Skip to content

Commit 283aa1e

Browse files
committed
Added references. Still need to fix how the equations and code snippets look
1 parent 1e33bc4 commit 283aa1e

File tree

4 files changed

+26
-11
lines changed

4 files changed

+26
-11
lines changed

documentation/multi_physics.html

Lines changed: 12 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -258,6 +258,10 @@ <h4 class="skipTo user-guide"> User Guide </h4>
258258
<p class="skipTo user_guide_computational_hemodynamics"> Computational Hemodynamics </p>
259259
<p class="skipTo user_guide_fluid_solid_interaction"> Fluid Solid Interaction </p>
260260
<p class="skipTo user_guide_material_models"> Material Models </p>
261+
<div>
262+
<p class="skipTo user_guide_material_models"> List of Material Models </p>
263+
<p class="skipTo references "> References </p>
264+
</div>
261265
<p class="skipTo user_guide_nonlinear_solid_dynamics"> Nonlinear Solid Dynamics </p>
262266
</div>
263267
</div>
@@ -507,6 +511,14 @@ <h4 class="skipTo appendix"> Appendix </h4>
507511
<zero-md src="multi_physics/user-guide/material_models/introduction/readme.md" no-shadow></zero-md>
508512
</span>
509513

514+
<span id="user_guide_material_models">
515+
<zero-md src="multi_physics/user-guide/material_models/material_models_list/readme.md" no-shadow></zero-md>
516+
</span>
517+
518+
<span id="user_guide_material_models">
519+
<zero-md src="multi_physics/user-guide/material_models/references/readme.md" no-shadow></zero-md>
520+
</span>
521+
510522
<!-- -------------------- nonlinear solid dynamics -------------------- -->
511523

512524
<span id="user_guide_nonlinear_solid_dynamics">

documentation/multi_physics/user-guide/material_models/introduction/readme.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ where
99

1010
$$\boldsymbol{\epsilon} = \frac{1}{2} [\nabla \mathbf{u} + (\nabla \mathbf{u})^T]$$
1111

12-
This relationship holds well for metals which experience small deformations. Soft biological tissues on the other hand undergo large nonlinear deformations and are better represented by a class of material models called hyperelastic models. The passive material behavior for hyperelastic materials can be described through the strain energy function $$\Psi$$. Various stress measures can be obtained from the strain energy function by taking a tensor derivative. svMultiPhysics uses the 2nd Piola Kirchhoff Stress $$\mathbf{S}$$.
12+
This relationship holds well for metals which experience small deformations. Soft biological tissues on the other hand undergo large nonlinear deformations and are better represented by a class of material models called hyperelastic models. The passive material behavior for hyperelastic materials can be described through the strain energy function $$\Psi$$. Various stress measures can be obtained from the strain energy function by taking a tensor derivative <a href="#ref-2_derive_stress_elasticity">[2]</a>. svMultiPhysics uses the 2nd Piola Kirchhoff Stress $$\mathbf{S}$$.
1313

1414
$$ \mathbf{S} = 2\frac{\partial \Psi}{\partial \mathbf{C}} $$
1515

documentation/multi_physics/user-guide/material_models/material_models_list/readme.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -43,29 +43,29 @@ Isochoric constitutive models for struct/ustruct equations.
4343
</tr>
4444

4545
<tr>
46-
<td> Holzapfel-Gasser-Ogden model </td>
46+
<td> Holzapfel-Gasser-Ogden model <a href="#ref-3_hgo">[3]</a></td>
4747
<td> "HGO" </td>
4848
</tr>
4949

5050
<tr>
51-
<td> Guccione model </td>
51+
<td> Guccione model <a href="#ref-4_guccione">[4]</a></td>
5252
<td> "Guccione", "Gucci" </td>
5353
</tr>
5454

5555
<tr>
56-
<td> Holzapfel-Ogden model </td>
56+
<td> Holzapfel-Ogden model <a href="#ref-5_ho">[5]</a></td>
5757
<td> "HO", "HolzapfelOgden" </td>
5858
</tr>
5959

