Skip to content

Commit 716a4ec

Browse files
Rajakavitha1Rakavitha Kodhandapani
andauthored
[docs] gitbook migrated (#1059)
* updated the format * updated the summary * fixed the format * added the format * fixed the format in gs * fixed the tabs format --------- Co-authored-by: Rakavitha Kodhandapani <seldon@SELIN002.local>
1 parent 61fb298 commit 716a4ec

21 files changed

+159
-267
lines changed

docs-gb/SUMMARY.md

Lines changed: 54 additions & 49 deletions
Original file line numberDiff line numberDiff line change
@@ -1,94 +1,99 @@
11
# Table of contents
22

3-
* [README](README.md)
4-
53
## Overview
64

7-
* [Introduction](source/overview/README.md)
5+
* [Introduction](source/overview/high_level.md)
86
* [Getting Started](source/overview/getting_started.md)
97
* [Algorithm Overview](source/overview/algorithms.md)
108
* [White-box and black-box models](source/overview/white_box_black_box.md)
119
* [Saving and loading](source/overview/saving.md)
1210
* [Frequently Asked Questions](source/overview/faq.md)
1311

1412
## Explanations
15-
16-
* [Explanations](source/explanations/README.md)
17-
* [Examples](source/explanations/examples.md)
18-
* [Methods](source/explanations/methods.md)
19-
* [methods](source/methods/README.md)
20-
* [ALE](source/methods/ale.md)
21-
* [Anchors](source/methods/anchors.md)
22-
* [CEM](source/methods/cem.md)
23-
* [CF](source/methods/cf.md)
24-
* [CFProto](source/methods/cfproto.md)
25-
* [CFRL](source/methods/cfrl.md)
26-
* [IntegratedGradients](source/methods/integratedgradients.md)
27-
* [KernelSHAP](source/methods/kernelshap.md)
28-
* [LinearityMeasure](source/methods/linearitymeasure.md)
29-
* [PartialDependence](source/methods/partialdependence.md)
30-
* [PartialDependenceVariance](source/methods/partialdependencevariance.md)
31-
* [PermutationImportance](source/methods/permutationimportance.md)
32-
* [ProtoSelect](source/methods/protoselect.md)
33-
* [Similarity](source/methods/similarity.md)
34-
* [TreeSHAP](source/methods/treeshap.md)
35-
* [TrustScores](source/methods/trustscores.md)
36-
* [ALE Figures](source/methods/ale_figures.md)
37-
38-
## Model Confidence
39-
40-
* [confidence](source/confidence/README.md)
41-
* [Examples](source/confidence/examples.md)
42-
* [Methods](source/confidence/methods.md)
43-
* [examples](source/examples/README.md)
13+
* Methods
14+
* [ALE](source/methods/ale.md)
15+
* [Anchors](source/methods/anchors.md)
16+
* [CEM](source/methods/cem.md)
17+
* [CF](source/methods/cf.md)
18+
* [CFProto](source/methods/cfproto.md)
19+
* [CFRL](source/methods/cfrl.md)
20+
* [IntegratedGradients](source/methods/integratedgradients.md)
21+
* [KernelSHAP](source/methods/kernelshap.md)
22+
* [LinearityMeasure](source/methods/linearitymeasure.md)
23+
* [PartialDependence](source/methods/partialdependence.md)
24+
* [PartialDependenceVariance](source/methods/partialdependencevariance.md)
25+
* [PermutationImportance](source/methods/permutationimportance.md)
26+
* [ProtoSelect](source/methods/protoselect.md)
27+
* [Similarity](source/methods/similarity.md)
28+
* [TreeSHAP](source/methods/treeshap.md)
29+
* [TrustScores](source/methods/trustscores.md)
30+
* Examples
31+
* [Alibi Overview Examples](source/examples/overview.md)
32+
* Accumulated Local Effets
4433
* [Accumulated Local Effects for classifying flowers](source/examples/ale_classification.md)
4534
* [Accumulated Local Effects for predicting house prices](source/examples/ale_regression_california.md)
35+
* Anchors
4636
* [Anchor explanations for fashion MNIST](source/examples/anchor_image_fashion_mnist.md)
4737
* [Anchor explanations for ImageNet](source/examples/anchor_image_imagenet.md)
4838
* [Anchor explanations for income prediction](source/examples/anchor_tabular_adult.md)
4939
* [Anchor explanations on the Iris dataset](source/examples/anchor_tabular_iris.md)
5040
* [Anchor explanations for movie sentiment](source/examples/anchor_text_movie.md)
41+
* Contrastive Explanation Method
5142
* [Contrastive Explanations Method (CEM) applied to Iris dataset](source/examples/cem_iris.md)
5243
* [Contrastive Explanations Method (CEM) applied to MNIST](source/examples/cem_mnist.md)
53-
* [Counterfactual instances on MNIST](source/examples/cf_mnist.md)
44+
* [Counterfactual Instances on MNIST](source/examples/cf_mnist.md)
45+
* Counterfactuals Guided by Prototypes
5446
* [Counterfactual explanations with one-hot encoded categorical variables](source/examples/cfproto_cat_adult_ohe.md)
5547
* [Counterfactual explanations with ordinally encoded categorical variables](source/examples/cfproto_cat_adult_ord.md)
5648
* [Counterfactuals guided by prototypes on California housing dataset](source/examples/cfproto_housing.md)
5749
* [Counterfactuals guided by prototypes on MNIST](source/examples/cfproto_mnist.md)
50+
* Counterfactuals with Reinforcement Learning
