798 -0.06662 -0.12236 0.06685 -0.08068 0.09101 -0.22232
91+ ## f4 0.02711 0.08936 0.004643 0.37159 0.12100 -0.02763 0.01234 -0.05147 0.02195
92+ ## f5 -0.26227 -0.03469 -0.046294 0.12712 0.26847 0.03141 0.06400 0.01971 0.04806
93+ ## f6 0.08251 0.17619 -0.013374 -0.08731 -0.03875 0.27812 -0.01662 0.04877 0.02279
94+ ## L2.f4 L2.f5 L2.f6 L3.f1 L3.f2 L3.f3 L3.f4 L3.f5 L3.f6
95+ ## f1 0.23135 0.117184 0.21941 0.18478 0.02259 -0.03719 -0.07236 -0.03026 -0.12606
96+ ## f2 -0.09768 -0.043057 0.08489 0.21107 0.16261 0.03057 0.04835 0.12249 0.13357
97+ ## f3 0.09799 -0.060666 -0.18028 -0.02773 0.01798 0.10143 -0.12420 0.04207 -0.07011
98+ ## f4 0.01266 0.050912 0.05144 -0.05601 0.04665 0.05710 -0.11412 -0.05680 -0.01609
99+ ## f5 -0.03965 -0.009952 -0.18471 0.08332 -0.04640 -0.02047 0.02458 0.16397 0.07820
100+ ## f6 0.01163 -0.100859 0.07152 0.00792 0.06071 0.11381 0.02520 -0.17897 0.30328
110101##
111102## Factor Covariance Matrix [cov(F)]
112103## f1 f2 f3 f4 f5 f6
@@ -158,11 +149,11 @@ as.data.frame(mod) |> head()
158149```
159150
160151``` r
161- # Forecasting 20 periods ahead
162- fc <- predict(mod , h = 20 )
152+ # Forecasting 12 periods ahead
153+ fc <- predict(mod , h = 12 )
163154
164155# 'dfm_forecast' methods
165- plot(fc )
156+ plot(fc , xlim = c( 320 , 370 ) )
166157```
167158
168159<div class =" figure " >
0 commit comments