|
| 1 | +#include "moe-expert-reduce.cuh" |
| 2 | + |
| 3 | +// This kernel is a fusion of the expert weight reduce, common in MoE models |
| 4 | + |
| 5 | +template <int n_expert_used_template> |
| 6 | +__global__ void moe_expert_reduce_cuda(const float * __restrict__ experts, |
| 7 | + const float * __restrict__ weights, |
| 8 | + float * __restrict__ dst, |
| 9 | + const int n_expert_used, |
| 10 | + const int n_cols) { |
| 11 | + const int row = blockIdx.x; |
| 12 | + const int col = blockIdx.y * blockDim.x + threadIdx.x; |
| 13 | + if (col >= n_cols) { |
| 14 | + return; |
| 15 | + } |
| 16 | + |
| 17 | + experts += row * n_cols * n_expert_used; |
| 18 | + weights += row * n_expert_used; |
| 19 | + dst += row * n_cols; |
| 20 | + |
| 21 | + float acc = 0.f; |
| 22 | + if constexpr (n_expert_used_template == 0) { |
| 23 | + for (int expert = 0; expert < n_expert_used; ++expert) { |
| 24 | + ggml_cuda_mad(acc, experts[col], weights[expert]); |
| 25 | + experts += n_cols; |
| 26 | + } |
| 27 | + dst[col] = acc; |
| 28 | + } else { |
| 29 | +#pragma unroll |
| 30 | + for (int i = 0; i < n_expert_used_template; ++i) { |
| 31 | + ggml_cuda_mad(acc, experts[col], weights[i]); |
| 32 | + experts += n_cols; |
| 33 | + } |
| 34 | + dst[col] = acc; |
| 35 | + } |
| 36 | +} |
| 37 | + |
| 38 | +static void launch_moe_expert_reduce(ggml_backend_cuda_context & ctx, |
| 39 | + const float * experts, |
| 40 | + const float * weights, |
| 41 | + float * dst, |
| 42 | + const int n_expert_used, |
| 43 | + const int n_cols, |
| 44 | + const int n_rows) { |
| 45 | + const int block_size = 32; |
| 46 | + |
| 47 | + const int n_blocks_x = n_rows; |
| 48 | + const int n_blocks_y = (n_cols + block_size - 1) / block_size; |
| 49 | + |
| 50 | + dim3 block_dims(block_size); |
| 51 | + dim3 grid_dims(n_blocks_x, n_blocks_y); |
| 52 | + |
| 53 | + cudaStream_t stream = ctx.stream(); |
| 54 | + switch (n_expert_used) { |
| 55 | + case 1: |
| 56 | + moe_expert_reduce_cuda<1> |
| 57 | + <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols); |
| 58 | + break; |
| 59 | + case 2: |
| 60 | + moe_expert_reduce_cuda<2> |
| 61 | + <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols); |
| 62 | + break; |
| 63 | + case 4: |
| 64 | + moe_expert_reduce_cuda<4> |
| 65 | + <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols); |
| 66 | + break; |
| 67 | + case 6: |
| 68 | + moe_expert_reduce_cuda<6> |
| 69 | + <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols); |
| 70 | + break; |
| 71 | + case 8: |
| 72 | + moe_expert_reduce_cuda<8> |
| 73 | + <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols); |
| 74 | + break; |
| 75 | + case 16: |
| 76 | + moe_expert_reduce_cuda<16> |
| 77 | + <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols); |
| 78 | + break; |
| 79 | + case 32: |
| 80 | + moe_expert_reduce_cuda<32> |
| 81 | + <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols); |
| 82 | + break; |
| 83 | + case 64: |
| 84 | + moe_expert_reduce_cuda<64> |
| 85 | + <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols); |
| 86 | + break; |
| 87 | + case 128: |
| 88 | + moe_expert_reduce_cuda<128> |
| 89 | + <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols); |
