Skip to content

Commit c7761ac

Browse files
committed
fix link paths and active in clinical test navbar
1 parent 15219b5 commit c7761ac

File tree

16 files changed

+66
-66
lines changed

16 files changed

+66
-66
lines changed

clinical/aortofemoral2.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -126,10 +126,10 @@
126126
<div class="navSubLink">
127127
<a href="coronary.html">Coronary Normal</a>
128128
</div>
129-
<div class="navSubLink active">
129+
<div class="navSubLink">
130130
<a href="aortofemoral1.html">Aortofemoral Normal - 1</a>
131131
</div>
132-
<div class="navSubLink">
132+
<div class="navSubLink active">
133133
<a href="aortofemoral2.html">Aortofemoral Normal - 2</a>
134134
</div>
135135
<div class="navSubLink">

clinical/coronary.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -123,10 +123,10 @@
123123
<details>
124124
<summary class="navTitle"><i class="iconInHeader fa-solid fa-stethoscope" style="padding-right: 15px"></i>Clinical Cases</summary>
125125
<div>
126-
<div class="navSubLink">
126+
<div class="navSubLink active">
127127
<a href="coronary.html">Coronary Normal</a>
128128
</div>
129-
<div class="navSubLink active">
129+
<div class="navSubLink">
130130
<a href="aortofemoral1.html">Aortofemoral Normal - 1</a>
131131
</div>
132132
<div class="navSubLink">

clinical/pulmonary.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -126,13 +126,13 @@
126126
<div class="navSubLink">
127127
<a href="coronary.html">Coronary Normal</a>
128128
</div>
129-
<div class="navSubLink active">
129+
<div class="navSubLink">
130130
<a href="aortofemoral1.html">Aortofemoral Normal - 1</a>
131131
</div>
132132
<div class="navSubLink">
133133
<a href="aortofemoral2.html">Aortofemoral Normal - 2</a>
134134
</div>
135-
<div class="navSubLink">
135+
<div class="navSubLink active">
136136
<a href="pulmonary.html">Healthy Pulmonary</a>
137137
</div>
138138
<div class="navSubLink">

documentation/python_interface/modules/function_arguments/readme.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -30,4 +30,4 @@ segmentation.Error: CircleSegmentation() The 'normal' argument is not a 3D point
3030
</pre>
3131

3232
<br>
33-
All API errors are handled using exceptions. See the <a href="#modules_error_handling"> Error Handling </a> section.
33+
All API errors are handled using exceptions. See the <a href="#error_handling"> Error Handling </a> section.

documentation/quickguide/gui/display/readme.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ The principal planes slice is represented by a pair of crosshairs the 2D view wi
3131
mouse button in a 2D view centers the crosshair on that point. Pressing the right mouse button and moving the mouse zooms
3232
in and out. Scrolling the mouse wheel changes the principal plane slice for which the mouse cursor is in.
3333

34-
Changing the principal planes slice changes the values displayed in the <a href="#image_navigator"> Image Navigator </a>
34+
Changing the principal planes slice changes the values displayed in the <a href="#gui_image_navigator"> Image Navigator </a>
3535
and vice versa.
3636

3737
The function of the mouse buttons depends on the window the mouse cursor is in.

documentation/quickguide/tutorial/create_paths/readme.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ to construct a model of the vascular anatomy using a series segmentations genera
77

88
The following sections demonstrate how to create a path defining the main aorta and right iliac, and another for the left iliac.
99
A detailed discussion about creating paths can be found in the SimVascular
10-
<a href="modeling.html#modelingPathPlanning.html">Modeling Guide / Path Planning</a> documentation.
10+
<a href="modeling.html#modelingPathPlanning">Modeling Guide / Path Planning</a> documentation.
1111

