|
2 | 2 | "cells": [ |
3 | 3 | { |
4 | 4 | "cell_type": "code", |
5 | | - "execution_count": null, |
| 5 | + "execution_count": 1, |
6 | 6 | "id": "58086537", |
7 | 7 | "metadata": {}, |
8 | 8 | "outputs": [], |
|
25 | 25 | }, |
26 | 26 | { |
27 | 27 | "cell_type": "code", |
28 | | - "execution_count": null, |
| 28 | + "execution_count": 5, |
| 29 | + "id": "7901cccc", |
| 30 | + "metadata": {}, |
| 31 | + "outputs": [ |
| 32 | + { |
| 33 | + "data": { |
| 34 | + "text/plain": [ |
| 35 | + "PosixPath('/Users/aman.jaiswal/Work/AgentLab.worktrees/trace-recorder/results')" |
| 36 | + ] |
| 37 | + }, |
| 38 | + "execution_count": 5, |
| 39 | + "metadata": {}, |
| 40 | + "output_type": "execute_result" |
| 41 | + } |
| 42 | + ], |
| 43 | + "source": [ |
| 44 | + "RESULTS_DIR" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "code", |
| 49 | + "execution_count": 6, |
29 | 50 | "id": "50be19a9", |
30 | 51 | "metadata": {}, |
31 | | - "outputs": [], |
| 52 | + "outputs": [ |
| 53 | + { |
| 54 | + "name": "stdout", |
| 55 | + "output_type": "stream", |
| 56 | + "text": [ |
| 57 | + "/Users/aman.jaiswal/Work/AgentLab.worktrees/trace-recorder/results/2025-09-02_15-52-00_hitl-genericagent-gpt-5-mini-2025-08-07-on-workarena-l1-task-name-create\n" |
| 58 | + ] |
| 59 | + }, |
| 60 | + { |
| 61 | + "name": "stderr", |
| 62 | + "output_type": "stream", |
| 63 | + "text": [ |
| 64 | + "Searching experiments directories.: 100%|██████████| 1/1 [00:00<00:00, 5433.04it/s]\n", |
| 65 | + "Loading results: 100%|██████████| 1/1 [00:00<00:00, 373.26it/s]\n" |
| 66 | + ] |
| 67 | + } |
| 68 | + ], |
32 | 69 | "source": [ |
33 | 70 | "# replace this by your desired directory if needed.\n", |
34 | 71 | "result_dir = get_most_recent_study(RESULTS_DIR, contains=None)\n", |
|
39 | 76 | }, |
40 | 77 | { |
41 | 78 | "cell_type": "code", |
42 | | - "execution_count": null, |
| 79 | + "execution_count": 7, |
| 80 | + "id": "82cc1557", |
| 81 | + "metadata": {}, |
| 82 | + "outputs": [ |
| 83 | + { |
| 84 | + "data": { |
| 85 | + "text/plain": [ |
| 86 | + "PosixPath('/Users/aman.jaiswal/Work/AgentLab.worktrees/trace-recorder/results/2025-09-02_15-52-00_hitl-genericagent-gpt-5-mini-2025-08-07-on-workarena-l1-task-name-create')" |
| 87 | + ] |
| 88 | + }, |
| 89 | + "execution_count": 7, |
| 90 | + "metadata": {}, |
| 91 | + "output_type": "execute_result" |
| 92 | + } |
| 93 | + ], |
| 94 | + "source": [ |
| 95 | + "result_dir" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "code", |
| 100 | + "execution_count": 3, |
43 | 101 | "id": "a424c470", |
44 | 102 | "metadata": {}, |
45 | | - "outputs": [], |
| 103 | + "outputs": [ |
| 104 | + { |
| 105 | + "name": "stdout", |
| 106 | + "output_type": "stream", |
| 107 | + "text": [ |
| 108 | + "Found multiple configuration, averaging across tasks and returning a per-agent report.\n" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "data": { |
| 113 | + "text/html": [ |
| 114 | + "<style type=\"text/css\">\n", |
| 115 | + "#T_1d2fe th {\n", |
| 116 | + " white-space: pre-wrap;\n", |
| 117 | + "}\n", |
| 118 | + "</style>\n", |
| 119 | + "<table id=\"T_1d2fe\">\n", |
| 120 | + " <thead>\n", |
| 121 | + " <tr>\n", |
| 122 | + " <th class=\"blank level0\" > </th>\n", |
