Skip to content

Commit c53538f

Browse files
authored
Updated 0D documentation by replacing resistor, capacitor, RCL, RC, RL and stenosis docs with BloodVessel doc
1 parent ac4f005 commit c53538f

File tree

1 file changed

+34
-254
lines changed
  • documentation/rom_simulation/0d-solver/theory

1 file changed

+34
-254
lines changed

documentation/rom_simulation/0d-solver/theory/readme.md

Lines changed: 34 additions & 254 deletions
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ We are interested in solving the DAE system for the solutions, $\textbf{y}\_{n+1
3535

3636
$$\textbf{K}\left(\dot{\textbf{y}}\_{n+\alpha\_{m}}^{k}, \textbf{y}\_{n+\alpha\_{f}}^{k}, t\_{n+\alpha\_{f}}\right)\cdot\Delta \textbf{y}\_{n+\alpha\_{f}}^{k} = -\textbf{r}\left(\dot{\textbf{y}}\_{n+\alpha\_{m}}^{k}, \textbf{y}\_{n+\alpha\_{f}}^{k}, t\_{n+\alpha\_{f}}\right),$$
3737

38-
where $\textbf{K}\left(\dot{\textbf{y}}\_{n+\alpha\_{m}}, \textbf{y}\_{n+\alpha\_{f}}, t\_{n+\alpha\_{f}}\right) = \frac{\partial \textbf{r}\left(\dot{\textbf{y}}\_{n+\alpha\_{m}}, \textbf{y}\_{n+\alpha\_{f}}, t\_{n+\alpha\_{f}}\right)}{\partial \textbf{y}\_{n+\alpha\_{f}}}$ is the consistent tangent matrix.
38+
where $\textbf{K}\left(\dot{\textbf{y}}\_{n+\alpha\_{m}}, \textbf{y}\_{n+\alpha\_{f}}, t\_{n+\alpha\_{f}}\right) = \frac{\partial \textbf{r}\left(\dot{\textbf{y}}\_{n+\alpha\_{m}}, \textbf{y}\_{n+\alpha\_{f}}, t\_{n+\alpha\_{f}}\right)}{\partial \textbf{y}\_{n+\alpha\_{f}}}$ is the tangent matrix.
3939

4040
We solve this equation to find $\Delta \textbf{y}\_{n+\alpha\_{f}}^{k}$ and update our guess of $\dot{\textbf{y}}\_{n+\alpha\_{m}}$ and $\textbf{y}\_{n+\alpha\_{f}}$,
4141

@@ -45,7 +45,7 @@ We are interested in solving the DAE system for the solutions, $\textbf{y}\_{n+1
4545

4646
$$\dot{\textbf{y}}\_{n+\alpha\_{m}}^{k+1} = \dot{\textbf{y}}\_{n+\alpha\_{m}}^{k} + \frac{\alpha\_{m}}{\Delta t\alpha\_{f}\gamma}\Delta \textbf{y}\_{n+\alpha\_{f}}^{k}.$$
4747

48-
The consistent tangent matrix is
48+
The tangent matrix is
4949

5050
$$\textbf{K}\left(\dot{\textbf{y}}\_{n+\alpha\_{m}}, \textbf{y}\_{n+\alpha\_{f}}, t\_{n+\alpha\_{f}}\right) = \underset{\text{Term 1}}{\underbrace{\frac{\partial \textbf{E}\left(\textbf{y}\_{n+\alpha\_{f}}, t\_{n+\alpha\_{f}}\right)}{\partial \textbf{y}\_{n+\alpha\_{f}}}\cdot\dot{\textbf{y}}\_{n+\alpha\_{m}}}} + \frac{\alpha\_{m}}{\Delta t\alpha\_{f}\gamma}\textbf{E}\left(\textbf{y}\_{n+\alpha\_{f}}, t\_{n+\alpha\_{f}}\right) + \underset{\text{Term 2}}{\underbrace{\frac{\partial \textbf{F}\left(\textbf{y}\_{n+\alpha\_{f}}, t\_{n+\alpha\_{f}}\right)}{\partial \textbf{y}\_{n+\alpha\_{f}}}\cdot\textbf{y}\_{n+\alpha\_{f}}}} + \textbf{F}\left(\textbf{y}\_{n+\alpha\_{f}}, t\_{n+\alpha\_{f}}\right) + \underset{\text{Term 3}}{\underbrace{\frac{\partial \textbf{c}\left(\textbf{y}\_{n+\alpha\_{f}}, t\_{n+\alpha\_{f}}\right)}{\partial \textbf{y}\_{n+\alpha\_{f}}}}}.$$
5151

@@ -93,285 +93,65 @@ $$\textbf{E}^{e}\left(\textbf{y}^{e}, t\right)\cdot\dot{\textbf{y}}^{e} + \textb
9393

