@@ -17404,150 +17404,6 @@ struct llm_build_bailingmoe2 : public llm_graph_context {
1740417404 }
1740517405};
1740617406
17407- struct llm_build_bailingmoe2 : public llm_graph_context {
17408- llm_build_bailingmoe2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
17409- const int64_t n_embd_head = hparams.n_embd_head_v;
17410- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
17411-
17412- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
17413-
17414- ggml_tensor * cur;
17415- ggml_tensor * inpL;
17416-
17417- inpL = build_inp_embd(model.tok_embd);
17418-
17419- // inp_pos - contains the positions
17420- ggml_tensor * inp_pos = build_inp_pos();
17421-
17422- auto * inp_attn = build_attn_inp_kv();
17423-
17424- ggml_tensor * inp_out_ids = build_inp_out_ids();
17425-
17426- const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
17427- for (int il = 0; il < n_transformer_layers; ++il) {
17428- ggml_tensor * inpSA = inpL;
17429-
17430- // norm
17431- cur = build_norm(inpL,
17432- model.layers[il].attn_norm, NULL,
17433- LLM_NORM_RMS, il);
17434- cb(cur, "attn_norm", il);
17435-
17436- // self_attention
17437- {
17438- cur = build_lora_mm(model.layers[il].wqkv, cur);
17439- cb(cur, "wqkv", il);
17440-
17441- ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
17442- ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
17443- ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
17444-
17445- Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
17446- cb(Qcur, "Qcur_normed", il);
17447-
17448- Qcur = ggml_rope_ext(
17449- ctx0, Qcur, inp_pos, nullptr,
17450- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
17451- ext_factor, attn_factor, beta_fast, beta_slow
17452- );
17453-
17454- Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
17455- cb(Kcur, "Kcur_normed", il);
17456-
17457- Kcur = ggml_rope_ext(
17458- ctx0, Kcur, inp_pos, nullptr,
17459- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
17460- ext_factor, attn_factor, beta_fast, beta_slow
17461- );
17462-
17463- cb(Qcur, "Qcur", il);
17464- cb(Kcur, "Kcur", il);
17465- cb(Vcur, "Vcur", il);
17466-
17467- cur = build_attn(inp_attn,
17468- model.layers[il].wo, model.layers[il].bo,
17469- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
17470- }
17471-
17472- if (il == n_transformer_layers - 1 && inp_out_ids) {
17473- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
17474- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
17475- }
17476-
17477- ggml_tensor * sa_out = ggml_add(ctx0, cur, inpSA);
17478- cb(sa_out, "sa_out", il);
17479-
17480- // MoE branch
17481- cur = build_norm(sa_out,
17482- model.layers[il].ffn_norm, NULL,
17483- LLM_NORM_RMS, il);
17484- cb(cur, "ffn_norm", il);
17485-
17486- if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
17487- cur = build_ffn(cur,
17488- model.layers[il].ffn_up, NULL, NULL,
17489- model.layers[il].ffn_gate, NULL, NULL,
17490- model.layers[il].ffn_down, NULL, NULL,
17491- NULL,
17492- LLM_FFN_SILU, LLM_FFN_PAR, il);
17493- cb(cur, "ffn_out", il);
17494- } else {
17495- ggml_tensor * moe_out =
17496- build_moe_ffn(cur,
17497- model.layers[il].ffn_gate_inp,
17498- model.layers[il].ffn_up_exps,
17499- model.layers[il].ffn_gate_exps,
17500- model.layers[il].ffn_down_exps,
17501- model.layers[il].ffn_exp_probs_b,
17502- n_expert, n_expert_used,
17503- LLM_FFN_SILU, hparams.expert_weights_norm,
17504- true, hparams.expert_weights_scale,
17505- (llama_expert_gating_func_type) hparams.expert_gating_func,
17506- il);
17507- cb(moe_out, "ffn_moe_out", il);
17508-
17509- {
17510- ggml_tensor * ffn_shexp = build_ffn(cur,
17511- model.layers[il].ffn_up_shexp, NULL, NULL,
17512- model.layers[il].ffn_gate_shexp, NULL, NULL,
17513- model.layers[il].ffn_down_shexp, NULL, NULL,
17514- NULL,
17515- LLM_FFN_SILU, LLM_FFN_PAR, il);
17516- cb(ffn_shexp, "ffn_shexp", il);
17517-
17518- cur = ggml_add(ctx0, moe_out, ffn_shexp);
17519- cb(cur, "ffn_out", il);
17520- }
17521- }
17522-
17523- cur = ggml_add(ctx0, cur, sa_out);
17524-
17525- cur = build_cvec(cur, il);
17526- cb(cur, "l_out", il);
17527-
17528- // input for next layer
17529- inpL = cur;
17530- }
17531-
17532- cur = inpL;
17533-
17534- cur = build_norm(cur,
17535- model.output_norm, NULL,
17536- LLM_NORM_RMS, -1);
17537-
17538- cb(cur, "result_norm", -1);
17539- res->t_embd = cur;
17540-
17541- // lm_head
17542- cur = build_lora_mm(model.output, cur);
17543-
17544- cb(cur, "result_output", -1);
17545- res->t_logits = cur;
17546-
17547- ggml_build_forward_expand(gf, cur);
17548- }
17549- };
17550-
1755117407struct llm_build_dots1 : public llm_graph_context {
1755217408 llm_build_dots1(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
1755317409 const int64_t n_embd_head = hparams.n_embd_head_v;
0 commit comments