| 123 | + " <th id=\"T_1d2fe_level0_col0\" class=\"col_heading level0 col0\" >agent.agent\n", |
| 124 | + "name</th>\n", |
| 125 | + " <th id=\"T_1d2fe_level0_col1\" class=\"col_heading level0 col1\" >env.benchmark</th>\n", |
| 126 | + " <th id=\"T_1d2fe_level0_col2\" class=\"col_heading level0 col2\" >avg\n", |
| 127 | + "reward</th>\n", |
| 128 | + " <th id=\"T_1d2fe_level0_col3\" class=\"col_heading level0 col3\" >std\n", |
| 129 | + "err</th>\n", |
| 130 | + " <th id=\"T_1d2fe_level0_col4\" class=\"col_heading level0 col4\" >avg\n", |
| 131 | + "steps</th>\n", |
| 132 | + " <th id=\"T_1d2fe_level0_col5\" class=\"col_heading level0 col5\" >n\n", |
| 133 | + "completed</th>\n", |
| 134 | + " <th id=\"T_1d2fe_level0_col6\" class=\"col_heading level0 col6\" >n\n", |
| 135 | + "err</th>\n", |
| 136 | + " </tr>\n", |
| 137 | + " </thead>\n", |
| 138 | + " <tbody>\n", |
| 139 | + " <tr>\n", |
| 140 | + " <th id=\"T_1d2fe_level0_row0\" class=\"row_heading level0 row0\" >0</th>\n", |
| 141 | + " <td id=\"T_1d2fe_row0_col0\" class=\"data row0 col0\" >HITL-GenericAgent-gpt-5-mini-2025-08-07</td>\n", |
| 142 | + " <td id=\"T_1d2fe_row0_col1\" class=\"data row0 col1\" >workarena</td>\n", |
| 143 | + " <td id=\"T_1d2fe_row0_col2\" class=\"data row0 col2\" >nan</td>\n", |
| 144 | + " <td id=\"T_1d2fe_row0_col3\" class=\"data row0 col3\" >nan</td>\n", |
| 145 | + " <td id=\"T_1d2fe_row0_col4\" class=\"data row0 col4\" >nan</td>\n", |
| 146 | + " <td id=\"T_1d2fe_row0_col5\" class=\"data row0 col5\" >0/1</td>\n", |
| 147 | + " <td id=\"T_1d2fe_row0_col6\" class=\"data row0 col6\" >0</td>\n", |
| 148 | + " </tr>\n", |
| 149 | + " </tbody>\n", |
| 150 | + "</table>\n" |
| 151 | + ], |
| 152 | + "text/plain": [ |
| 153 | + "<pandas.io.formats.style.Styler at 0x125c55850>" |
| 154 | + ] |
| 155 | + }, |
| 156 | + "metadata": {}, |
| 157 | + "output_type": "display_data" |
| 158 | + } |
| 159 | + ], |
46 | 160 | "source": [ |
47 | 161 | "report = inspect_results.global_report(result_df)\n", |
48 | 162 | "inspect_results.display_report(report)" |
49 | 163 | ] |
50 | 164 | }, |
| 165 | + { |
| 166 | + "cell_type": "code", |
| 167 | + "execution_count": null, |
| 168 | + "id": "f86e44fd", |
| 169 | + "metadata": {}, |
| 170 | + "outputs": [ |
| 171 | + { |
| 172 | + "data": { |
| 173 | + "application/vnd.microsoft.datawrangler.viewer.v0+json": { |
| 174 | + "columns": [ |
| 175 | + { |
| 176 | + "name": "('agent.agent_name', 'env.benchmark')", |
| 177 | + "rawType": "object", |
| 178 | + "type": "unknown" |
| 179 | + }, |
| 180 | + { |
| 181 | + "name": "avg_reward", |
| 182 | + "rawType": "float64", |
| 183 | + "type": "float" |
| 184 | + }, |
| 185 | + { |
| 186 | + "name": "std_err", |
| 187 | + "rawType": "float64", |
| 188 | + "type": "float" |
| 189 | + }, |
| 190 | + { |
| 191 | + "name": "avg_steps", |
| 192 | + "rawType": "float64", |
| 193 | + "type": "float" |
| 194 | + }, |
| 195 | + { |
| 196 | + "name": "n_completed", |
| 197 | + "rawType": "object", |
| 198 | + "type": "string" |
| 199 | + }, |
| 200 | + { |
| 201 | + "name": "n_err", |
| 202 | + "rawType": "int64", |
| 203 | + "type": "integer" |
| 204 | + } |
| 205 | + ], |
| 206 | + "ref": "ea68795e-a1d8-404e-9e36-1061d8fa9e87", |
| 207 | + "rows": [ |
