|
13 | 13 | import numpy as np |
14 | 14 | import pandas as pd |
15 | 15 | from attr import dataclass |
| 16 | +from browsergym.experiments.loop import StepInfo as BGymStepInfo |
16 | 17 | from langchain.schema import BaseMessage, HumanMessage |
17 | 18 | from openai import OpenAI |
18 | 19 | from openai.types.responses import ResponseFunctionToolCall |
|
28 | 29 | from agentlab.llm.llm_utils import BaseMessage as AgentLabBaseMessage |
29 | 30 | from agentlab.llm.llm_utils import Discussion |
30 | 31 | from agentlab.llm.response_api import MessageBuilder, ToolCalls |
31 | | -from browsergym.experiments.loop import StepInfo as BGymStepInfo |
32 | 32 |
|
33 | 33 | select_dir_instructions = "Select Experiment Directory" |
34 | 34 | AGENT_NAME_KEY = "agent.agent_name" |
@@ -1029,7 +1029,7 @@ def on_select_seed(evt: gr.SelectData, df: pd.DataFrame, agent_task_id: tuple): |
1029 | 1029 | col_idx = df.columns.get_loc("seed") |
1030 | 1030 | idx_col = df.columns.get_loc("idx") |
1031 | 1031 | seed = evt.row_value[col_idx] |
1032 | | - row_index = evt.row_value[idx_col] |
| 1032 | + row_index = evt.row_value[idx_col] |
1033 | 1033 | return EpisodeId(agent_id=agent_id, task_name=task_name, seed=seed, row_index=row_index) |
1034 | 1034 |
|
1035 | 1035 |
|
@@ -1281,7 +1281,9 @@ def plot_profiling(ax, step_info_list: list[StepInfo], summary_info: dict, progr |
1281 | 1281 | all_times = [] |
1282 | 1282 | step_times = [] |
1283 | 1283 | for i, step_info in progress_fn(list(enumerate(step_info_list)), desc="Building plot."): |
1284 | | - assert isinstance(step_info, (StepInfo, BGymStepInfo)), f"Expected StepInfo or BGymStepInfo, got {type(step_info)}" |
| 1284 | + assert isinstance( |
| 1285 | + step_info, (StepInfo, BGymStepInfo) |
| 1286 | + ), f"Expected StepInfo or BGymStepInfo, got {type(step_info)}" |
1285 | 1287 | step = step_info.step |
1286 | 1288 |
|
1287 | 1289 | prof = deepcopy(step_info.profiling) |
|
0 commit comments