Skip to content

Commit 0634f2c

Browse files
MMelQinSimoneBendazzoli93
authored andcommitted
Updating the SDK to use newer and updated dependencies, namely Holoscan SDK (Project-MONAI#481)
* Updated the SDK to use Holoscan SDK v1.0, and tested apps and Notebooks Signed-off-by: M Q <[email protected]> * Doc updates Signed-off-by: M Q <[email protected]> * Fix typo Signed-off-by: M Q <[email protected]> * Add Holoscan license file Signed-off-by: M Q <[email protected]> * Add release note and editorial changes Signed-off-by: M Q <[email protected]> * Update readme Signed-off-by: M Q <[email protected]> * Add missing packages in the example in the Readme Signed-off-by: M Q <[email protected]> * Add new package to make gen_docs work even just in Python 3.8 env Signed-off-by: M Q <[email protected]> * Updated user guide Signed-off-by: M Q <[email protected]> * Rerun the notebook to clear some warnings Signed-off-by: M Q <[email protected]> * rerun notebook Signed-off-by: M Q <[email protected]> * touch the file Signed-off-by: M Q <[email protected]> * touch the file Signed-off-by: M Q <[email protected]> * fix formatting complaints Signed-off-by: M Q <[email protected]> * ignore the complaint Signed-off-by: M Q <[email protected]> * touch file Signed-off-by: M Q <[email protected]> * touch the file Signed-off-by: M Q <[email protected]> * Successfully run after getting new clara-viz fix for Python 3.10+ Signed-off-by: M Q <[email protected]> * specififies OS and CUDA requirements in the release note Signed-off-by: M Q <[email protected]> * Adding a note for doc building succeeding with Python3.8 only Signed-off-by: M Q <[email protected]> * Update docs and Notebooks Signed-off-by: M Q <[email protected]> * Explicitly specifying GPU and CUDA12 req. Signed-off-by: M Q <[email protected]> * Explicitly specifying GPU and CUDA12 req in README. Signed-off-by: M Q <[email protected]> * Add ref to MONAI guide per review commnents Signed-off-by: M Q <[email protected]> --------- Signed-off-by: M Q <[email protected]> Signed-off-by: Simone Bendazzoli <[email protected]>
1 parent ae22e88 commit 0634f2c

19 files changed

+2742
-3701
lines changed

CONTRIBUTING.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -138,7 +138,7 @@ MONAI Deploy App SDK's code coverage report is available at [CodeCov](https://co
138138
#### Building the documentation
139139

140140
:::{note}
141-
Please note that the documentation builds successfully in Python 3.9 environment, but fails with Python 3.10.
141+
Please note that the documentation builds successfully in Python 3.8 environment, but fails with Python 3.10.
142142
:::
143143

144144
MONAI's documentation is located at `docs/`.

README.md

Lines changed: 13 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ MONAI Deploy App SDK offers a framework and associated tools to design, develop
1515
- Build medical imaging inference applications using a flexible, extensible & usable Pythonic API
1616
- Easy management of inference applications via programmable Directed Acyclic Graphs (DAGs)
1717
- Built-in operators to load DICOM data to be ingested in an inference app
18-
- Out-of-the-box support for in-proc PyTorch based inference, as well as remote inference via Triton Inference Server
18+
- Out-of-the-box support for in-proc PyTorch based inference
1919
- Easy incorporation of MONAI based pre and post transformations in the inference application
2020
- Package inference application with a single command into a portable MONAI Application Package
2121
- Locally run and debug your inference application using App Runner
@@ -24,31 +24,26 @@ MONAI Deploy App SDK offers a framework and associated tools to design, develop
2424

2525
User guide is available at [docs.monai.io](https://docs.monai.io/projects/monai-deploy-app-sdk/en/stable/).
2626

27-
## Citation
28-
29-
If you have used MONAI in your research, please cite us! The citation can be exported from: [https://arxiv.org/abs/2212.14177](https://arxiv.org/abs/2212.14177).
30-
3127
## Installation
3228

3329
To install [the current release](https://pypi.org/project/monai-deploy-app-sdk/), you can simply run:
3430

3531
```bash
36-
pip install monai-deploy-app-sdk
32+
pip install monai-deploy-app-sdk # '--pre' to install a pre-release version.
3733
```
3834