6060
<tr>
61-
<td> Holzapfel-Ogden Modified Anisotropy model </td>
61+
<td> Holzapfel-Ogden Modified Anisotropy model<a href="#ref-6_ho-ma">[6]</a> </td>
6262
<td> “HO_ma”, “HolzapfelOgden-ModifiedAnisotropy” </td>
6363
</tr>
6464
</table>
6565

6666
$$\dag$$ : These models are not available for ustruct.
6767

68-
svMultiPhysics has two options for solving the solid equations - struct and ustruct. “Struct” uses a displacement based formulation i.e. the unknowns that we are solving for in each element are displacements. “Ustruct” uses a mixed formulation where the unknowns are displacements and pressures.
68+
svMultiPhysics has two options for solving the solid equations - struct and ustruct. “Struct” uses a displacement based formulation i.e. the unknowns that we are solving for in each element are displacements. “Ustruct” uses a mixed formulation where the unknowns are displacements and pressures.<a href="#ref-1_ustruct_formulation">[1]</a>
6969

7070
<div style="background-color: #F0F0F0; padding: 10px; border: 1px solid #d0d0d0; border-left: 1px solid #d0d0d0">
7171
&lt;<strong>Add_equation</strong> type=<i>"struct"</i>&gt; // or "ustruct"

documentation/multi_physics/user-guide/material_models/references/readme.md

Lines changed: 8 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -7,12 +7,15 @@
77
[2] Jie Cheng and Lucy T. Zhang. <strong>A General Approach to Derive Stress and Elasticity Tensors for Hyperelastic Isotropic and Anisotropic Biomaterials</strong>. International Journal of Computational Methods; Vol. 15, No. 04, 1850028 (2018).</a></a></p>
88

99
<p><a id="ref-3_hgo"> <a href="https://doi.org/10.1098/rsif.2005.0073">
10-
[3] T. Christian Gasser, Ray W Ogden and Gerhard A Holzapfel.<strong> Hyperelastic modelling of arterial layers with distributed collagen fibre orientations.</strong> Royal Society. 228 September 2005.</a></p>
10+
[3] T. Christian Gasser, Ray W Ogden and Gerhard A Holzapfel.<strong>Hyperelastic modelling of arterial layers with distributed collagen fibre orientations.</strong> Royal Society. 28 September 2005.</a></p>
1111

12-
<p><a id="ref-4">
13-
[4] Mittal R, Seo JH, Vedula V, Choi YJ, Liu H, Huang HH, Jain S, Younes L, Abraham T, George RT. <strong>Computational modeling of cardiac hemodynamics: current status and future outlook.</strong> Journal of Computational Physics. 2016 Jan 15;305:1065-82. </a></p>
12+
<p><a id="ref-4_guccione"> <a href="https://pubmed.ncbi.nlm.nih.gov/2020175/">
13+
[4] J. M. Guccione, A. D. McCulloch, L. K. Waldman. <strong>Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model.</strong>J Biomech Eng. Feb 1991, 113(1): 42-55.</a></p>
1414

15-
<p><a id="ref-5"> <a href="https://doi.org/10.1115/1.4048032">
16-
[5] Kong, F., and Shadden, S. C. (2020). <strong>Automating Model Generation for Image-based Cardiac Flow Simulation.</strong> ASME. J Biomech Eng. </a> </a></p>
15+
<p><a id="ref-5_ho"> <a href="https://doi.org/10.1098/rsta.2009.0091">
16+
[5] Gerhard A. Holzapfel and Ray W. Ogden. <strong>Constitutive modelling of passive myocardium: a structurally based framework for material characterization.</strong> Royal Society. 13 September 2009.</a> </a></p>
17+
18+
<p><a id="ref-6_ho-ma"> <a href="https://doi.org/10.1016/j.cma.2024.117401">
19+
[6] Lei Shi, Ian Y. Chen, Hiroo Takayama, Vijay Vedula. <strong>An optimization framework to personalize passive cardiac mechanics.</strong>Computer Methods in Applied Mechanics and Engineering. 1 December 2024.</a> </a></p>
1720

1821
<p><br><br><br><br><br></p>

0 commit comments

Comments
 (0)