9494
<h4> Vessel elements </h4>
9595

96-
<h5> Resistor </h5>
96+
<h5> BloodVessel </h5>
9797

9898
<br>
9999
<figure>
100-
<img class="svImg svImgMd" src="/documentation/rom_simulation/0d-solver/images/resistor.png">
101-
<figcaption class="svCaption"> Resistor element.
102-
</figcaption>
103-
</figure>
104-
105-
The governing equations for the local resistor element are
106-
107-
<!-- https://github.com/mathjax/MathJax/issues/329 -- need to add a backslash before all underscore in an equation -->
108-
109-
$$P\_{in}^{e} - P\_{out}^{e} - RQ\_{in}^{e} = 0$$
110-
111-
$$Q\_{in}^{e} - Q\_{out}^{e} = 0.$$
112-
113-
The local contributions to the global arrays are
114-
115-
\begin{gather}
116-
\textbf{y}^{e} =
117-
\begin{bmatrix}
118-
P\_{in}^{e} & Q\_{in}^{e} & P\_{out}^{e} & Q\_{out}^{e}
119-
\end{bmatrix}^T,
120-
\end{gather}
121-
122-
\begin{gather}
123-
\textbf{F}^{e} =
124-
\begin{bmatrix}
125-
1 & -R & -1 & 0 \ \cr
126-
0 & 1 & 0 & -1
127-
\end{bmatrix}.
128-
\end{gather}
129-
130-
<h5> Capacitor </h5>
131-
132-
<br>
133-
<figure>
134-
<img class="svImg svImgMd" src="/documentation/rom_simulation/0d-solver/images/capacitor.png">
135-
<figcaption class="svCaption"> Capacitor element.
136-
</figcaption>
137-
</figure>
138-
139-
The governing equations for the local capacitor element are
140-
141-
$$C\frac{d\left( P\_{in}^{e} - P\_{out}^{e} \right)}{dt} - Q\_{in}^{e} = 0$$
142-
143-
$$Q\_{in}^{e} - Q\_{out}^{e} = 0.$$
144-
145-
The local contributions to the global arrays are
146-
147-
\begin{gather}
148-
\textbf{y}^{e} =
149-
\begin{bmatrix}
150-
P\_{in}^{e} & Q\_{in}^{e} & P\_{out}^{e} & Q\_{out}^{e}
151-
\end{bmatrix}^T,
152-
\end{gather}
153-
154-
\begin{gather}
155-
\textbf{E}^{e} =
156-
\begin{bmatrix}
157-
C & 0 & -C & 0 \ \cr
158-
0 & 0 & 0 & 0
159-
\end{bmatrix},
160-
\end{gather}
161-
162-
\begin{gather}
163-
\textbf{F}^{e} =
164-
\begin{bmatrix}
165-
0 & -1 & 0 & 0 \ \cr
166-
0 & 1 & 0 & -1
167-
\end{bmatrix}.
168-
\end{gather}
169-
170-
<h5> Inductor </h5>
171-
172-
<br>
173-
<figure>
174-
<img class="svImg svImgMd" src="/documentation/rom_simulation/0d-solver/images/inductor.png">
175-
<figcaption class="svCaption"> Inductor element.
176-
</figcaption>
177-
</figure>
178-
179-
The governing equations for the local inductor element are
180-
181-
$$P\_{in}^{e} - P\_{out}^{e} - L\frac{dQ\_{in}^{e}}{dt} = 0$$
182-
183-
$$Q\_{in}^{e} - Q\_{out}^{e} = 0.$$
184-
185-
The local contributions to the global arrays are
186-
187-
\begin{gather}
188-
\textbf{y}^{e} =
189-
\begin{bmatrix}
190-
P\_{in}^{e} & Q\_{in}^{e} & P\_{out}^{e} & Q\_{out}^{e}
191-
\end{bmatrix}^T,
192-
\end{gather}
193-
194-
\begin{gather}
195-
\textbf{E}^{e} =
196-
\begin{bmatrix}
197-
0 & -L & 0 & 0 \ \cr
198-
0 & 0 & 0 & 0
199-
\end{bmatrix},
200-
\end{gather}
201-
202-
\begin{gather}
203-
\textbf{F}^{e} =
204-
\begin{bmatrix}
205-
1 & 0 & -1 & 0 \ \cr
206-
0 & 1 & 0 & -1
207-
\end{bmatrix}.
208-
\end{gather}
209-
210-
<h5> Resistor-Capacitor </h5>
211-
212-
<br>
213-
<figure>
214-
<img class="svImg svImgMd" src="/documentation/rom_simulation/0d-solver/images/RC.png">
215-
<figcaption class="svCaption"> Resistor-Capacitor element.
216-
</figcaption>
217-
</figure>
218-
219-
The governing equations for the local resistor-capacitor element are
220-
221-
$$P\_{in}^{e} - P\_{out}^{e} - RQ\_{in}^{e} = 0$$
222-
223-
$$Q\_{in}^{e} - Q\_{out}^{e} - C\frac{dP\_{out}^{e}}{dt} = 0.$$
224-
225-
The local contributions to the global arrays are
226-
227-
\begin{gather}
228-
\textbf{y}^{e} =
229-
\begin{bmatrix}
230-
P\_{in}^{e} & Q\_{in}^{e} & P\_{out}^{e} & Q\_{out}^{e}
231-
\end{bmatrix}^T,
232-
\end{gather}
233-
234-
\begin{gather}
235-
\textbf{E}^{e} =
236-
\begin{bmatrix}
237-
0 & 0 & 0 & 0 \ \cr
238-
0 & 0 & -C & 0
239-
\end{bmatrix},
240-
\end{gather}
241-
242-
\begin{gather}
243-
\textbf{F}^{e} =
244-
\begin{bmatrix}
245-
1 & -R & -1 & 0 \ \cr
246-
0 & 1 & 0 & -1
247-
\end{bmatrix}.
248-
\end{gather}
249-
250-
<h5> Resistor-Inductor </h5>
251-
252-
<br>
253-
<figure>
254-
<img class="svImg svImgMd" src="/documentation/rom_simulation/0d-solver/images/RL.png">
255-
<figcaption class="svCaption"> Resistor-Inductor element.
100+
<img class="svImg svImgMd" src="/documentation/rom_simulation/0d-solver/images/RCL.png">
101+
<figcaption class="svCaption"> BloodVessel element.
256102
</figcaption>
257103
</figure>
258104

