Skip to content

Commit 2d27a66

Browse files
authored
Add fluid theory (#34)
Add fluid documentation for Navier-Stokes and Navier-Stokes-Brinkman, including residuals and tangent matrices in svFSIplus
1 parent bd351ba commit 2d27a66

File tree

5 files changed

+338
-2
lines changed

5 files changed

+338
-2
lines changed

documentation/svfsiplus.html

Lines changed: 18 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -163,7 +163,7 @@ <h4 class="skipTo introduction">Introduction</h4>
163163
<div>
164164
<h4 class="skipTo overview"> Overview </h4>
165165
<div>
166-
<p class="skipTo modeling_capabilities"> Modeling capabilities </p>
166+
<p class="skipTo modeling_capabilities"> Modeling capabilities </p>
167167
<p class="skipTo boundary_conditions"> Boundary conditions </p>
168168
<p class="skipTo finite_element_method"> Finite element method </p>
169169
<p class="skipTo numerical_linear_algebra"> Numerical linear algebra </p>
@@ -175,8 +175,13 @@ <h4 class="skipTo overview"> Overview </h4>
175175
<div>
176176
<h4 class="skipTo theory"> Theory </h4>
177177
<div>
178+
<p class="skipTo mathematical_preliminaries"> Mathematical preliminaries </p>
179+
<p class="skipTo fluid"> Fluid mechanics </p>
178180
</div>
179181
</div>
182+
<div>
183+
<h4 class="skipTo refs">References</h4>
184+
</div>
180185

181186
<!-- ==================== Solver Parameters Input File ==================== -->
182187
<div>
@@ -326,6 +331,18 @@ <h4 class="skipTo appendix"> Appendix </h4>
326331
<zero-md src="svfsiplus/theory/readme.md" no-shadow></zero-md>
327332
</span>
328333

334+
<span id="mathematical_preliminaries">
335+
<zero-md src="svfsiplus/theory/mathematical_preliminaries/readme.md" no-shadow></zero-md>
336+
</span>
337+
338+
<span id="fluid">
339+
<zero-md src="svfsiplus/theory/fluid/readme.md" no-shadow></zero-md>
340+
</span>
341+
342+
<span id="refs">
343+
<zero-md src="svfsiplus/theory/refs/readme.md" no-shadow></zero-md>
344+
</span>
345+
329346
<!-- ==================== Solver Parameters Input File ==================== -->
330347