1212
<h3 id="tutorial_create_paths_1"> Create an instance of a <i>Paths Tool</i> for the aorta/right iliac </h3>
1313
Create an instance of a <i>Paths Tool</i> named <b>aorta</b> used to define <i>Path</i> geometry for the main aorta
@@ -73,7 +73,7 @@ This section demonstrates how to create a set of points representing <i>Path</i>
7373
end of the right iliac arteries. Path points are added interactively by positioning crosshairs in the three 2D
7474
views to select the approximate center of a vessel lumen.
7575

76-
The crosshairs are moved using the left mouse button or the <a href="#image_navigator"><i>Image Navigator</i></a>.
76+
The crosshairs are moved using the left mouse button or the <a href="#gui_image_navigator"><i>Image Navigator</i></a>.
7777

7878
<table class="table table-bordered" style="width:100%">
7979
<caption> Add <i>Path</i> points using the <b>aorta</b> <i>Paths Tool</i> </caption>

documentation/quickguide/tutorial/create_segmentations/readme.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ In SimVascular, a series of segmentations along a <i>Path</i> is called a <i>Con
2929

3030
The following sections demonstrate how to create segmentations using the <b>aorta</b> and <b>left-iliac</b> <i>Paths</i>.
3131
A detailed discussion about segmentation can be found in the SimVascular
32-
<a href="modeling.html#modelingSegmentation.html">Modeling Guide / Segmentation</a> documentation.
32+
<a href="modeling.html#modelingSegmentation">Modeling Guide / Segmentation</a> documentation.
3333

3434
<h3 id="tutorial_create_segs_1"> Create an instance of a <i>Segmentations Tool</i> for the aorta/right iliac </h3>
3535

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -1,18 +1,18 @@
11
# References
22

3-
<a id="ref-1">
4-
Seo J, Fleeter C, Kahn A, Marsden A, Schiavazzi D. **Multi-fidelity estimators for coronary artery models under clinically-informed data uncertainty**. Int J Uncertain Quantif. 2020.
5-
</a>
3+
<p><a id="ref-1">
4+
Seo J, Fleeter C, Kahn A, Marsden A, Schiavazzi D. <strong>Multi-fidelity estimators for coronary artery models under clinically-informed data uncertainty</strong>. Int J Uncertain Quantif. 2020.
5+
</a></p>
66

7-
<a id="ref-2">
8-
K.E. Jansen, C.H. Whiting, G.M. Hulbert, **A generalized-$\alpha$ method for integrating the filtered Navier–Stokes equations with a stabilized finite element method**, Comp. Methods Appl. Mech. Engrg. 190 (1999) 305–319.
9-
</a>
7+
<p><a id="ref-2">
8+
K.E. Jansen, C.H. Whiting, G.M. Hulbert, <strong>A generalized-$\alpha$ method for integrating the filtered Navier–Stokes equations with a stabilized finite element method</strong>, Comp. Methods Appl. Mech. Engrg. 190 (1999) 305–319.
9+
</a></p>
1010

11-
<a id="ref-3">
12-
Mehran Mirramezani and Shawn C. Shadden. **A distributed lumped parameter model of blood flow. Annals
13-
of Biomedical Engineering**, 2020.
14-
</a>
11+
<p><a id="ref-3">
12+
Mehran Mirramezani and Shawn C. Shadden. <strong>A distributed lumped parameter model of blood flow. Annals
13+
of Biomedical Engineering</strong>, 2020.
14+
</a></p>
1515

16-
<a id="ref-4">
17-
H.J. Kim, I.E. Vignon-Clementel, J.S. Coogan, C.A. Figueroa, K.E. Jansen and C.A. Taylor, **Patient-specific modeling of blood flow and pressure in human coronary arteries**, Annals of Biomedical Engineering, 38(10):3195-3209, 2010.
18-
</a>
16+
<p><a id="ref-4">
17+
H.J. Kim, I.E. Vignon-Clementel, J.S. Coogan, C.A. Figueroa, K.E. Jansen and C.A. Taylor, <strong>Patient-specific modeling of blood flow and pressure in human coronary arteries</strong>, Annals of Biomedical Engineering, 38(10):3195-3209, 2010.
18+
</a></p>
Lines changed: 33 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -1,48 +1,48 @@
11
# References
22

