Skip to content

Commit cf0f1bb

Browse files
Merge pull request SciML#729 from abhro/abhro-patch-1
Documentation fixes
2 parents cf0e327 + 02d370c commit cf0f1bb

File tree

11 files changed

+77
-77
lines changed

11 files changed

+77
-77
lines changed

docs/src/interfaces/Init_Solve.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@ is distinctly different from the
3737
[LinearSolve init interface](https://docs.sciml.ai/LinearSolve/stable/tutorials/caching_interface)
3838
which is designed for caching efficiency with reusing factorizations.
3939

40-
## __solve and High-Level Handling
40+
## `__solve` and High-Level Handling
4141

4242
While `init` and `solve` are the common entry point for users, solver packages will
4343
mostly define dispatches on `SciMLBase.__init` and `SciMLBase.__solve`. The reason is

docs/src/interfaces/Problems.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@ usage, a `AbstractSciMLProblem` might be associated with some solver configurati
8686
callback or tolerance. Thus, for flexibility the extra keyword arguments to the
8787
`AbstractSciMLProblem` are carried to the solver.
8888

89-
### problem_type
89+
### `problem_type`
9090

9191
`AbstractSciMLProblem` types include a non-public API definition of `problem_type` which holds
9292
a trait type corresponding to the way the `AbstractSciMLProblem` was constructed. For example,

docs/src/interfaces/SciMLFunctions.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -94,8 +94,8 @@ on setting up time/parameter dependent operators.
9494
The solver libraries internally use packages such as [FiniteDiff.jl](https://docs.sciml.ai/FiniteDiff/stable/)
9595
and [SparseDiffTools.jl](https://docs.sciml.ai/SparseDiffTools/stable/) for
9696
high performance calculation of sparse Jacobians and Hessians, along with matrix-free
97-
calculations of Jacobian-Vector products (J*v), vector-Jacobian products (v'*J),
98-
and Hessian-vector products (H*v). The SciML interface gives users the ability
97+
calculations of Jacobian-Vector products (`J*v`), vector-Jacobian products (`v'*J`),
98+
and Hessian-vector products (`H*v`). The SciML interface gives users the ability
9999
to control these connections in order to allow for top notch performance.
100100

101101
The key arguments in the SciMLFunction is the `prototype`, which is an object

src/SciMLBase.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -100,7 +100,7 @@ abstract type AbstractOptimizationCache end
100100
"""
101101
$(TYPEDEF)
102102
103-
Base for types which define nonlinear solve problems (f(u)=0).
103+
Base for types which define nonlinear solve problems (`f(u)=0`).
104104
"""
105105
abstract type AbstractNonlinearProblem{uType, isinplace} <: AbstractDEProblem end
106106
abstract type AbstractIntervalNonlinearProblem{uType, isinplace} <:

src/alg_traits.jl

Lines changed: 18 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
"""
2-
isautodifferentiable(alg::AbstractDEAlgorithm)
2+
isautodifferentiable(alg::AbstractDEAlgorithm)
33
44
Trait declaration for whether an algorithm is compatible with
55
direct automatic differentiation, i.e. can have algorithms like
@@ -11,7 +11,7 @@ Defaults to false as only pure-Julia algorithms can have this be true.
1111
isautodifferentiable(alg::AbstractSciMLAlgorithm) = false
1212

1313
"""
14-
forwarddiffs_model(alg::AbstractDEAlgorithm)
14+
forwarddiffs_model(alg::AbstractDEAlgorithm)
1515
1616
Trait declaration for whether an algorithm uses ForwardDiff.jl
1717
on the model function is called with ForwardDiff.jl
@@ -21,7 +21,7 @@ Defaults to false as only pure-Julia algorithms can have this be true.
2121
forwarddiffs_model(alg::AbstractSciMLAlgorithm) = false
2222

2323
"""
24-
forwarddiffs_model_time(alg::AbstractDEAlgorithm)
24+
forwarddiffs_model_time(alg::AbstractDEAlgorithm)
2525
2626
Trait declaration for whether an algorithm uses ForwardDiff.jl
2727
on the model `f(u,p,t)` function is called with ForwardDiff.jl on the `t` argument.
@@ -32,7 +32,7 @@ have this as true
3232
forwarddiffs_model_time(alg::AbstractSciMLAlgorithm) = false
3333