331348
<span id="solver-input-file">
Lines changed: 270 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,270 @@
1+
2+
<h2> Fluid mechanics </h2>
3+
4+
### Strong form
5+
6+
The incompressible Navier-Stokes equations governing fluid flow are
7+
8+
$$
9+
\rho\left(\frac{d\boldsymbol{u}}{dt} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} - \boldsymbol{b}\right) = \boldsymbol{\nabla} \cdot \boldsymbol{\sigma},
10+
$$
11+
12+
$$
13+
\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0,
14+
$$
15+
16+
where $\boldsymbol{u} = \boldsymbol{u}\left(\boldsymbol{x}, t\right)$ is the velocity, $p = p\left(\boldsymbol{x}, t\right)$ is the pressure, $\boldsymbol{b} = \boldsymbol{b}\left(\boldsymbol{x}, t\right)$ is the body force, and $\rho$ is the fluid density. The first equation corresponds to the momentum conservation in the flow and the second equation corresponds to mass conservation. The momentum equation can augmented with a Darcy permeability term, $-\frac{\mu}{K}\boldsymbol{u}$, on the right-hand side to yield the Navier-Stokes-Brinkman equation <a href="#ref-6">[6]</a> <a href="#ref-7">[7]</a>, such that
17+
18+
$$
19+
\rho\left(\frac{d\boldsymbol{u}}{dt} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} - \boldsymbol{b}\right) = \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} - \frac{\mu}{K}\boldsymbol{u},
20+
$$
21+
22+
This equation models incompressible fluid flow in porous media. Here $K$ is the permeability of the porous media. With this equation, we can of course recover the Navier-Stokes equations by simply removing the Darcy component (i.e., $K \rightarrow \infty$).
23+
24+
The Cauchy stress tensor is $\boldsymbol{\sigma} = \boldsymbol{\sigma}\left(\boldsymbol{x}, t\right) = -p\boldsymbol{I} + 2\mu\left(\boldsymbol{u}\right)\epsilon$, where $\epsilon = \epsilon\left(\boldsymbol{u}\right) = \nabla^{s} \boldsymbol{u} = \frac{1}{2}\left(\nabla \boldsymbol{u} + \left(\nabla\boldsymbol{u}\right)^{\text{T}} \right)$ is the strain rate tensor. The effective dynamic viscosity, $\mu\left(\boldsymbol{u}\right)$, is written generally as a function of velocity here to account for non-Newtonian fluids. For Newtonian fluids, $\mu$ is a simply constant. The divergence of the Cauchy stress tensor, written in both vector and index notation, is
25+
26+
$$
27+
\boldsymbol{\nabla} \cdot \boldsymbol{\sigma} = -\boldsymbol{\nabla}p + 2\boldsymbol{\epsilon}\boldsymbol{\nabla}\mu + \mu\nabla^{2}\boldsymbol{u},
28+
$$
29+
30+
$$
31+
\sigma_{ij,j} = -p_{,i} + 2\epsilon_{ij}\frac{\partial \mu}{\partial x_{j}} + \mu u_{i,kk},
32+
$$
33+
34+
The boundary conditions are
35+
36+
$$
37+
\boldsymbol{u} = \boldsymbol{g},
38+
$$
39+
40+
$$
41+
\boldsymbol{\sigma} \cdot \boldsymbol{n} = \boldsymbol{h},
42+
$$
43+
44+
where $\boldsymbol{g}$ is the prescribed velocity and $\boldsymbol{h}$ is the prescribed traction.
45+
46+
We will solve the Navier-Stokes and Navier-Stokes-Brinkman equations numerically, using the finite element method for spatial discretization <a href="#ref-8">[8]</a>.