3-
<a id="ref-1">
4-
[1] T.J.R. Hughes and J. Lubliner, **On the One-Dimensional Theory of Blood Flow in the Larger Vessels** , Mathematical Biosciences , 18(1-2) (1973), 161-170.
5-
</a>
3+
<p><a id="ref-1">
4+
[1] T.J.R. Hughes and J. Lubliner, <strong>On the One-Dimensional Theory of Blood Flow in the Larger Vessels</strong>, Mathematical Biosciences , 18(1-2) (1973), 161-170.
5+
</a></p>
66

7-
<a id="ref-2">
8-
[2] T.J.R. Hughes, **A Study of the One-Dimensional Theory of Arterial Pulse Propagation**, 1974, U.C. Berkeley, Ph.D. Thesis. </a>
7+
<p><a id="ref-2">
8+
[2] T.J.R. Hughes, <strong>A Study of the One-Dimensional Theory of Arterial Pulse Propagation</strong>, 1974, U.C. Berkeley, Ph.D. Thesis. </a></p>
99

10-
<a id="ref-3">
11-
[3] M.S. Olufsen, **Structured Tree Outflow Condition for Blood Flow in Larger Systemic Arteries** , American Journal of Physiology , 276 (1999), H257-268.
12-
</a>
10+
<p><a id="ref-3">
11+
[3] M.S. Olufsen, <strong>Structured Tree Outflow Condition for Blood Flow in Larger Systemic Arteries</strong>, American Journal of Physiology , 276 (1999), H257-268.
12+
</a></p>
1313

14-
<a id="ref-4">
15-
[4] J. Wan, B.N. Steele, S.A. Spicer, S. Strohband, G.R. Feijoo, T.J.R. Hughes and C.A. Taylor, **A One-Dimensional Finite Element Method for Simulation-Based Medical Planning for Cardiovascular Disease** , Computer Methods in Biomechanics and Biomedical Engineering , 5(3) (2002), 195-206.
16-
</a>
14+
<p><a id="ref-4">
15+
[4] J. Wan, B.N. Steele, S.A. Spicer, S. Strohband, G.R. Feijoo, T.J.R. Hughes and C.A. Taylor, <strong>A One-Dimensional Finite Element Method for Simulation-Based Medical Planning for Cardiovascular Disease</strong>, Computer Methods in Biomechanics and Biomedical Engineering , 5(3) (2002), 195-206.
16+
</a></p>
1717

18-
<a id="ref-5">
19-
[5] D. Givoli and J.B. Keller, **A Finite Element Method for Large Domains** , Computer Methods in Applied Mechanics and Engineering , 76(1) (1989), 41-66.
20-
</a>
18+
<p><a id="ref-5">
19+
[5] D. Givoli and J.B. Keller, <strong>A Finite Element Method for Large Domains</strong>, Computer Methods in Applied Mechanics and Engineering , 76(1) (1989), 41-66.
20+
</a></p>
2121

22-
<a id="ref-6">
23-
[6] J.B. Keller and D. Givoli, **Exact Non-Reflecting Boundary-Conditions** , Journal of Computational Physics , 82(1) (1989), 172-192.
24-
</a>
22+
<p><a id="ref-6">
23+
[6] J.B. Keller and D. Givoli, <strong>Exact Non-Reflecting Boundary-Conditions</strong>, Journal of Computational Physics , 82(1) (1989), 172-192.
24+
</a></p>
2525

26-
<a id="ref-7">
27-
[7] D. Givoli, **Numerical Methods for Problems in Infinite Domains**, 1992, Elsevier Science.
28-
</a>
26+
<p><a id="ref-7">
27+
[7] D. Givoli, <strong>Numerical Methods for Problems in Infinite Domains</strong>, 1992, Elsevier Science.
28+
</a></p>
2929