259-
The governing equations for the local resistor-inductor element are
260-
261-
$$P\_{in}^{e} - P\_{out}^{e} - RQ\_{in}^{e} - L\frac{dQ\_{out}^{e}}{dt} = 0$$
262-
263-
$$Q\_{in}^{e} - Q\_{out}^{e} = 0.$$
264-
265-
The local contributions to the global arrays are
266-
267-
\begin{gather}
268-
\textbf{y}^{e} =
269-
\begin{bmatrix}
270-
P\_{in}^{e} & Q\_{in}^{e} & P\_{out}^{e} & Q\_{out}^{e}
271-
\end{bmatrix}^T,
272-
\end{gather}
105+
The BloodVessel element is a general block for modeling blood vessels. To use this block, the Poiseuille-based resistance must be specified. All other components (capacitance, inductance, and stenosis-based resistance) are optional.
273106

274-
\begin{gather}
275-
\textbf{E}^{e} =
276-
\begin{bmatrix}
277-
0 & 0 & 0 & -L \ \cr
278-
0 & 0 & 0 & 0
279-
\end{bmatrix},
280-
\end{gather}
107+
<!-- All have a default value of zero, except for the curvature coefficient, which has a default value of 1. -->
281108

282-
\begin{gather}
283-
\textbf{F}^{e} =
284-
\begin{bmatrix}
285-
1 & -R & -1 & 0 \ \cr
286-
0 & 1 & 0 & -1
287-
\end{bmatrix}.
288-
\end{gather}
109+
The governing equations for the local BloodVessel element, including the stenosis contribution [3], are
289110

290-
<h5> Resistor-Capacitor-Inductor </h5>
291-
292-
<br>
293-
<figure>
294-
<img class="svImg svImgMd" src="/documentation/rom_simulation/0d-solver/images/RCL.png">
295-
<figcaption class="svCaption"> Resistor-Capacitor-Inductor element.
296-
</figcaption>
297-
</figure>
298-
299-
The governing equations for the local resistor-capacitor-inductor element are
300-
301-
$$P\_{in}^{e} - P\_{out}^{e} - RQ\_{in}^{e} - L\frac{dQ\_{out}^{e}}{dt} = 0$$
111+
$$P\_{in}^{e} - P\_{out}^{e} - R\left(Q\_{in}^{e}\right)Q\_{in}^{e} - L\frac{dQ\_{out}^{e}}{dt} = 0$$
302112

303113
$$Q\_{in}^{e} - Q\_{out}^{e} - C\frac{dP\_{c}^{e}}{dt} = 0.$$
304114

305-
$$P\_{in}^{e} - RQ\_{in}^{e} - P\_{c} = 0$$
115+
$$P\_{in}^{e} - R\left(Q\_{in}^{e}\right)Q\_{in}^{e} - P\_{c} = 0$$
116+
117+
where $R\left(Q\right) = R\_{s}\left(Q\right) + R\_{p}$, $R\_{s}\left(Q\right) = K\_{t}\frac{\rho}{2A\_{o}^{2}}\left(\frac{A\_{o}}{A\_{s}} - 1\right)^{2}|Q|$, and $R\_{p} = \frac{8\mu L}{\pi r^{4}}.$
306118