47+
48+
### Standard (Galerkin) weak form
49+
50+
For the finite element method, we will first derive the Galerkin weak form for the Navier-Stokes-Brinkman equations. We define our trial and weighting function spaces,
51+
52+
$$
53+
u_{i} \in \tau_{i} : \\{u_{i} \in H^{1}\left(\Omega\right) \mid u_{i} = g_{i} \text{ on } \Gamma_{g_{i}}\\},
54+
$$
55+
56+
$$
57+
w_{i} \in \nu_{i} : \\{w_{i} \in H^{1}\left(\Omega\right) \mid w_{i} = 0 \text{ on } \Gamma_{g_{i}}\\},
58+
$$
59+
60+
$$
61+
p, q \in Q : \\{p \in L^{2}\left(\Omega\right)\\},
62+
$$
63+
64+
where $\boldsymbol{w}$ is the weighting function for velocity and $q$ is the weighting function for pressure. We represent these weighting functions discretely on a per-element-basis as
65+
66+
$$
67+
w_{i} = \sum_{a=1}^{n_{en}} N_{a}^{w}w_{ai},
68+
$$
69+
70+
$$
71+
q = \sum_{a=1}^{n_{en}} N_{a}^{q}q_{a},
72+
$$
73+
74+
where $N_{a}^{w}$ and $N_{a}^{q}$ are the nodal shape (basis) functions for the velocity and pressure spaces, respectively, and $w_{ai}$ and $q_{a}$ are the associated arbitrary nodal coefficients. Similarly, the trial functions are represented by
75+
76+
$$
77+
u_{i} = \sum_{a=1}^{n_{en}} N_{a}^{w}u_{ai},
78+
$$
79+
80+
$$
81+
p = \sum_{a=1}^{n_{en}} N_{a}^{q}p_{a}.
82+
$$
83+
84+
We then multiply the Navier-Stokes-Brinkman equations by $\boldsymbol{w}$ and $q$, respectively, and integrate by parts to obtain the standard Galerkin momentum and continuity weak forms <a href="#ref-7">[7]</a> <a href="#ref-5">[5]</a>,
85+
86+
$$
87+
\int_{\Omega} \rho w_{i}\frac{du_{i}}{dt} d\Omega + \int_{\Omega} \rho w_{i}u_{k}u_{i, k} d\Omega + \int_{\Omega} w_{i, j}\sigma_{ij} d\Omega + \int_{\Omega} \frac{\mu}{K}w_{i}u_{i} d\Omega - \int_{\Omega} w_{i}\rho b_{i} d\Omega - \int_{\Gamma_{h}} w_{i}h_{i} d\Gamma = 0,
88+
$$
89+
90+
$$
91+
\int_{\Omega} qu_{i,i} d\Omega = 0.
92+
$$
93+
94+
These two equations can be added together to obtain
95+
96+
$$
97+
\int_{\Omega} qu_{i,i} d\Omega + \int_{\Omega} \rho w_{i}\frac{du_{i}}{dt} d\Omega + \int_{\Omega} \rho w_{i}u_{k}u_{i, k} d\Omega + \int_{\Omega} w_{i, j}\sigma_{ij} d\Omega + \int_{\Omega} \frac{\mu}{K}w_{i}u_{i} d\Omega - \int_{\Omega} w_{i}\rho b_{i} d\Omega - \int_{\Gamma_{h}} w_{i}h_{i} d\Gamma = 0.
98+
$$
99+
100+
### Stabilized weak form
101+
102+
The standard weak form is generally not stable. Additional terms must be added to stabilize it. We will apply the residual-based variational multiscale (RBVMS / VMS) method for stabilization <a href="#ref-1">[1]</a> <a href="#ref-5">[5]</a>.
103+
104+
In VMS, the velocity and pressure terms are separated into coarse-scale and fine-scale components, such that
105+
106+
$$
107+
\boldsymbol{u} = \boldsymbol{u}^{h} + \boldsymbol{u}', \\
108+
$$
109+
110+
$$
111+
p = p^{h} + p',
112+
$$
113+
114+
where the $h$-superscript designates the coarse-scale components and the $'$-superscript denotes the fine-scale components. The fine-scale terms are defined as