30-
<a id="ref-8">
31-
[8] M. Grote and J. Keller, **Exact Nonreflecting Boundary Conditions for the Time Dependent Wave Equation** , SIAM Journal on Applied Mathematics , 55(2) (1995), 280-297.
32-
</a>
30+
<p><a id="ref-8">
31+
[8] M. Grote and J. Keller, <strong>Exact Nonreflecting Boundary Conditions for the Time Dependent Wave Equation</strong>, SIAM Journal on Applied Mathematics , 55(2) (1995), 280-297.
32+
</a></p>
3333

34-
<a id="ref-9">
35-
[9] I. Patlashenko, D. Givoli and P. Barbone, **Time-Stepping Schemes for Systems of Volterra Integro-Differential Equations** , Computer Methods in Applied Mechanics and Engineering , 190 (2001), 5691-5718.
36-
</a>
34+
<p><a id="ref-9">
35+
[9] I. Patlashenko, D. Givoli and P. Barbone, <strong>Time-Stepping Schemes for Systems of Volterra Integro-Differential Equations</strong>, Computer Methods in Applied Mechanics and Engineering , 190 (2001), 5691-5718.
36+
</a></p>
3737

38-
<a id="ref-10">
39-
[10] T.J.R. Hughes and M. Mallet, **A New Finite Element Formulation for Computational Fluid Dynamics: III. The Generalized Streamline Operator for Advective-Diffusive Systems** , Computer Methods in Applied Mechanics and Engineering , 58 (1986), 305-328.
38+
<p><a id="ref-10">
39+
[10] T.J.R. Hughes and M. Mallet, <strong>A New Finite Element Formulation for Computational Fluid Dynamics: III. The Generalized Streamline Operator for Advective-Diffusive Systems</strong>, Computer Methods in Applied Mechanics and Engineering , 58 (1986), 305-328.
4040
</a>
4141

42-
<a id="ref-11">
43-
[11] T.J.R. Hughes, L.P. Franca and G.M. Hulbert, **A New Finite Element Formulation for Computational Fluid Dynamics: VIII. The Galerkin/Least-Squares Method for Advective-Diffusive Equations** , Computer Methods in Applied Mechanics and Engineering , 73(2) (1989), 173-189.
44-
</a>
42+
<p><a id="ref-11">
43+
[11] T.J.R. Hughes, L.P. Franca and G.M. Hulbert, <strong>A New Finite Element Formulation for Computational Fluid Dynamics: VIII. The Galerkin/Least-Squares Method for Advective-Diffusive Equations</strong>, Computer Methods in Applied Mechanics and Engineering , 73(2) (1989), 173-189.
44+
</a></p>
4545

46-
<a id="ref-12">
46+
<p><a id="ref-12">
4747
[12] N. Xiao, J. Alastruey, and C. Alberto Figueroa (2014), A systematic comparison between 1‐D and 3‐D hemodynamics in compliant arterial models. Int. J. Numer. Meth. Biomed. Engng., 30: 204-231.
48-
</a>
48+
</a></p>

documentation/rom_simulation/intro/readme.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -19,10 +19,10 @@ this ROM can be complex enough to provide a good approximatation of circulatory
1919

2020
The geometry of the one-dimensional networks used by the **sv1DSolver** is based on the centerlines computed from the surface
2121
of a 3D geometric model. The 3D geometric model is created from image data using the typical
22-
SimVascular <a href="modeling.html"> modeling workflow </a>.
22+
SimVascular <a href="modeling.html"> modeling workflow</a>.
2323

2424
Centerlines represent a 1D characterization of blood vessel geometry. The centerlines are computed for a 3D surface using
25-
the <a href="http://www.vmtk.org/tutorials/Centerlines.html"> Vascular Modeling Toolkit </a>. The computation solves a wave propagation
25+
the <a href="http://www.vmtk.org/tutorials/Centerlines.html"> Vascular Modeling Toolkit</a>. The computation solves a wave propagation
2626
problem using a source point representing the start of the centerlines and target points representing the ends of the centerlines.
2727
The source and target points are selected from the model caps defined in the SimVascular **Modeling Tool**.
2828

0 commit comments

Comments
 (0)