307119
The local contributions to the global arrays are
308120

309121
\begin{gather}
310-
\textbf{y}^{e} =
311-
\begin{bmatrix}
312-
P\_{in}^{e} & Q\_{in}^{e} & P\_{out}^{e} & Q\_{out}^{e} & P\_{c}
313-
\end{bmatrix}^T,
122+
\textbf{y}^{e} =
123+
\begin{bmatrix}
124+
P\_{in}^{e} & Q\_{in}^{e} & P\_{out}^{e} & Q\_{out}^{e} & P\_{c}
125+
\end{bmatrix}^T,
314126
\end{gather}
315127

316128
\begin{gather}
317-
\textbf{E}^{e} =
318-
\begin{bmatrix}
319-
0 & 0 & 0 & -L & 0 \ \cr
320-
0 & 0 & 0 & 0 & -C \ \cr
321-
0 & 0 & 0 & 0 & 0
322-
\end{bmatrix},
129+
\textbf{E}^{e} =
130+
\begin{bmatrix}
131+
0 & 0 & 0 & -L & 0 \ \cr
132+
0 & 0 & 0 & 0 & -C \ \cr
133+
0 & 0 & 0 & 0 & 0
134+
\end{bmatrix},
323135
\end{gather}
324136

325137
\begin{gather}
326-
\textbf{F}^{e} =
327-
\begin{bmatrix}
328-
1 & -R & -1 & 0 & 0 \ \cr
329-
0 & 1 & 0 & -1 & 0 \ \cr
330-
1 & -R & 0 & 0 & -1
331-
\end{bmatrix}.
138+
\textbf{F}^{e} =
139+
\begin{bmatrix}
140+
1 & -R\left(Q\_{in}^{e}\right) & -1 & 0 & 0 \ \cr
141+
0 & 1 & 0 & -1 & 0 \ \cr
142+
1 & -R\left(Q\_{in}^{e}\right) & 0 & 0 & -1
143+
\end{bmatrix}.
332144
\end{gather}
333145

334-
<h5> Stenosis </h5>
335-
336-
<br>
337-
<figure>
338-
<img class="svImg svImgMd" src="/documentation/rom_simulation/0d-solver/images/stenosis.png">
339-
<figcaption class="svCaption"> Stenosis element.
340-
</figcaption>
341-
</figure>
342-
343-
The governing equations for the local stenosis element [3] are
344-
345-
$$P\_{in}^{e} - P\_{out}^{e} - R\_{pre}\left(Q\_{in}^{e}\right)Q\_{in}^{e} = 0$$
346-
347-
$$Q\_{in}^{e} - Q\_{out}^{e} = 0,$$
348-
349-
where $R\_{pre}\left(Q\right) = K\_{t}\frac{\rho}{2A\_{o}^{2}}\left(\frac{A\_{o}}{A\_{s}} - 1\right)^{2}|Q| + R\_{p}$ and $R\_{p} = \frac{8\mu L}{\pi r^{4}}.$
350-
351-
The local contributions to the global arrays are
352-
353146
\begin{gather}
354-
\textbf{y}^{e} =
355-
\begin{bmatrix}
356-
P\_{in}^{e} & Q\_{in}^{e} & P\_{out}^{e} & Q\_{out}^{e}
357-
\end{bmatrix}^T,
147+
\textbf{dF}^{e} =
148+
\begin{bmatrix}
149+
0 & -R\_{s}\left(Q\_{in}^{e}\right) & 0 & 0 & 0 \ \cr
150+
0 & 0 & 0 & 0 & 0 \ \cr
151+
0 & -R\_{s}\left(Q\_{in}^{e}\right) & 0 & 0 & 0
152+
\end{bmatrix}.
358153
\end{gather}
359154

360-
\begin{gather}
361-
\textbf{F}^{e} =
362-
\begin{bmatrix}
363-
1 & -R\_{pre}|Q\_{in}^{e}| - R\_{p} & -1 & 0 \ \cr
364-
0 & 1 & 0 & -1
365-
\end{bmatrix}.
366-
\end{gather}
367-
368-
\begin{gather}
369-
\textbf{dF}^{e} =
370-
\begin{bmatrix}
371-
1 & -R\_{pre}|Q\_{in}^{e}| & -1 & 0 \ \cr
372-
0 & 0 & 0 & 0
373-
\end{bmatrix}.
374-
\end{gather}
375155

376156
<h5> Junction </h5>
377157

0 commit comments

Comments
 (0)