3434
"""
35-
allows_arbitrary_number_types(alg::AbstractDEAlgorithm)
35+
allows_arbitrary_number_types(alg::AbstractDEAlgorithm)
3636
3737
Trait declaration for whether an algorithm is compatible with
3838
direct automatic differentiation, i.e. can have algorithms like
@@ -44,7 +44,7 @@ Defaults to false as only pure-Julia algorithms can have this be true.
4444
allows_arbitrary_number_types(alg::AbstractSciMLAlgorithm) = false
4545

4646
"""
47-
allowscomplex(alg::AbstractDEAlgorithm)
47+
allowscomplex(alg::AbstractDEAlgorithm)
4848
4949
Trait declaration for whether an algorithm is compatible with
5050
having complex numbers as the state variables.
@@ -54,7 +54,7 @@ Defaults to false.
5454
allowscomplex(alg::AbstractSciMLAlgorithm) = false
5555

5656
"""
57-
isadaptive(alg::AbstractDEAlgorithm)
57+
isadaptive(alg::AbstractDEAlgorithm)
5858
5959
Trait declaration for whether an algorithm uses adaptivity,
6060
i.e. has a non-quasi-static compute graph.
@@ -65,7 +65,7 @@ isadaptive(alg::AbstractDEAlgorithm) = true
6565
# Default to assuming adaptive, safer error("Adaptivity algorithm trait not set.")
6666

6767
"""
68-
isdiscrete(alg::AbstractDEAlgorithm)
68+
isdiscrete(alg::AbstractDEAlgorithm)
6969
7070
Trait declaration for whether an algorithm allows for
7171
discrete state values, such as integers.
@@ -75,7 +75,7 @@ Defaults to false.
7575
isdiscrete(alg::AbstractDEAlgorithm) = false
7676

7777
"""
78-
allowsbounds(opt)
78+
allowsbounds(opt)
7979
8080
Trait declaration for whether an optimizer allows for
8181
box constraints passed with `lb` and `ub` in
@@ -86,7 +86,7 @@ Defaults to false.
8686
allowsbounds(opt) = false
8787

8888
"""
89-
requiresbounds(opt)
89+
requiresbounds(opt)
9090
9191
Trait declaration for whether an optimizer requires
9292
box constraints passed with `lb` and `ub` in
@@ -97,7 +97,7 @@ Defaults to false.
9797
requiresbounds(opt) = false
9898

9999
"""
100-
allowsconstraints(opt)
100+
allowsconstraints(opt)
101101
102102
Trait declaration for whether an optimizer allows
103103
non-linear constraints specified in `cons` in
@@ -108,7 +108,7 @@ Defaults to false.
108108
allowsconstraints(opt) = false
109109

110110
"""
111-
requiresconstraints(opt)
111+
requiresconstraints(opt)
112112
113113
Trait declaration for whether an optimizer
114114
requires non-linear constraints specified in
@@ -119,7 +119,7 @@ Defaults to false.
119119
requiresconstraints(opt) = false
120120

121121
"""
122-
requiresgradient(opt)
122+
requiresgradient(opt)
123123
124124
Trait declaration for whether an optimizer
125125
requires gradient in `instantiate_function`.
@@ -129,7 +129,7 @@ Defaults to false.
129129
requiresgradient(opt) = false
130130

131131
"""
132-
requireshessian(opt)
132+
requireshessian(opt)
133133
134134
Trait declaration for whether an optimizer
135135
requires hessian in `instantiate_function`.
@@ -139,17 +139,17 @@ Defaults to false.
139139
requireshessian(opt) = false
140140

141141
"""
142-
requiresconsjac(opt)
142+
requiresconsjac(opt)
143143
144144
Trait declaration for whether an optimizer
145-
requires cons_j in `instantiate_function`, that is, does the optimizer require a constant Jacobian.
145+
requires `cons_j` in `instantiate_function`, that is, does the optimizer require a constant Jacobian.
146146
147147
Defaults to false.
148148
"""
149149
requiresconsjac(opt) = false
150150