5851
* [Counterfactual with Reinforcement Learning (CFRL) on Adult Census](source/examples/cfrl_adult.md)
5952
* [Counterfactual with Reinforcement Learning (CFRL) on MNIST](source/examples/cfrl_mnist.md)
60-
* [Distributed KernelSHAP](source/examples/distributed_kernel_shap_adult_lr.md)
53+
* Integrated Gradients
6154
* [Integrated gradients for a ResNet model trained on Imagenet dataset](source/examples/integrated_gradients_imagenet.md)
6255
* [Integrated gradients for text classification on the IMDB dataset](source/examples/integrated_gradients_imdb.md)
6356
* [Integrated gradients for MNIST](source/examples/integrated_gradients_mnist.md)
6457
* [Integrated gradients for transformers models](source/examples/integrated_gradients_transformers.md)
65-
* [Explaining Tree Models with Interventional Feature Perturbation Tree SHAP](source/examples/interventional_tree_shap_adult_xgb.md)
58+
* Kernel SHAP
59+
* [Distributed KernelSHAP](source/examples/distributed_kernel_shap_adult_lr.md)
6660
* [KernelSHAP: combining preprocessor and predictor](source/examples/kernel_shap_adult_categorical_preproc.md)
6761
* [Handling categorical variables with KernelSHAP](source/examples/kernel_shap_adult_lr.md)
6862
* [Kernel SHAP explanation for SVM models](source/examples/kernel_shap_wine_intro.md)
6963
* [Kernel SHAP explanation for multinomial logistic regression models](source/examples/kernel_shap_wine_lr.md)
70-
* [Linearity measure applied to fashion MNIST](source/examples/linearity_measure_fashion_mnist.md)
71-
* [Linearity measure applied to Iris](source/examples/linearity_measure_iris.md)
72-
* [Alibi Overview Example](source/examples/overview.md)
73-
* [Explaining Tree Models with Path-Dependent Feature Perturbation Tree SHAP](source/examples/path_dependent_tree_shap_adult_xgb.md)
74-
* [Feature importance and feature interaction based on partial dependece variance](source/examples/pd_variance_regression_friedman.md)
64+
* Partial Dependence
7565
* [Partial Dependence and Individual Conditional Expectation for predicting bike renting](source/examples/pdp_regression_bike.md)
76-
* [Permutation Feature Importance on "Who's Going to Leave Next?"](source/examples/permutation_importance_classification_leave.md)
77-
* [ProtoSelect on Adult Census and CIFAR10](source/examples/protoselect_adult_cifar10.md)
66+
* Partial Dependence Variance
67+
* [Feature importance and feature interaction based on partial dependece variance](source/examples/pd_variance_regression_friedman.md)
68+
* Permutation Importance
69+
* [Permutation Feature Importance on “Who’s Going to Leave Next?”](source/examples/permutation_importance_classification_leave.md)
70+
* Similarity explanations
7871
* [Similarity explanations for 20 newsgroups dataset](source/examples/similarity_explanations_20ng.md)
7972
* [Similarity explanations for ImageNet](source/examples/similarity_explanations_imagenet.md)
8073
* [Similarity explanations for MNIST](source/examples/similarity_explanations_mnist.md)
74+
* Tree SHAP
75+
* [Explaining Tree Models with Interventional Feature Perturbation Tree SHAP](source/examples/interventional_tree_shap_adult_xgb.md)
76+
* [Explaining Tree Models with Path-Dependent Feature Perturbation Tree SHAP](source/examples/path_dependent_tree_shap_adult_xgb.md)
77+
78+
## Model Confidence
79+
80+
* Methods
81+
* [Measuring the linearity of machine learning models](source/methods/linearitymeasure.md)
82+
* [Trust Scores](source/methods/trustscores.md)
83+
* Examples
84+
* Measuring the linearity of machine learning models
85+
* [Linearity measure applied to fashion MNIST](source/examples/linearity_measure_fashion_mnist.md)
86+
* [Linearity measure applied to Iris](source/examples/linearity_measure_iris.md)
87+
* Trust Scores
8188
* [Trust Scores applied to Iris](source/examples/trustscore_iris.md)
8289
* [Trust Scores applied to MNIST](source/examples/trustscore_mnist.md)
83-
* [A Gradient Boosted Tree Model for the Adult Dataset](source/examples/xgboost_model_fitting_adult.md)
84-
* [Methods](model-confidence/confidence/methods-1.md)
85-
* [Examples](model-confidence/confidence/examples-2.md)
8690

8791
## Prototypes
88-
89-
* [prototypes](source/prototypes/README.md)
90-
* [Examples](source/prototypes/examples.md)
91-
* [Methods](source/prototypes/methods.md)
92+
* Methods
93+
* [ProtoSelect](source/methods/protoselect.md)
94+
* Examples
95+
* [ProtoSelect on Adult Census and CIFAR10](source/examples/protoselect_adult_cifar10.md)
96+
9297

9398
## API Reference
9499

40.4 KB
Loading
23.7 KB
Loading

docs-gb/source/images/anchor.png

24.7 KB
Loading
9.35 KB
Loading

docs-gb/source/images/exp-aug.png

31.4 KB
Loading
982 KB
Loading
130 KB
Loading

docs-gb/source/images/ig-lfa.png

26.4 KB
Loading
26 KB
Loading

0 commit comments

Comments
 (0)