115+
116+
$$
117+
\boldsymbol{u}' = -\frac{\tau_{SUPS}}{\rho}\boldsymbol{r}_{M}\left(\boldsymbol{u}^{h}, p^{h}\right),
118+
$$
119+
120+
$$
121+
p' = -\rho\nu_{LSIC}r_{C}\left(\boldsymbol{u}^{h}\right),
122+
$$
123+
124+
where the PDE residuals are
125+
126+
$$
127+
\boldsymbol{r}_{M}\left(\boldsymbol{u}^{h}, p^{h}\right) = \rho\left(\frac{d\boldsymbol{u}^{h}}{dt} + \boldsymbol{u}^{h} \cdot \boldsymbol{\nabla} \boldsymbol{u}^{h} - \boldsymbol{b}\right) - \boldsymbol{\nabla} \cdot \boldsymbol{\sigma}^{h} + \frac{\mu}{K}\boldsymbol{u}^{h},
128+
$$
129+
130+
$$
131+
r_{C}\left(\boldsymbol{u}^{h}\right) = \boldsymbol{\nabla} \cdot \boldsymbol{u}^{h}.
132+
$$
133+
134+
The stabilization parameters are defined as
135+
136+
$$
137+
\tau_{SUPS} = \tau_{M} = \left(\frac{4}{\Delta t^{2}} + \boldsymbol{u}^{h} \cdot \boldsymbol{G}\boldsymbol{u}^{h} + C_{1}\nu^{2}\boldsymbol{G}:\boldsymbol{G} + \left(\frac{\nu}{K}\right)^{2}\right)^{-1/2},
138+
$$
139+
140+
$$
141+
\nu_{LSIC} = \tau_{C} = \left(\tau_{SUPS} \text{tr}\boldsymbol{G} \right)^{-1},
142+
$$
143+
144+
where $\boldsymbol{G}$ is the element metric tensor and $\text{tr}\boldsymbol{G}$ is the trace of the metric tensor <a href="#ref-1">[1]</a>.
145+
146+
Using standard Galerkin momentum and continuity weak forms, and removing the $h$-superscript from the coarse-scale components for notational simplicity (i.e., $\boldsymbol{u}^{h} \rightarrow \boldsymbol{u}$ and $p^{h} \rightarrow p$), we obtain
147+
148+
$$
149+
\int_{\Omega} qu_{i,i} d\Omega + \int_{\Omega} \rho w_{i}\frac{du_{i}}{dt} d\Omega + \int_{\Omega} \rho w_{i}u_{k}u_{i, k} d\Omega + \int_{\Omega} w_{i, j}\sigma_{ij} d\Omega + \int_{\Omega} \frac{\mu}{K}w_{i}u_{i} d\Omega - \int_{\Omega} w_{i}\rho b_{i} d\Omega - \int_{\Gamma_{h}} w_{i}h_{i} d\Gamma + \int_{\Omega} \tau_{SUPS}\left(\frac{q_{,i}}{\rho} + w_{i,k}u_{k}\right)r_{Mi} d\Omega + \int_{\Omega} \rho \nu_{LSIC}r_{C}w_{i,i} d\Omega - \int_{\Omega} w_{i}\tau_{SUPS}r_{Mk}u_{i,k} d\Omega - \int_{\Omega} w_{i,k}\frac{\tau_{SUPS}^{2}}{\rho}r_{Mi}r_{Mk} d\Omega - \int_{\Omega} \frac{\nu}{K}w_{i}\tau_{SUPS}r_{Mi} d\Omega = 0.
150+
$$
151+
152+
This is the VMS-stabilized weak form for the Navier-Stokes-Brinkman equations <a href="#ref-7">[7]</a> <a href="#ref-5">[5]</a> <a href="#ref-6">[6]</a>. The first seven terms on the left-hand side correspond to the standard Galerkin weak form. The last five terms are the stabilization terms obtained via VMS. In deriving this equation, we used the continuity equation to obtain $w_{i}u_{k}u_{i,k} = w_{i}\left(u_{k}u_{i}\right)_{,k}$. We also applied the following assumptions <a href="#ref-5">[5]</a>,
153+
<li> $\frac{du'}{dt} = 0$,
154+
</li>
155+
<li> $u' = 0$ on $\Gamma_{g}$ and $\Gamma_{h}$,
156+
</li>
157+
<li> $\nabla^{s}\boldsymbol{w}:2\mu\nabla^{s}\boldsymbol{u}' = 0$.
158+
</li>
159+
160+
