@@ -433,13 +433,23 @@ class AgentlabAction:
433433
434434 def convert_toolcall_to_agentlab_action_format (toolcall : ToolCall ) -> str :
435435 """Convert a tool call to an Agentlab environment action string.
436- This converts tools calls to python function call strings."""
436+ Args:
437+ toolcall: ToolCall object containing the name and arguments of the tool call.
438+
439+ Returns:
440+ str: A string representing the action in Agentlab format i.e. python function call string.
441+ """
442+
437443 tool_name , tool_args = toolcall .name , toolcall .arguments
438444 return tool_call_to_python_code (tool_name , tool_args )
439445
440446 def convert_multiactions_to_agentlab_action_format (actions : list [str ]) -> str :
441- """Convert multiple actions list to a format that env supports
442- Joins multiple python function calls with a newline character.
447+ """Convert multiple actions list to a format that env supports.
448+ Args:
449+ actions: List of action strings to be joined.
450+
451+ Returns:
452+ str: Joined actions separated by newlines, or None if empty.
443453 """
444454 return "\n " .join (actions ) if actions else None
445455
@@ -655,7 +665,7 @@ def _extract_thinking_content_from_response(
655665 Note: The wrapping of 'thinking' content may not be nedeed and may be reconsidered.
656666
657667 Args:
658- message : The message object or dict containing content and reasoning.
668+ response : The message object or dict containing content and reasoning.
659669 wrap_tag: The tag name to wrap reasoning content (default: "think").
660670
661671 Returns:
@@ -723,6 +733,7 @@ def format_tools_for_chat_completion(tools):
723733 Why we need this?
724734 Ans: actionset.to_tool_description() in bgym only returns description
725735 format valid for OpenAI Response API.
736+
726737 Args:
727738 tools: List of tool descriptions to format for Chat Completion API.
728739
0 commit comments