39-
### Prerequisites
35+
Please also note the following system requirements:
36+
- Ubuntu 22.04 on X86-64 is required, as this is the only X86 platform that the underlying Holoscan SDK has been tested to support as of now.
37+
- [CUDA 12](https://developer.nvidia.com/cuda-12-0-0-download-archive) is required along with a supported NVIDIA GPU with at least 8GB of video RAM. If AI inference is not used in the example application and a GPU is not installed, at least [CUDA 12 runtime](https://pypi.org/project/nvidia-cuda-runtime-cu12/) is required, as this is one of the requirements of Holoscan SDK, in addition, the `LIB_LIBRARY_PATH` must be set to include the installed shared library, e.g. in a Python 3.8 env, ```export LD_LIBRARY_PATH=`pwd`/.venv/lib/python3.8/site-packages/nvidia/cuda_runtime/lib:$LD_LIBRARY_PATH```
38+
4039

41-
- This SDK depends on [NVIDIA Holoscan SDK](https://pypi.org/project/holoscan/) for its core implementation as well as its CLI, hence inherits its prerequisites, e.g. Ubuntu 22.04 with glibc 2.35 on X86-64 and NVIDIA dGPU drivers version 535 or above.
42-
- [CUDA 12.2](https://developer.nvidia.com/cuda-12-2-0-download-archive) or above is required along with a supported NVIDIA GPU with at least 8GB of video RAM.
43-
- If inference is not used in an example application and a GPU is not installed, at least [CUDA 12 runtime](https://pypi.org/project/nvidia-cuda-runtime-cu12/) is required, as this is one of the requirements of Holoscan SDK. In addition, the `LIB_LIBRARY_PATH` must be set to include the installed shared library, e.g. in a Python 3.10 env, ```export LD_LIBRARY_PATH=`pwd`/.venv/lib/python3.10/site-packages/nvidia/cuda_runtime/lib:$LD_LIBRARY_PATH```
44-
- Python: 3.9 to 3.12
4540

4641
## Getting Started
4742

4843
Getting started guide is available at [here](https://docs.monai.io/projects/monai-deploy-app-sdk/en/stable/getting_started/index.html).
4944

5045
```bash
51-
pip install monai-deploy-app-sdk
46+
pip install monai-deploy-app-sdk # '--pre' to install a pre-release version.
5247

5348
# Clone monai-deploy-app-sdk repository for accessing examples.
5449
git clone https://github.com/Project-MONAI/monai-deploy-app-sdk.git
@@ -58,16 +53,15 @@ cd monai-deploy-app-sdk
5853
pip install matplotlib Pillow scikit-image
5954

6055
# Execute the app locally
61-
python examples/apps/simple_imaging_app/app.py -i examples/apps/simple_imaging_app/input/brain_mr_input.jpg -o output
56+
python examples/apps/simple_imaging_app/app.py -i examples/apps/simple_imaging_app/brain_mr_input.jpg -o output
6257

6358
# Package app (creating MAP Docker image), using `-l DEBUG` option to see progress.
64-
# Also please note that postfix will be added to user supplied tag for identifying CPU architecture and GPU type etc.
65-
monai-deploy package examples/apps/simple_imaging_app -c examples/apps/simple_imaging_app/app.yaml -t simple_app:latest --platform x86_64 -l DEBUG
59+
monai-deploy package examples/apps/simple_imaging_app -c simple_imaging_app/app.yaml -t simple_app:latest --platform x64-workstation -l DEBUG
6660

6761
# Run the app with docker image and an input file locally
6862
## Copy a test input file to 'input' folder
6963
mkdir -p input && rm -rf input/*
70-
cp examples/apps/simple_imaging_app/input/brain_mr_input.jpg input/
64+
cp examples/apps/simple_imaging_app/brain_mr_input.jpg input/
7165
## Launch the app
7266
monai-deploy run simple_app-x64-workstation-dgpu-linux-amd64:latest -i input -o output
7367
```
@@ -86,7 +80,7 @@ YouTube Video (to be updated with the new version):
8680

8781
### [3) Creating a Segmentation app](https://docs.monai.io/projects/monai-deploy-app-sdk/en/stable/getting_started/tutorials/segmentation_app.html)
8882

89-
YouTube Video (demonstrating the previous version of the App SDK):
83+
YouTube Video (to be updated with the new version):
9084

9185
- [Spleen Organ Segmentation - Jupyter Notebook Tutorial](https://www.youtube.com/watch?v=cqDVxzYt9lY)
9286
- [Spleen Organ Segmentation - Deep Dive](https://www.youtube.com/watch?v=nivgfD4pwWE)
@@ -97,16 +91,14 @@ YouTube Video (demonstrating the previous version of the App SDK):
9791