We then add an additional stabilization term, $\int_{\Omega} \frac{\bar{\tau}\tau_{SUPS}^{2}}{\rho} w_{i,k}r_{Mk}r_{Mj}u_{i,j} d\Omega$ <a href="#ref-3">[3]</a> <a href="#ref-4">[4]</a> <a href="#ref-2">[2]</a>, to obtain
161+
162+
$$
163+
\int_{\Omega} qu_{i,i} d\Omega + \int_{\Omega} \rho w_{i}\frac{du_{i}}{dt} d\Omega + \int_{\Omega} \rho w_{i}u_{k}u_{i, k} d\Omega + \int_{\Omega} w_{i, j}\sigma_{ij} d\Omega + \int_{\Omega} \frac{\mu}{K}w_{i}u_{i} d\Omega - \int_{\Omega} w_{i}\rho b_{i} d\Omega - \int_{\Gamma_{h}} w_{i}h_{i} d\Gamma + \int_{\Omega} \tau_{SUPS}\left(\frac{q_{,i}}{\rho} + w_{i,k}u_{k}\right)r_{Mi} d\Omega + \int_{\Omega} \rho \nu_{LSIC}r_{C}w_{i,i} d\Omega - \int_{\Omega} w_{i}\tau_{SUPS}r_{Mk}u_{i,k} d\Omega - \int_{\Omega} w_{i,k}\frac{\tau_{SUPS}^{2}}{\rho}r_{Mi}r_{Mk} d\Omega - \int_{\Omega} \frac{\nu}{K}w_{i}\tau_{SUPS}r_{Mi} d\Omega + \int_{\Omega} \frac{\bar{\tau}\tau_{SUPS}^{2}}{\rho} w_{i,k}r_{Mk}r_{Mj}u_{i,j} d\Omega = 0.
164+
$$
165+
166+
This equation is the full stabilized weak form used in fluid.cpp in svFSIplus.
167+
168+
### Residuals
169+
170+
We will temporally discretize the stabilized weak form using the generalized - $\alpha$ method. The resulting nonlinear equation will be linearized and solved iteratively using the Newton-Raphson (Newton) method.
171+
172+
To compute the residuals for each element in the mesh, we separate the stabilized weak form into momentum and continuity components,
173+
174+
$$
175+
\int_{\Omega} \rho w_{i}\frac{du_{i}}{dt} d\Omega + \int_{\Omega} \rho w_{i}u_{k}u_{i, k} d\Omega + \int_{\Omega} w_{i, j}\sigma_{ij} d\Omega + \int_{\Omega} \frac{\mu}{K}w_{i}u_{i} d\Omega - \int_{\Omega} w_{i}\rho b_{i} d\Omega - \int_{\Gamma_{h}} w_{i}h_{i} d\Gamma + \int_{\Omega} \tau_{SUPS}w_{i,k}u_{k}r_{Mi} d\Omega + \int_{\Omega} \rho \nu_{LSIC}r_{C}w_{i,i} d\Omega - \int_{\Omega} w_{i}\tau_{SUPS}r_{Mk}u_{i,k} d\Omega - \int_{\Omega} w_{i,k}\frac{\tau_{SUPS}^{2}}{\rho}r_{Mi}r_{Mk} d\Omega - \int_{\Omega} \frac{\nu}{K}w_{i}\tau_{SUPS}r_{Mi} d\Omega + \int_{\Omega} \frac{\bar{\tau}\tau_{SUPS}^{2}}{\rho} w_{i,k}r_{Mk}r_{Mj}u_{i,j} d\Omega = 0,
176+
$$
177+
178+
$$
179+
\int_{\Omega} qu_{i,i} d\Omega + \int_{\Omega} \tau_{SUPS}\frac{q_{,i}}{\rho}r_{Mi} d\Omega = 0.
180+
$$
181+
182+
Then, by plugging weighting functions into these equations and holding the results true for any arbitrary $w_{ai}$ and $q_{a}$, we obtain the momentum and continuity residuals,
183+
184+
$$
185+
R_{ai}^{m} = \int_{\Omega} \rho N_{a}^{w}\frac{du_{i}}{dt} d\Omega + \int_{\Omega} \rho N_{a}^{w}u_{k}u_{i, k} d\Omega - \int_{\Omega} pN_{a, i}^{w} d\Omega + \int_{\Omega} N_{a, j}^{w}2\mu\epsilon_{ij} d\Omega + \int_{\Omega} \frac{\mu}{K}N_{a}^{w}u_{i} d\Omega - \int_{\Omega} N_{a}^{w} \rho b_{i} d\Omega + \int_{\Omega} \tau_{SUPS}N_{a, k}^{w}u_{k}r_{Mi} d\Omega + \int_{\Omega} \rho \nu_{LSIC}r_{C}N_{a, i}^{w} d\Omega - \int_{\Omega} N_{a}^{w}\tau_{SUPS}r_{Mk}u_{i,k} d\Omega - \int_{\Omega} N_{a, k}^{w}\frac{\tau_{SUPS}^{2}}{\rho}r_{Mi}r_{Mk} d\Omega - \int_{\Omega} \frac{\nu}{K}\tau_{SUPS}N_{a}^{w}r_{Mi} d\Omega + \int_{\Omega} \frac{\bar{\tau}\tau_{SUPS}^{2}}{\rho} N_{a, k}^{w}r_{Mk}r_{Mj}u_{i,j} d\Omega,