151151
"""
152-
requiresconshess(opt)
152+
requiresconshess(opt)
153153
154154
Trait declaration for whether an optimizer
155155
requires cons_h in `instantiate_function`, that is, does the optimizer require a constant hessian.
@@ -159,7 +159,7 @@ Defaults to false.
159159
requiresconshess(opt) = false
160160

161161
"""
162-
allowscallback(opt)
162+
allowscallback(opt)
163163
164164
Trait declaration for whether an optimizer
165165
supports passing a `callback` to `solve`
@@ -170,7 +170,7 @@ Defaults to true.
170170
allowscallback(opt) = true
171171

172172
"""
173-
alg_order(alg)
173+
alg_order(alg)
174174
175175
The theoretic convergence order of the algorithm. If the method is adaptive order, this is treated
176176
as the maximum order of the algorithm.

src/debug.jl

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -49,11 +49,11 @@ into the AbstractSciMLProblem (e.x.: ODEProblem) but the parameters object `p` w
4949
expression. Two common reasons for this issue are:
5050
5151
1. Forgetting to pass parameters into the problem constructor. For example, `ODEProblem(f,u0,tspan)` should
52-
be `ODEProblem(f,u0,tspan,p)` in order to use parameters.
52+
be `ODEProblem(f,u0,tspan,p)` in order to use parameters.
5353
5454
2. Using the wrong function signature. For example, with `ODEProblem`s the function signature is always
55-
`f(du,u,p,t)` for the in-place form or `f(u,p,t)` for the out-of-place form. Note that the `p` argument
56-
will always be in the function signature regardless of if the problem is defined with parameters!
55+
`f(du,u,p,t)` for the in-place form or `f(u,p,t)` for the out-of-place form. Note that the `p` argument
56+
will always be in the function signature regardless of if the problem is defined with parameters!
5757
"""
5858

5959
function __init__()

src/integrator_interface.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -283,7 +283,7 @@ function reinit!(integrator::DEIntegrator, args...; kwargs...)
283283
end
284284

285285
"""
286-
initialize_dae!(integrator::DEIntegrator,initializealg = integrator.initializealg)
286+
initialize_dae!(integrator::DEIntegrator,initializealg = integrator.initializealg)
287287
288288
Runs the DAE initialization to find a consistent state vector. The optional
289289
argument `initializealg` can be used to specify a different initialization
@@ -894,7 +894,7 @@ end
894894
has_stats(i::DEIntegrator) = false
895895

896896
"""
897-
is_integrator_adaptive(i::DEIntegrator)
897+
isadaptive(i::DEIntegrator)
898898
899899
Checks if the integrator is adaptive
900900
"""

src/operators/diffeq_operator.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
"""
2-
AffineDiffEqOperator{T} <: AbstractDiffEqOperator{T}
2+
AffineDiffEqOperator{T} <: AbstractDiffEqOperator{T}
33
44
`Ex: (A₁(t) + ... + Aₙ(t))*u + B₁(t) + ... + Bₘ(t)`
55

src/problems/problem_utils.jl

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -149,11 +149,11 @@ into the AbstractSciMLProblem (e.x.: ODEProblem) but the parameters object `p` w
149149
expression (e.x. `p[i]`, or `x .+ p`). Two common reasons for this issue are:
150150
151151
1. Forgetting to pass parameters into the problem constructor. For example, `ODEProblem(f,u0,tspan)` should
152-
be `ODEProblem(f,u0,tspan,p)` in order to use parameters.
152+
be `ODEProblem(f,u0,tspan,p)` in order to use parameters.
153153
154154
2. Using the wrong function signature. For example, with `ODEProblem`s the function signature is always
155-
`f(du,u,p,t)` for the in-place form or `f(u,p,t)` for the out-of-place form. Note that the `p` argument
156-
will always be in the function signature regardless of if the problem is defined with parameters!
155+
`f(du,u,p,t)` for the in-place form or `f(u,p,t)` for the out-of-place form. Note that the `p` argument
156+
will always be in the function signature regardless of if the problem is defined with parameters!
157157
"""
158158

159159
struct NullParameterIndexError <: Exception end

0 commit comments

Comments
 (0)