9892
### [Examples](https://docs.monai.io/projects/monai-deploy-app-sdk/en/stable/getting_started/examples.html)
9993

100-
<https://github.com/Project-MONAI/monai-deploy-app-sdk/tree/main/examples/apps> has example apps that you can see, to name but a few
94+
<https://github.com/Project-MONAI/monai-deploy-app-sdk/tree/main/examples/apps> has example apps that you can see.
10195

102-
- simple_imaging_app
10396
- ai_livertumor_seg_app
10497
- ai_spleen_seg_app
10598
- ai_unetr_seg_app
10699
- dicom_series_to_image_app
107100
- mednist_classifier_monaideploy
108-
- ai_remote_infer_app
109-
101+
- simple_imaging_app
110102

111103
## Contributing
112104

docs/requirements.txt

Lines changed: 18 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,12 @@
11
Sphinx==4.1.2
22
sphinx-autobuild==2021.3.14
3-
myst-nb==0.17.2 # this version is fine in python 3.9 and avoids pulling in multiple nbformat packages
4-
myst-parser==0.18.0
5-
lxml_html_clean # needed by myst-nb
3+
myst-parser==0.15.2
4+
numpy>=1.21.6
5+
matplotlib==3.3.4
6+
ipywidgets==7.6.4
7+
pandas==1.1.5
8+
nbclient==0.5.4
9+
myst-nb==0.13.0
610
linkify-it-py==1.0.1 # https://myst-parser.readthedocs.io/en/latest/syntax/optional.html?highlight=linkify#linkify
711
sphinx-togglebutton==0.2.3
812
sphinx-copybutton==0.4.0
@@ -14,7 +18,17 @@ ablog==0.10.19
1418
docutils==0.16 # 0.17 causes error. https://github.com/executablebooks/MyST-Parser/issues/343
1519
pydata_sphinx_theme==0.6.3
1620
sphinxemoji==0.1.8
21+
scipy
22+
scikit-image>=0.17.2
23+
plotly
24+
nibabel>=3.2.1
25+
monai>=1.0.0
1726
torch>=1.12.0
27+
numpy-stl>=2.12.0
28+
trimesh>=3.8.11
29+
pydicom
30+
PyPDF2>=2.11.1
31+
highdicom>=0.18.2
1832
sphinx-autodoc-typehints==1.12.0
1933
sphinxcontrib-applehelp==1.0.2
2034
sphinxcontrib-devhelp==1.0.2
@@ -23,3 +37,4 @@ sphinxcontrib-jsmath==1.0.1
2337
sphinxcontrib-qthelp==1.0.3
2438
sphinxcontrib-serializinghtml==1.1.5
2539
sphinxcontrib-mermaid==0.7.1
40+
lxml_html_clean

docs/source/getting_started/tutorials/mednist_app.md

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -5,9 +5,9 @@ This tutorial demos the process of packaging up a trained model using MONAI Depl
55
## Setup
66

77
```bash
8-
# Create a virtual environment with Python 3.9.
8+
# Create a virtual environment with Python 3.8.
99
# Skip if you are already in a virtual environment.
10-
conda create -n mednist python=3.9 pytorch jupyterlab cudatoolkit=12.2 -c pytorch -c conda-forge
10+
conda create -n mednist python=3.8 pytorch jupyterlab cudatoolkit=12.2 -c pytorch -c conda-forge
1111
conda activate mednist
1212

1313
# Launch JupyterLab if you want to work on Jupyter Notebook
@@ -42,7 +42,7 @@ jupyter-lab
4242
<div style="text-align: center;">
4343
<iframe width="560" height="315" src="https://www.youtube.com/embed/WwjilJFHuU4" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
4444
45-
<p>Video may show the use of previous SDK version.</p>
45+
<p>Video may show the use of previous SDK verson.</p>
4646
</div>
4747
```
4848