186+
$$
187+
188+
$$
189+
R_{a}^{c} = \int_{\Omega} N_{a}^{q}u_{i,i} d\Omega + \int_{\Omega} \tau_{SUPS}\frac{N_{a, i}^{q}}{\rho}r_{Mi} d\Omega,
190+
$$
191+
192+
where, for the $a^{\text{th}}$ node in a given element, $R_{ai}^{m}$ is the momentum residual in the $i^{\text{th}}$ direction and $R_{a}^{c}$ is continuity residual. The full residual vector, as used in the generalized - $\alpha$ method, is $\boldsymbol{R} = \left[R_{ai}^{m}, R_{a}^{c}\right]^{T}$. $R_{ai}^{m}$ and $R_{a}^{c}$ are coded in the fluid\_2d\_m/fluid\_3d\_m and fluid\_2d\_c/fluid\_3d\_c functions, respectively, in fluid.cpp in svFSIplus.
193+
194+
### Tangent matrices
195+
196+
To compute the elemental tangent matrices, as used in the Newton iterations in the generalized - $\alpha$ method, we plug trial functions into the residuals. We then differentiate the resulting equations with respect to $\frac{du_{n+1}}{dt}$ and $\frac{dp_{n+1}}{dt}$. This yields the tangent matrix,
197+
198+
$$
199+
\boldsymbol{J} =
200+
\begin{bmatrix}
201+
\boldsymbol{K} & \boldsymbol{G} \ \cr
202+
\boldsymbol{D} & \boldsymbol{L}
203+
\end{bmatrix} =
204+
\begin{bmatrix}
205+
\left[K_{ab}^{ij}\right] & \left[G_{ac}^{i}\right] \ \cr
206+
\left[D_{ab}^{j}\right] & \left[L_{ac}\right]
207+
\end{bmatrix}
208+
,
209+
$$
210+
211+
where
212+
213+
$$
214+
K_{ab}^{ij} = \frac{\partial R_{ai}^{m}}{\partial \dot{u}_{n+1,bj}},
215+
$$
216+
217+
$$
218+
G_{ac}^{i} = \frac{\partial R_{ai}^{m}}{\partial \dot{p}_{n+1,c}},
219+
$$
220+
221+
$$
222+
D_{ab}^{j} = \frac{\partial R_{a}^{c}}{\partial \dot{u}_{n+1,bj}},
223+
$$
224+
225+
$$
226+
L_{ac} = \frac{\partial R_{a}^{c}}{\partial \dot{p}_{n+1,c}}.
227+
$$
228+
229+
In fluid.cpp of svFSIplus, the following inconsistent tangent matrices are used,
230+
231+
$$
232+
K_{ab}^{ij} = \alpha_{m} A_{ab}^{ij} + \alpha_{f}\gamma\Delta t B_{ab}^{ij}
233+
$$
234+
235+
$$
236+
G_{ac}^{i} = \alpha_{f}\gamma\Delta t \left(-\int_{\Omega} N_{c}^{q}N_{a, i}^{w} d\Omega + \int_{\Omega} \tau_{SUPS} N_{a, g}^{w} u_{g} N_{c, i}^{q} d\Omega - \int_{\Omega} N_{a, k}^{w} \frac{\tau_{SUPS}^{2}}{\rho} N_{c, i}^{q} r_{Mk} d\Omega \right),
237+
$$
238+
239+
$$
240+
D_{ab}^{j} = \alpha_{f}\gamma\Delta t \left(\int_{\Omega} N_{a}^{q}N_{b, j}^{w} d\Omega - \int_{\Omega} \tau_{SUPS}\frac{N_{a, i}^{q}}{\rho}\left(-\frac{\alpha_{m}}{\alpha_{f}\gamma\Delta t}\rho N_{b}^{w}\delta_{ij} - \frac{\partial r_{Mi}}{\partial u_{n+\alpha_f,bj}}\right) d\Omega\right),
241+
$$
242+
243+
$$
244+
L_{ac} = \alpha_{f}\gamma\Delta t \int_{\Omega} \tau_{SUPS}\frac{N_{a, i}^{q}}{\rho}N_{c, i}^{q} d\Omega,
245+
$$
246+
247+
where
248+
249+
$$
250+
A_{ab}^{ij} = \int_{\Omega} \left( \rho N_{a}^{w}N_{b}^{w} \delta_{ij} + \tau_{SUPS} N_{a,g}^{w} u_{g} \rho N_{b}^{w} \delta_{ij} - N_{a,k}^{w} \tau_{SUPS}^{2} N_{b}^{w} \delta_{ij} r_{Mk} \right) d\Omega ,
