|
| 1 | +<h3 id ="user_guide_material_models"> List of Available Hyperelastic Models </h3> |
| 2 | + |
| 3 | +Volumetric constitutive models for struct/ustruct equations: |
| 4 | + |
| 5 | +<table class="table table-bordered" style="width:100%"> |
| 6 | + <tr> |
| 7 | + <th> Volumetric Model </th> |
| 8 | + <th> Input Keyword </th> |
| 9 | + </tr> |
| 10 | + |
| 11 | + <tr> |
| 12 | + <td> Quadratic model </td> |
| 13 | + <td> "quad", "Quad", "quadratic", "Quadratic" </td> |
| 14 | + </tr> |
| 15 | + |
| 16 | + <tr> |
| 17 | + <td> Simo-Taylor91 model </td> |
| 18 | + <td> "ST91", "Simo-Taylor91" </td> |
| 19 | + </tr> |
| 20 | + |
| 21 | + <tr> |
| 22 | + <td> Miehe94 model </td> |
| 23 | + <td> "M94", "Miehe94" </td> |
| 24 | + </tr> |
| 25 | +</table> |
| 26 | + |
| 27 | +Isochoric constitutive models for struct/ustruct equations. |
| 28 | + |
| 29 | +<table class="table table-bordered" style="width:100%"> |
| 30 | + <tr> |
| 31 | + <th> Isochoric Model </th> |
| 32 | + <th> Input Keyword </th> |
| 33 | + </tr> |
| 34 | + |
| 35 | + <tr> |
| 36 | + <td> Saint Venant-Kirchhoff $$\dag$$ </td> |
| 37 | + <td> "stVK", "stVenantKirchhoff" </td> |
| 38 | + </tr> |
| 39 | + |
| 40 | + <tr> |
| 41 | + <td> Neo-Hookean model </td> |
| 42 | + <td> "nHK", "nHK91", "neoHookean", "neoHookeanSimo91" </td> |
| 43 | + </tr> |
| 44 | + |
| 45 | + <tr> |
| 46 | + <td> Holzapfel-Gasser-Ogden model </td> |
| 47 | + <td> "HGO" </td> |
| 48 | + </tr> |
| 49 | + |
| 50 | + <tr> |
| 51 | + <td> Guccione model </td> |
| 52 | + <td> "Guccione", "Gucci" </td> |
| 53 | + </tr> |
| 54 | + |
| 55 | + <tr> |
| 56 | + <td> Holzapfel-Ogden model </td> |
| 57 | + <td> "HO", "HolzapfelOgden" </td> |
| 58 | + </tr> |
| 59 | + |
| 60 | + <tr> |
| 61 | + <td> Holzapfel-Ogden Modified Anisotropy model </td> |
| 62 | + <td> “HO_ma”, “HolzapfelOgden-ModifiedAnisotropy” </td> |
| 63 | + </tr> |
| 64 | +</table> |
| 65 | + |
| 66 | +$$\dag$$ : These models are not available for ustruct. |
| 67 | + |
| 68 | +svMultiPhysics has two options for solving the solid equations - struct and ustruct. “Struct” uses a displacement based formulation i.e. the unknowns that we are solving for in each element are displacements. “Ustruct” uses a mixed formulation where the unknowns are displacements and pressures. |
| 69 | + |
| 70 | +<div style="background-color: #F0F0F0; padding: 10px; border: 1px solid #d0d0d0; border-left: 1px solid #d0d0d0"> |
| 71 | +<<strong>Add_equation</strong> type=<i>"struct"</i>> // or "ustruct" |
| 72 | +<<strong>Coupled></strong> <i>true</i> </<strong>Coupled</strong>> |
| 73 | +<<strong>Min_iterations></strong> <i>1</i> </<strong>Min_iterations</strong>> |
| 74 | +<<strong>Max_iterations></strong> <i>3</i> </<strong>Max_iterations</strong>> |
| 75 | +<<strong>Tolerance></strong> <i>1e-9</i> </<strong>Tolerance</strong>> |
| 76 | +<br><br> |
| 77 | +/* |
| 78 | +Add constitutive model, output type, solver type, boundary conditions |
| 79 | +*/ |
| 80 | +<br><br> |
| 81 | +/<<strong>Add_equation</strong>> |
| 82 | +</div> |
| 83 | + |
| 84 | +Volumetric Models: These models set the volumetric part of the strain energy function. There is only one material parameter needed in the input file to define this term. |
| 85 | + |
| 86 | +For a displacement based formulation (“struct”), the volumetric part of the strain energy function is a penalty to allow for small amounts of compressibility (models the material as nearly incompressible). |
| 87 | + |
| 88 | +$$ \Psi_{vol} = K_p G(J) $$ |
| 89 | + |
| 90 | +where $$ K_p$$ can be interpreted as the bulk modulus. $$G(J)$$ is the penalty function and takes different forms depending on the type of model. Two parameters are p and pl are defined internally to add to the stresses and elasticity tensors. “Struct” , the displacement based formulation calculates these as: |
| 91 | +$$ p = \frac{\partial \Psi_{vol}}{\partial J}$$ |
| 92 | +$$ pl = p + J\frac{dp}{dJ}$$ |
0 commit comments