@@ -56,8 +56,6 @@ jupyter-lab
5656

5757
## Executing from Shell
5858

59-
**_Note:_** Data files are now access controlled. Please first request permission to access the [shared folder on Google Drive](https://drive.google.com/drive/folders/1EONJsrwbGsS30td0hs8zl4WKjihew1Z3?usp=sharing). Please download zip file, `mednist_classifier_data.zip` in the `medmist_classifier_app` folder, to the same folder as the notebook example.
60-
6159
```bash
6260
# Clone the github project (the latest version of the main branch only)
6361
git clone --branch main --depth 1 https://github.com/Project-MONAI/monai-deploy-app-sdk.git
@@ -69,8 +67,11 @@ pip install monai-deploy-app-sdk
6967

7068
# Download/Extract mednist_classifier_data.zip from https://drive.google.com/file/d/1yJ4P-xMNEfN6lIOq_u6x1eMAq1_MJu-E/view?usp=sharing
7169

70+
# Download mednist_classifier_data.zip
71+
pip install gdown
72+
gdown https://drive.google.com/uc?id=1yJ4P-xMNEfN6lIOq_u6x1eMAq1_MJu-E
7273

73-
# After having downloaded mednist_classifier_data.zip from the web browser or using gdown
74+
# After downloading mednist_classifier_data.zip from the web browser or using gdown
7475
unzip -o mednist_classifier_data.zip
7576

7677
# Install necessary packages required by the app
@@ -98,7 +99,7 @@ monai-deploy package examples/apps/mednist_classifier_monaideploy/mednist_classi
9899
--config examples/apps/mednist_classifier_monaideploy/app.yaml \
99100
--tag mednist_app:latest \
100101
--models mednist_model/classifier.zip \
101-
--platform x86_64 \
102+
--platform x64-workstation \
102103
-l DEBUG
103104

104105
# Note: for AMD GPUs, nvidia-docker is not required, but the dependency of the App SDK, namely Holoscan SDK

docs/source/getting_started/tutorials/monai_bundle_app.md

Lines changed: 9 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -5,9 +5,9 @@ This tutorial shows how to create an organ segmentation application for a PyTorc
55
## Setup
66

77
```bash
8-
# Create a virtual environment with Python 3.9.
8+
# Create a virtual environment with Python 3.8.
99
# Skip if you are already in a virtual environment.
10-
conda create -n monai python=3.9 pytorch torchvision jupyterlab cudatoolkit=12.2 -c pytorch -c conda-forge
10+
conda create -n monai python=3.8 pytorch torchvision jupyterlab cudatoolkit=12.2 -c pytorch -c conda-forge
1111
conda activate monai
1212

1313
# Launch JupyterLab if you want to work on Jupyter Notebook
@@ -32,22 +32,20 @@ jupyter-lab
3232
<div style="text-align: center;">
3333
<iframe width="560" height="315" src="https://www.youtube.com/embed/nivgfD4pwWE" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
3434
35-
<p>Video may show the use of previous SDK version.</p>
35+
<p>Video may show the use of previous SDK verson.</p>
3636
</div>
3737
```
3838

3939
```{raw} html
4040
<p style="text-align: center;">
41-
<a class="sphinx-bs btn text-wrap btn-outline-primary col-md-6 reference external" href="../../_static/notebooks/tutorials/04_monai_bundle_app.ipynb">
41+
<a class="sphinx-bs btn text-wrap btn-outline-primary col-md-6 reference external" href="../../_static/notebooks/tutorials/05_monai_bundle_app.ipynb">
4242
<span>Download 04_monai_bundle_app.ipynb</span>
4343
</a>
4444
</p>
4545
```
4646

4747
## Executing from Shell
4848

49-
**_Note:_** Data files are now access controlled. Please first request permission to access the [shared folder on Google Drive](https://drive.google.com/drive/folders/1EONJsrwbGsS30td0hs8zl4WKjihew1Z3?usp=sharing). Please download zip file, `mednist_classifieai_spleen_seg_bundle_data.zip` in the `ai_spleen_seg_app` folder, to the same folder as the notebook example.
50-
5149
```bash
5250
# Clone the github project (the latest version of main branch only)
5351
git clone --branch main --depth 1 https://github.com/Project-MONAI/monai-deploy-app-sdk.git
@@ -59,7 +57,10 @@ pip install --upgrade monai-deploy-app-sdk
5957

6058
# Download/Extract ai_spleen_bundle_data zip file from https://drive.google.com/file/d/1cJq0iQh_yzYIxVElSlVa141aEmHZADJh/view?usp=sharing
6159

62-
# Download the zip file containing both the model and test data.
60+
# Download the zip file containing both the model and test data
61+
pip install gdown
62+
gdown https://drive.google.com/uc?id=1Uds8mEvdGNYUuvFpTtCQ8gNU97bAPCaQ
63+
6364
# After downloading it using gdown, unzip the zip file saved by gdown and
6465
# copy the model file into a folder structure that is required by CLI Packager
6566
rm -rf dcm
@@ -86,7 +87,7 @@ monai-deploy package examples/apps/ai_spleen_seg_app \
8687
--config examples/apps/ai_spleen_seg_app/app.yaml \
8788
--tag seg_app:latest \
8889
--models spleen_model/model.ts \
89-
--platform x86_64 \
90+
--platform x64-workstation \
9091
-l DEBUG
9192