251+
$$
252+
253+
$$
254+
B_{ab}^{ij} = \int_{\Omega} \left( \rho N_{a}^{w} u_{k} N_{b, k}^{w} \delta_{ij} + N_{a, l}^{w} \mu N_{b, l}^{w} \delta_{ij} + N_{a, j}^{w} \mu N_{b, i}^{w} + \frac{\mu}{K} N_{a}^{w} N_{b}^{w} \delta_{ij} + \tau_{SUPS} N_{a,g}^{w} u_{g} \frac{\partial r_{Mi}}{\partial u_{n+\alpha_f,bj}} + \rho \nu_{LSIC} N_{b,j}^{w} N_{a,i}^{w} - N_{a}^{w} \tau_{SUPS} N_{b,k}^{w} \delta_{ij} r_{Mk} - N_{a,k}^{w} \frac{\tau_{SUPS}^{2}}{\rho} \frac{\partial r_{Mi}}{\partial u_{n+\alpha_f,bj}} r_{Mk} + \frac{4}{\gamma} \frac{\partial \mu}{\partial \gamma} \epsilon_{jk} N_{b,k}^{w} \epsilon_{il} N_{a,l}^{w} + \frac{\bar{\tau}\tau_{SUPS}^{2}}{\rho} N_{a,k}^{w} N_{b,z}^{w} r_{Mk} r_{Mz} \delta_{ij} \right) d\Omega ,
255+
$$
256+
257+
and
258+
259+
$$
260+
\frac{\partial r_{Mi}}{\partial u_{n+\alpha_f,bj}} = \left(\rho u_{k} N_{b,k}^{w} - \mu N_{b,kk}^{w} + \frac{\mu}{K} N_{b}^{w} - \frac{\partial \mu}{\partial x_{k}} N_{b,k}^{w} \right)\delta_{ij} - \frac{2}{\gamma} \frac{\partial \mu}{\partial \gamma} \epsilon_{il} N_{b,l}^{w} u_{j, kk} - \frac{\partial \mu}{\partial x_{j}} N_{b,i}^{w}.
261+
$$
262+
263+
These inconsistent tangent matrices were derived by using these assumptions:
264+
265+
<li> convective velocities (the $\boldsymbol{u}$ in $\boldsymbol{u} \cdot \boldsymbol{\nabla} u_{i}$) are constant,
266+
</li>
267+
<li> stabilization parameters, $\tau_{SUPS}$ and $\nu_{LSIC}$, are constant.
268+
</li>
269+
270+
$K_{ab}^{ij}$ and $G_{ac}^{i}$ are coded in the fluid\_2d\_m/fluid\_3d\_m functions, while $D_{ab}^{j}$ and $L_{ac}$ are coded in the fluid\_2d\_c/fluid\_3d\_c functions.
Lines changed: 21 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,21 @@
1+
2+
<h2> Mathematical preliminaries </h2>
3+
4+
The following use index (Einstein) notation.
5+
6+
<li> Time derivative: $\frac{d\boldsymbol{a}}{dt} = \dot{\boldsymbol{a}}$
7+
</li>
8+
<li> Dot product: $\boldsymbol{a} \cdot \boldsymbol{b} = a_{i}b_{i}$
9+
</li>
10+
<li> Gradient of vector: $\boldsymbol{\nabla} \boldsymbol{a} = \frac{da_{i}}{dx_{j}} = a_{i,j}$
11+
</li>
12+
<li> Tensor-vector product: $\boldsymbol{A}\boldsymbol{a} = A_{ij}a_{j}$
13+
</li>
14+
<li> Double dot product: $\boldsymbol{A}:\boldsymbol{B} = A_{ij}B_{ij}$
15+
</li>
16+
<li> Tensor (dyadic) product: $\boldsymbol{C} = C_{ij} = \boldsymbol{a} \otimes \boldsymbol{b} = a_{i}b_{j}$
17+
</li>
18+
<li> Divergence of a tensor: $\boldsymbol{\nabla} \cdot \boldsymbol{\sigma} = \sigma_{ij,j}$
19+
</li>
20+
<li> Gradient of vector double dotted with a tensor: $\boldsymbol{\nabla} \boldsymbol{a} : \left(\boldsymbol{b} \otimes \boldsymbol{c}\right) = a_{i,j}b_{i}c_{j}$
21+
</li>

documentation/svfsiplus/theory/readme.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,6 @@
44

55
<h1> Theory </h1>
66

7-
The following sections provide
7+
The following sections detail the theory of the different physics modules included in svFSIplus.
88

99

0 commit comments

Comments
 (0)