|
| 1 | +import gc |
| 2 | +import json |
| 3 | +import shutil |
| 4 | + |
| 5 | +import click |
| 6 | +import torch |
| 7 | +from transformers import AutoModelForVision2Seq |
| 8 | + |
| 9 | +from fast_llm.models.ssm.external.apriel_15b_hybrid import modeling_ssm_hybrid_apriel15b |
| 10 | +from fast_llm.models.ssm.external.llava_hybrid import configuration_llava_hybrid, modeling_llava_hybrid |
| 11 | +from fast_llm.models.ssm.external.llava_hybrid.configuration_llava_hybrid import LlavaHybridConfig |
| 12 | +from fast_llm.models.ssm.external.llava_hybrid.modeling_llava_hybrid import LlavaHybridForConditionalGeneration |
| 13 | +from fast_llm.models.ssm.external.make_hybrid_checkpoint import convert_layers |
| 14 | + |
| 15 | +device = "cuda" if torch.cuda.is_available() else "cpu" |
| 16 | + |
| 17 | +dstate = 16 |
| 18 | +expand = 1 |
| 19 | +# Calculate derived dimensions for the Mamba1 configuration |
| 20 | +# d_model = config_base.text_config.hidden_size |
| 21 | +d_inner = 4096 # hard code to match thinker #expand * d_model |
| 22 | +d_xb = 1024 # hard code to match thinker #config_thinker.num_key_value_heads * (config_thinker.hidden_size // config_thinker.num_attention_heads) |
| 23 | + |
| 24 | + |
| 25 | +def make_hybrid_llava_config(transformer): |
| 26 | + config_dict = transformer.config.to_dict() |
| 27 | + config_dict["text_config"]["hybrid_block_layout"] = ["t"] * transformer.config.text_config.num_hidden_layers |
| 28 | + config_dict["text_config"]["model_type"] = "apriel_ssm_thinker_hybrid" |
| 29 | + config_dict["text_config"]["ssm_cfg"] = { |
| 30 | + "activation": "silu", |
| 31 | + "d_state": dstate, |
| 32 | + "d_xb": d_xb, |
| 33 | + # "d_model": d_model, # will be set automatically |
| 34 | + "expand": expand, |
| 35 | + "d_conv": 4, |
| 36 | + "d_inner": d_inner, # will be same as d_model * expand, |
| 37 | + "conv_bias": True, |
| 38 | + "bias": False, |
| 39 | + } |
| 40 | + llava_hybrid_config = LlavaHybridConfig(**config_dict) |
| 41 | + return llava_hybrid_config |
| 42 | + |
| 43 | + |
| 44 | +def make_hybrid_llava_model(transformer, llava_hybrid_config): |
| 45 | + """ |
| 46 | + Create a LlavaHybridForConditionalGeneration model with the same configuration as the given transformer model. |
| 47 | + """ |
| 48 | + llava_hybrid_model = LlavaHybridForConditionalGeneration(llava_hybrid_config) |
| 49 | + # llava_hybrid_model.to(dtype=torch.bfloat16).to(device) |
| 50 | + llava_hybrid_model.load_state_dict(transformer.state_dict(), strict=False) |
| 51 | + return llava_hybrid_model |
| 52 | + |
| 53 | + |
| 54 | +@click.command() |
| 55 | +@click.option("--base_checkpoint", type=str, required=False, default="ServiceNow-AI/Apriel-Nemotron-15b-Thinker") |
| 56 | +@click.option("--m2_indices", type=int, multiple=True, required=True) |
| 57 | +@click.option("--hybrid_checkpoint", type=str, required=True) |
| 58 | +@click.option("--save_dir", type=str, required=True) |
| 59 | +@click.option( |
| 60 | + "--tokenizer_dir", type=str, required=False, default="/mnt/plato/checkpoints/upstream/Mistral-Nemo-Base-2407/" |
| 61 | +) |
| 62 | +def main(base_checkpoint: str, m2_indices: list[int], hybrid_checkpoint: str, save_dir: str, tokenizer_dir: str): |
| 63 | + """ |
| 64 | + base_checkpoint: path to base transformer-model (teacher model) |
| 65 | + m2_indices: indices of layers to convert to mamba layers with MiL init |
| 66 | + hybrid_checkpoint: path to hybrid model (student model). Can be a hybrid with only transformer layers for the first distillation run. |
| 67 | + save_dir: directory to save the converted model. |
| 68 | + tokenizer_dir: directory containing tokenizer files to copy over to save_dir. |
| 69 | + """ |
| 70 | + m2_indices = list(m2_indices) # convert tuple -> list |
