|
| 1 | +import json |
| 2 | +import logging |
| 3 | +import sys |
| 4 | +from collections import defaultdict |
| 5 | +from pathlib import Path |
| 6 | + |
| 7 | +import yaml |
| 8 | +from tapeagents.core import Step, StepMetadata, Tape |
| 9 | +from tapeagents.renderers.camera_ready_renderer import CameraReadyRenderer |
| 10 | +from tapeagents.tape_browser import TapeBrowser |
| 11 | + |
| 12 | +from agentlab.agents.tapeagent.agent import ExtendedMetadata |
| 13 | + |
| 14 | +logger = logging.getLogger(__name__) |
| 15 | +fmt = "%(asctime)s - %(levelname)s - %(name)s:%(lineno)d - %(funcName)s() - %(message)s" |
| 16 | +logging.basicConfig(level=logging.INFO, force=True, format=fmt, handlers=[logging.StreamHandler()]) |
| 17 | + |
| 18 | + |
| 19 | +class WrapperStep(Step): |
| 20 | + content: dict |
| 21 | + |
| 22 | + |
| 23 | +class TapesRender(CameraReadyRenderer): |
| 24 | + |
| 25 | + @property |
| 26 | + def style(self): |
| 27 | + style = "<style>.thought {{ background-color: #ffffba !important; }};</style>" |
| 28 | + return super().style + style |
| 29 | + |
| 30 | + def render_step(self, step: WrapperStep, index: int, **kwargs): |
| 31 | + step_dict = step.content.copy() |
| 32 | + step_dict.pop("metadata", None) |
| 33 | + kind = step_dict.pop("kind", "Step") |
| 34 | + # remove empty keys |
| 35 | + step_dict = {k: v for k, v in step_dict.items() if v is not None and v != ""} |
| 36 | + if len(step_dict) == 1: |
| 37 | + content = list(step_dict.values())[0] |
| 38 | + elif kind == "page_observation": |
| 39 | + content = step_dict["text"] |
| 40 | + if len(content) > 100: |
| 41 | + summary = content[:100] |
| 42 | + content = f"<details><summary>{summary}</summary>---<br>{content}</details>" |
| 43 | + elif kind == "python_code_action": |
| 44 | + content = step_dict["code"] |
| 45 | + elif kind == "code_execution_result": |
| 46 | + content = yaml.dump(step_dict["result"], sort_keys=False, indent=2) |
| 47 | + else: |
| 48 | + content = yaml.dump(step_dict, sort_keys=False, indent=2) if step_dict else "" |
| 49 | + |
| 50 | + if kind.endswith("thought"): |
| 51 | + class_ = "thought" |
| 52 | + kind = kind[:-8] |
| 53 | + elif kind.endswith("action"): |
| 54 | + class_ = "action" |
| 55 | + kind = kind[:-7] |
| 56 | + else: |
| 57 | + class_ = "observation" |
| 58 | + return ( |
| 59 | + f"<div class='basic-renderer-box {class_}'>" |
| 60 | + f"<h4 class='step-header'>{kind}</h4>" |
| 61 | + f"<pre class='step-text'>{content}</pre>" |
| 62 | + f"</div>" |
| 63 | + ) |
| 64 | + |
| 65 | + |
| 66 | +class TapesBrowser(TapeBrowser): |
| 67 | + def __init__(self, tapes_folder): |
| 68 | + super().__init__(Tape, tapes_folder, TapesRender(), ".json") |
| 69 | + |
| 70 | + def get_tape_files(self) -> list[str]: |
| 71 | + logger.info(f"Searching for tapes in {self.tapes_folder}") |
| 72 | + fpath = Path(self.tapes_folder) |
| 73 | + exps = [ |
| 74 | + str(exp_dir.relative_to(fpath)) |
| 75 | + for exp_dir in fpath.iterdir() |