| 90 | + break; |
| 91 | + default: |
| 92 | + moe_expert_reduce_cuda<0> |
| 93 | + <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols); |
| 94 | + break; |
| 95 | + } |
| 96 | +} |
| 97 | + |
| 98 | +bool ggml_cuda_should_use_moe_expert_reduce(const ggml_cgraph * cgraph, int start_index, int end_index) { |
| 99 | + const ggml_tensor * mul = cgraph->nodes[start_index]; |
| 100 | + |
| 101 | + if (mul->op != GGML_OP_MUL || !ggml_is_contiguous(mul->src[0]) || !ggml_is_contiguous(mul->src[1])) { |
| 102 | + return false; |
| 103 | + } |
| 104 | + |
| 105 | + int current_node = start_index + 1; |
| 106 | + size_t current_offset = 0; |
| 107 | + |
| 108 | + std::vector<const ggml_tensor *> view_nodes; |
| 109 | + //check if all are views of the expert in increasing order |
| 110 | + while (current_node < end_index && cgraph->nodes[current_node]->op == GGML_OP_VIEW) { |
| 111 | + const ggml_tensor * node = cgraph->nodes[current_node]; |
| 112 | + if (node->view_src != mul) { |
| 113 | + return false; |
| 114 | + } |
| 115 | + if (node->view_offs < current_offset) { |
| 116 | + return false; |
| 117 | + } |
| 118 | + current_offset = node->view_offs; |
| 119 | + current_node++; |
| 120 | + view_nodes.push_back(node); |
| 121 | + } |
| 122 | + |
| 123 | + //check if all the adds are in increasing order |
| 124 | + const ggml_tensor * prev_add_src = view_nodes.empty() ? nullptr : view_nodes[0]; |
| 125 | + int num_adds = 0; |
| 126 | + int num_views = view_nodes.size(); |
| 127 | + while (current_node < end_index && cgraph->nodes[current_node]->op == GGML_OP_ADD) { |
| 128 | + const ggml_tensor * add_node = cgraph->nodes[current_node]; |
| 129 | + |
| 130 | + bool is_first_op_ok = num_views > num_adds ? add_node->src[0] == prev_add_src : false; |
| 131 | + bool is_second_op_ok = num_views > num_adds ? add_node->src[1] == view_nodes[num_adds + 1] : false; |
| 132 | + |
| 133 | + if (!is_first_op_ok || !is_second_op_ok) { |
| 134 | + return false; |
| 135 | + } |
| 136 | + prev_add_src = add_node; |
| 137 | + |
| 138 | + num_adds++; |
| 139 | + current_node++; |
| 140 | + } |
| 141 | + |
| 142 | + if (num_views != num_adds + 1) { |
| 143 | + return false; |
| 144 | + } |
| 145 | + |
| 146 | + return true; |
| 147 | +} |
| 148 | + |
| 149 | +void ggml_cuda_op_moe_expert_reduce(ggml_backend_cuda_context & ctx, |
| 150 | + const ggml_tensor * experts, |
| 151 | + const ggml_tensor * weights, |
| 152 | + ggml_tensor * dst) { |
| 153 | + const int n_rows = experts->ne[2]; |
| 154 | + const int n_expert_used = experts->ne[1]; |
| 155 | + const int n_cols = experts->ne[0]; |
| 156 | + |
| 157 | + GGML_ASSERT(experts->type == GGML_TYPE_F32); |
| 158 | + GGML_ASSERT(weights->type == GGML_TYPE_F32); |
| 159 | + GGML_ASSERT(ggml_is_contiguous(experts)); |
| 160 | + GGML_ASSERT(ggml_is_contiguous(weights)); |
| 161 | + GGML_ASSERT(dst->type == GGML_TYPE_F32); |
| 162 | + |
| 163 | + const float * experts_d = (const float *) experts->data; |
| 164 | + const float * weights_d = (const float *) weights->data; |
| 165 | + float * dst_d = (float *) dst->data; |
| 166 | + |
| 167 | + launch_moe_expert_reduce(ctx, experts_d, weights_d, dst_d, n_expert_used, n_cols, n_rows); |
| 168 | +} |
0 commit comments