9293
# Note: for AMD GPUs, nvidia-docker is not required, but the dependency of the App SDK, namely Holoscan SDK

docs/source/getting_started/tutorials/multi_model_app.md

Lines changed: 7 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -7,9 +7,9 @@ The models used in this example are trained with MONAI, and are packaged in the
77
## Setup
88

99
```bash
10-
# Create a virtual environment with Python 3.9.
10+
# Create a virtual environment with Python 3.8.
1111
# Skip if you are already in a virtual environment.
12-
conda create -n monai python=3.9 pytorch torchvision jupyterlab cudatoolkit=12.2 -c pytorch -c conda-forge
12+
conda create -n monai python=3.8 pytorch torchvision jupyterlab cudatoolkit=12.2 -c pytorch -c conda-forge
1313
conda activate monai
1414

1515
# Launch JupyterLab if you want to work on Jupyter Notebook
@@ -34,8 +34,6 @@ jupyter-lab
3434

3535
## Executing from Shell
3636

37-
**_Note:_** Data files are now access controlled. Please first request permission to access the [shared folder on Google Drive](https://drive.google.com/drive/folders/1EONJsrwbGsS30td0hs8zl4WKjihew1Z3?usp=sharing). Please download zip file, `ai_multi_model_bundle_data.zip` in the `ai_multi_ai_app` folder, to the same folder as the notebook example.
38-
3937
```bash
4038
# Clone the github project (the latest version of main branch only)
4139
git clone --branch main --depth 1 https://github.com/Project-MONAI/monai-deploy-app-sdk.git
@@ -45,7 +43,10 @@ cd monai-deploy-app-sdk
4543
# Install monai-deploy-app-sdk package
4644
pip install --upgrade monai-deploy-app-sdk
4745

48-
# Download the zip file containing both the model and test data.
46+
# Download the zip file containing both the model and test data
47+
pip install gdown
48+
gdown https://drive.google.com/uc?id=1llJ4NGNTjY187RLX4MtlmHYhfGxBNWmd
49+
4950
# After downloading it using gdown, unzip the zip file saved by gdown
5051
rm -rf dcm && rm -rf multi_models
5152
unzip -o ai_multi_model_bundle_data.zip
@@ -70,7 +71,7 @@ monai-deploy package examples/apps/ai_multi_ai_app \
7071
--tag multi_model_app:latest \
7172
--config examples/apps/ai_multi_ai_app/app.yaml \
7273
--models multi_models \
73-
--platform x86_64 \
74+
--platform x64-workstation \
7475
-l DEBUG
7576

7677
# Note: for AMD GPUs, nvidia-docker is not required, but the dependency of the App SDK, namely Holoscan SDK

docs/source/getting_started/tutorials/segmentation_app.md

Lines changed: 10 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -7,9 +7,9 @@ Please note that the following steps are for demonstration purpose. The code pul
77
## Setup
88

99
```bash
10-
# Create a virtual environment with Python 3.9.
10+
# Create a virtual environment with Python 3.8.
1111
# Skip if you are already in a virtual environment.
12-
conda create -n monai python=3.9 pytorch torchvision jupyterlab cudatoolkit=12.2 -c pytorch -c conda-forge
12+
conda create -n monai python=3.8 pytorch torchvision jupyterlab cudatoolkit=12.2 -c pytorch -c conda-forge
1313
conda activate monai
1414

1515
# Launch JupyterLab if you want to work on Jupyter Notebook
@@ -33,9 +33,7 @@ jupyter-lab
3333
```
3434