| 71 | + transformer = AutoModelForVision2Seq.from_pretrained(base_checkpoint, trust_remote_code=True) |
| 72 | + if hybrid_checkpoint == "none": |
| 73 | + print("No hybrid checkpoint provided, creating new config from base model.") |
| 74 | + hybrid_config = make_hybrid_llava_config(transformer) |
| 75 | + else: |
| 76 | + hybrid_config = LlavaHybridConfig.from_pretrained(hybrid_checkpoint) |
| 77 | + |
| 78 | + hybrid_block_layout = hybrid_config.text_config.hybrid_block_layout |
| 79 | + for m2_index in m2_indices: |
| 80 | + hybrid_block_layout[m2_index] = "m2" |
| 81 | + print(hybrid_block_layout) |
| 82 | + |
| 83 | + # MiL init |
| 84 | + convert_layers( |
| 85 | + transformer.model.language_model.config, |
| 86 | + transformer.model.language_model, |
| 87 | + hybrid_config.text_config, |
| 88 | + hybrid_block_layout, |
| 89 | + init_with_kqvo=True, |
| 90 | + torch_dtype=torch.bfloat16, |
| 91 | + ) |
| 92 | + hybrid_config.text_config.ssm_cfg["activation"] = "silu" |
| 93 | + |
| 94 | + # Load existing SSM layers |
| 95 | + if hybrid_checkpoint != "none": |
| 96 | + hybrid_llava_model = AutoModelForVision2Seq.from_pretrained( |
| 97 | + hybrid_checkpoint, torch_dtype=torch.bfloat16, trust_remote_code=True |
| 98 | + ) |
| 99 | + llava_state_dict = hybrid_llava_model.state_dict() |
| 100 | + missing, unexpected = transformer.load_state_dict(llava_state_dict, strict=False) |
| 101 | + for m2_index in m2_indices: |
| 102 | + assert f"model.layers.{m2_index}.mixer.A_log" in missing |
| 103 | + assert f"model.layers.{m2_index}.self_attn.q_proj.weight" in unexpected |
| 104 | + print("MISSING", missing) |
| 105 | + print("UNEXPECTED", unexpected) |
| 106 | + |
| 107 | + # Save state-dict |
| 108 | + transformer.save_pretrained(save_dir) |
| 109 | + # Save new config |
| 110 | + hybrid_config.save_pretrained(save_dir) |
| 111 | + |
| 112 | + # Copy modeling and tokenizer files |
| 113 | + modeling_files = [ |
| 114 | + configuration_llava_hybrid.__file__, |
| 115 | + modeling_llava_hybrid.__file__, |
| 116 | + modeling_ssm_hybrid_apriel15b.__file__, |
| 117 | + ] |
| 118 | + tokenizer_files = [ |
| 119 | + f"{tokenizer_dir}/tokenizer.json", |
| 120 | + f"{tokenizer_dir}/tokenizer_config.json", |
| 121 | + f"{tokenizer_dir}/generation_config.json", |
| 122 | + f"{tokenizer_dir}/special_tokens_map.json", |
| 123 | + ] |
| 124 | + for f in modeling_files + tokenizer_files: |
| 125 | + shutil.copy(f, save_dir) |
| 126 | + |
| 127 | + # Update config with auto_maps |
| 128 | + config_file = f"{save_dir}/config.json" |
| 129 | + with open(config_file) as f: |
| 130 | + dumped_config = json.load(f) |
| 131 | + |
| 132 | + dumped_config["auto_map"] = { |
| 133 | + "AutoConfig": "configuration_llava_hybrid.LlavaHybridConfig", |
| 134 | + "AutoModel": "modeling_llava_hybrid.LlavaHybridModel", |
| 135 | + "AutoModelForVision2Seq": "modeling_llava_hybrid.LlavaHybridForConditionalGeneration", |
| 136 | + "AutoModelForCausalLM": "modeling_llava_hybrid.LlavaHybridForConditionalGeneration", |
| 137 | + } |
| 138 | + dumped_config["text_config"]["auto_map"] = { |
| 139 | + "AutoConfig": "configuration_ssm_hybrid_apriel15b.AprielSSMHybridConfig", |
| 140 | + "AutoModel": "modeling_ssm_hybrid_apriel15b.AprielThinkerSSMHybridModel", |
| 141 | + "AutoModelForCausalLM": "modeling_ssm_hybrid_apriel15b.AprielThinkerSSMHybridForCausalLM", |
| 142 | + } |
| 143 | + dumped_config["architectures"] = ["LlavaHybridForConditionalGeneration"] |
| 144 | + dumped_config["text_config"]["architectures"] = ["AprielThinkerSSMHybridForCausalLM"] |
| 145 | + with open(config_file, "w") as f: |
| 146 | + json.dump(dumped_config, f, indent=2) |
| 147 | + |
| 148 | + torch.cuda.empty_cache() |
| 149 | + gc.collect() |
| 150 | + |
| 151 | + |
| 152 | +if __name__ == "__main__": |
| 153 | + main() |
0 commit comments