| 76 | + if exp_dir.is_dir() and len(list(exp_dir.rglob("tape.json"))) > 0 |
| 77 | + ] |
| 78 | + assert exps, f"No experiments found in {self.tapes_folder}" |
| 79 | + logger.info(f"Found {len(exps)} experiments in {self.tapes_folder}") |
| 80 | + return sorted(exps) |
| 81 | + |
| 82 | + def get_steps(self, tape) -> list: |
| 83 | + return tape["steps"] |
| 84 | + |
| 85 | + def load_llm_calls(self): |
| 86 | + pass |
| 87 | + |
| 88 | + def get_context(self, tape: Tape) -> list: |
| 89 | + return [] |
| 90 | + |
| 91 | + def get_tape_name(self, i: int, tape: Tape) -> str: |
| 92 | + return tape[0].content["content"][:32] + "..." |
| 93 | + |
| 94 | + def get_exp_label(self, filename: str, tapes: list[Tape]) -> str: |
| 95 | + acc, n_solved = 0, 0 # calculate_accuracy(tapes) |
| 96 | + errors = defaultdict(int) |
| 97 | + prompt_tokens_num = 0 |
| 98 | + output_tokens_num = 0 |
| 99 | + total_cost = 0.0 |
| 100 | + visible_prompt_tokens_num = 0 |
| 101 | + visible_output_tokens_num = 0 |
| 102 | + visible_cost = 0.0 |
| 103 | + no_result = 0 |
| 104 | + actions = defaultdict(int) |
| 105 | + for llm_call in self.llm_calls.values(): |
| 106 | + prompt_tokens_num += llm_call.prompt_length_tokens |
| 107 | + output_tokens_num += llm_call.output_length_tokens |
| 108 | + total_cost += llm_call.cost |
| 109 | + for tape in tapes: |
| 110 | + if tape.metadata.result in ["", None, "None"]: |
| 111 | + no_result += 1 |
| 112 | + if tape.metadata.error: |
| 113 | + errors["fatal"] += 1 |
| 114 | + last_action = None |
| 115 | + counted = set([]) |
| 116 | + for step in tape: |
| 117 | + step_dict = step.content.copy() |
| 118 | + kind = step_dict.get("kind", "unknown") |
| 119 | + llm_call = self.llm_calls.get(step.metadata.prompt_id) |
| 120 | + if llm_call and step.metadata.prompt_id not in counted: |
| 121 | + counted.add(step.metadata.prompt_id) |
| 122 | + visible_prompt_tokens_num += llm_call.prompt_length_tokens |
| 123 | + visible_output_tokens_num += llm_call.output_length_tokens |
| 124 | + visible_cost += llm_call.cost |
| 125 | + if kind.endswith("action"): |
| 126 | + actions[kind] += 1 |
| 127 | + last_action = kind |
| 128 | + if kind == "search_results_observation" and not len(step_dict["serp"]): |
| 129 | + errors["search_empty"] += 1 |
| 130 | + if kind == "page_observation" and step_dict["error"]: |
| 131 | + errors["browser"] += 1 |
| 132 | + elif kind == "llm_output_parsing_failure_action": |
| 133 | + errors["parsing"] += 1 |
| 134 | + elif kind == "action_execution_failure": |
| 135 | + if last_action: |
| 136 | + errors[f"{last_action}"] += 1 |
| 137 | + else: |
| 138 | + errors["unknown_action_execution_failure"] += 1 |
| 139 | + elif kind == "code_execution_result" and step_dict["result"]["exit_code"]: |
| 140 | + errors["code_execution"] += 1 |
| 141 | + timers, timer_counts = self.aggregate_timer_times(tapes) |
| 142 | + html = f"<h2>Solved {acc:.2f}%, {n_solved} out of {len(tapes)}</h2>" |
| 143 | + if "all" in filename: |