| 208 | + [ |
| 209 | + "('HITL-GenericAgent-gpt-5-mini-2025-08-07', 'workarena')", |
| 210 | + null, |
| 211 | + null, |
| 212 | + null, |
| 213 | + "0/1", |
| 214 | + "0" |
| 215 | + ] |
| 216 | + ], |
| 217 | + "shape": { |
| 218 | + "columns": 5, |
| 219 | + "rows": 1 |
| 220 | + } |
| 221 | + }, |
| 222 | + "text/html": [ |
| 223 | + "<div>\n", |
| 224 | + "<style scoped>\n", |
| 225 | + " .dataframe tbody tr th:only-of-type {\n", |
| 226 | + " vertical-align: middle;\n", |
| 227 | + " }\n", |
| 228 | + "\n", |
| 229 | + " .dataframe tbody tr th {\n", |
| 230 | + " vertical-align: top;\n", |
| 231 | + " }\n", |
| 232 | + "\n", |
| 233 | + " .dataframe thead th {\n", |
| 234 | + " text-align: right;\n", |
| 235 | + " }\n", |
| 236 | + "</style>\n", |
| 237 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 238 | + " <thead>\n", |
| 239 | + " <tr style=\"text-align: right;\">\n", |
| 240 | + " <th></th>\n", |
| 241 | + " <th></th>\n", |
| 242 | + " <th>avg_reward</th>\n", |
| 243 | + " <th>std_err</th>\n", |
| 244 | + " <th>avg_steps</th>\n", |
| 245 | + " <th>n_completed</th>\n", |
| 246 | + " <th>n_err</th>\n", |
| 247 | + " </tr>\n", |
| 248 | + " <tr>\n", |
| 249 | + " <th>agent.agent_name</th>\n", |
| 250 | + " <th>env.benchmark</th>\n", |
| 251 | + " <th></th>\n", |
| 252 | + " <th></th>\n", |
| 253 | + " <th></th>\n", |
| 254 | + " <th></th>\n", |
| 255 | + " <th></th>\n", |
| 256 | + " </tr>\n", |
| 257 | + " </thead>\n", |
| 258 | + " <tbody>\n", |
| 259 | + " <tr>\n", |
| 260 | + " <th>HITL-GenericAgent-gpt-5-mini-2025-08-07</th>\n", |
| 261 | + " <th>workarena</th>\n", |
| 262 | + " <td>NaN</td>\n", |
| 263 | + " <td>NaN</td>\n", |
| 264 | + " <td>NaN</td>\n", |
| 265 | + " <td>0/1</td>\n", |
| 266 | + " <td>0</td>\n", |
| 267 | + " </tr>\n", |
| 268 | + " </tbody>\n", |
| 269 | + "</table>\n", |
| 270 | + "</div>" |
| 271 | + ], |
| 272 | + "text/plain": [ |
| 273 | + " avg_reward std_err \\\n", |
| 274 | + "agent.agent_name env.benchmark \n", |
| 275 | + "HITL-GenericAgent-gpt-5-mini-2025-08-07 workarena NaN NaN \n", |
| 276 | + "\n", |
| 277 | + " avg_steps n_completed \\\n", |
| 278 | + "agent.agent_name env.benchmark \n", |
| 279 | + "HITL-GenericAgent-gpt-5-mini-2025-08-07 workarena NaN 0/1 \n", |
| 280 | + "\n", |
| 281 | + " n_err \n", |
| 282 | + "agent.agent_name env.benchmark \n", |
| 283 | + "HITL-GenericAgent-gpt-5-mini-2025-08-07 workarena 0 " |
| 284 | + ] |
| 285 | + }, |
| 286 | + "execution_count": 4, |
| 287 | + "metadata": {}, |
| 288 | + "output_type": "execute_result" |
| 289 | + } |
| 290 | + ], |
| 291 | + "source": [ |
| 292 | + "\n" |
| 293 | + ] |
| 294 | + }, |
51 | 295 | { |
52 | 296 | "cell_type": "markdown", |
53 | 297 | "id": "385559d7", |
|
149 | 393 | ], |
150 | 394 | "metadata": { |
151 | 395 | "kernelspec": { |
152 | | - "display_name": "AgentLab", |
| 396 | + "display_name": "agentlab", |
153 | 397 | "language": "python", |
154 | 398 | "name": "python3" |
155 | 399 | }, |
|
163 | 407 | "name": "python", |
164 | 408 | "nbconvert_exporter": "python", |
165 | 409 | "pygments_lexer": "ipython3", |
166 | | - "version": "3.12.7" |
| 410 | + "version": "3.12.9" |
167 | 411 | } |
168 | 412 | }, |
169 | 413 | "nbformat": 4, |
|
0 commit comments