| 144 | + html += f"Prompt tokens: {prompt_tokens_num}<br>Output tokens: {output_tokens_num}<br>Cost: {total_cost:.2f} USD<h3>Visible</h3>" |
| 145 | + html += f"Prompt tokens: {visible_prompt_tokens_num}<br>Output tokens: {visible_output_tokens_num}<br>Cost: {visible_cost:.2f} USD" |
| 146 | + if errors: |
| 147 | + errors_str = "<br>".join(f"{k}: {v}" for k, v in errors.items()) |
| 148 | + html += f"<h2>No result: {no_result}</h2>" |
| 149 | + html += f"<h2>Errors: {sum(errors.values())}</h2>{errors_str}" |
| 150 | + if actions: |
| 151 | + actions_str = "<br>".join(f"{k}: {v}" for k, v in actions.items()) |
| 152 | + html += f"<h2>Actions: {sum(actions.values())}</h2>{actions_str}" |
| 153 | + if timers: |
| 154 | + timers_str = "<br>".join( |
| 155 | + f"{'execute ' if k.endswith('action') else ''}{k}: {v:.1f} sec, avg. {v/timer_counts[k]:.1f} sec" |
| 156 | + for k, v in timers.items() |
| 157 | + ) |
| 158 | + html += f"<h2>Timings</h2>{timers_str}" |
| 159 | + return html |
| 160 | + |
| 161 | + def aggregate_timer_times(self, tapes: list[Tape]): |
| 162 | + timer_sums = defaultdict(float) |
| 163 | + timer_counts = defaultdict(int) |
| 164 | + for tape in tapes: |
| 165 | + timers = tape.metadata.other.get("timers", {}) |
| 166 | + for timer_name, exec_time in timers.items(): |
| 167 | + timer_sums[timer_name] += exec_time |
| 168 | + timer_counts[timer_name] += 1 |
| 169 | + for step in tape.steps: |
| 170 | + action_kind = step.metadata.other.get("action_kind") |
| 171 | + action_execution_time = step.metadata.other.get("action_execution_time") |
| 172 | + if action_kind and action_execution_time: |
| 173 | + timer_sums[action_kind] += action_execution_time |
| 174 | + timer_counts[action_kind] += 1 |
| 175 | + return dict(timer_sums), dict(timer_counts) |
| 176 | + |
| 177 | + def load_tapes(self, exp_dir: str) -> list[dict]: |
| 178 | + tape_dicts = [] |
| 179 | + fpath = Path(self.tapes_folder) / exp_dir |
| 180 | + for json_file in fpath.rglob("tape.json"): |
| 181 | + if json_file.stat().st_size == 0: |
| 182 | + logger.warning(f"Empty tape file: {json_file}") |
| 183 | + continue |
| 184 | + try: |
| 185 | + with open(json_file) as f: |
| 186 | + tape_dict = json.load(f) |
| 187 | + tape = Tape(steps=[], metadata=ExtendedMetadata(**tape_dict["metadata"])) |
| 188 | + tape.steps = [ |
| 189 | + WrapperStep(content=s, metadata=StepMetadata(**s["metadata"])) |
| 190 | + for s in tape_dict["steps"] |
| 191 | + ] |
| 192 | + tape_dicts.append(tape) |
| 193 | + except Exception as e: |
| 194 | + logger.warning(f"Failed to load {json_file}: {e}") |
| 195 | + logger.info(f"Loaded {len(tape_dicts)} tapes from {exp_dir}") |
| 196 | + return tape_dicts |
| 197 | + |
| 198 | + def save_annotation(self, step: int, annotation: str, tape_id: int): |
| 199 | + pass |
| 200 | + |
| 201 | + |
| 202 | +if __name__ == "__main__": |
| 203 | + results_dir = sys.argv[1] if len(sys.argv) > 1 else "~/agentlab_results/" |
| 204 | + tapes_browser = TapesBrowser(Path(results_dir).expanduser()) |
| 205 | + tapes_browser.launch() |
0 commit comments