3535
## Executing from Shell
36-
37-
**_Note:_** Data files are now access controlled. Please first request permission to access the [shared folder on Google Drive](https://drive.google.com/drive/folders/1EONJsrwbGsS30td0hs8zl4WKjihew1Z3?usp=sharing). Please download zip file, `ai_spleen_seg_bundle_data.zip` in the `ai_spleen_seg_app` folder, to the same folder as the notebook example.
38-
36+
Please note that this part of the example uses the latest application source code on Github, as well as the corresponding test data.
3937
```bash
4038
# Clone the github project (the latest version of main branch only)
4139
git clone --branch main --depth 1 https://github.com/Project-MONAI/monai-deploy-app-sdk.git
@@ -45,7 +43,12 @@ cd monai-deploy-app-sdk
4543
# Install monai-deploy-app-sdk package
4644
pip install --upgrade monai-deploy-app-sdk
4745

48-
# Download the zip file containing both the model and test data.
46+
# Download/Extract ai_spleen_bundle_data zip file from https://drive.google.com/file/d/1cJq0iQh_yzYIxVElSlVa141aEmHZADJh/view?usp=sharing
47+
48+
# Download the zip file containing both the model and test data
49+
pip install gdown
50+
gdown https://drive.google.com/uc?id=1Uds8mEvdGNYUuvFpTtCQ8gNU97bAPCaQ
51+
4952
# After downloading it using gdown, unzip the zip file saved by gdown and
5053
# copy the model file into a folder structure that is required by CLI Packager
5154
rm -rf dcm
@@ -72,7 +75,7 @@ monai-deploy package examples/apps/ai_spleen_seg_app \
7275
--config examples/apps/ai_spleen_seg_app/app.yaml \
7376
--tag seg_app:latest \
7477
--models spleen_model/model.ts \
75-
--platform x86_64 \
78+
--platform x64-workstation \
7679
-l DEBUG
7780

7881
# Note: for AMD GPUs, nvidia-docker is not required, but the dependency of the App SDK, namely Holoscan SDK

docs/source/getting_started/tutorials/segmentation_clara-viz_app.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,9 +5,9 @@ This tutorial shows how to create an organ segmentation application for a PyTorc
55
## Setup
66

77
```bash
8-
# Create a virtual environment with Python 3.9.
8+
# Create a virtual environment with Python 3.8.
99
# Skip if you are already in a virtual environment.
10-
conda create -n monai python=3.9 pytorch torchvision jupyterlab cudatoolkit=12.2 -c pytorch -c conda-forge
10+
conda create -n monai python=3.8 pytorch torchvision jupyterlab cudatoolkit=12.2 -c pytorch -c conda-forge
1111
conda activate monai
1212

1313
# Launch JupyterLab if you want to work on Jupyter Notebook

docs/source/getting_started/tutorials/simple_app.md

Lines changed: 4 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -5,9 +5,9 @@ This tutorial shows how a simple image processing application can be created wit
55
## Setup
66

77
```bash
8-
# Create a virtual environment with Python 3.9.
8+
# Create a virtual environment with Python 3.8.
99
# Skip if you are already in a virtual environment.
10-
conda create -n monai python=3.9 pytorch torchvision jupyterlab cudatoolkit=12.2 -c pytorch -c conda-forge
10+
conda create -n monai python=3.8 pytorch torchvision jupyterlab cudatoolkit=12.2 -c pytorch -c conda-forge
1111
conda activate monai
1212

1313
# Launch JupyterLab if you want to work on Jupyter Notebook
@@ -53,12 +53,6 @@ pip install scikit-image, setuptools, Pillow, matplotlib
5353
# See the input file exists in the default `input`` folder in the current working directory
5454
ls examples/apps/simple_imaging_app/input/
5555

56-
# Set the environment variable for the input, with relative path in this example.
57-
export HOLOSCAN_INPUT_PATH="./examples/apps/simple_imaging_app/input"
58-
59-
# Env var can also be used to direct the output instead of using the default folder as in the following steps
60-
export HOLOSCAN_OUTPUT_PATH="./output_simple_imaging"
61-
6256
# Local execution of the app with output file in the `output` folder in the current working directory
6357
python examples/apps/simple_imaging_app/app.py
6458

@@ -69,7 +63,7 @@ ls output
6963
# This assumes that nvidia docker is installed in the local machine.
7064
# Please see https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker to install nvidia-docker2.
7165

72-
monai-deploy package examples/apps/simple_imaging_app -c examples/apps/simple_imaging_app/app.yaml -t simple_app:latest --platform x86_64 -l DEBUG
66+
monai-deploy package examples/apps/simple_imaging_app -c examples/apps/simple_imaging_app/app.yaml -t simple_app:latest --platform x64-workstation -l DEBUG
7367

7468
# Show the application and package manifest files of the MONAI Application Package
7569

@@ -78,7 +72,7 @@ docker run --rm simple_app-x64-workstation-dgpu-linux-amd64:latest show
7872

7973
# Run the MAP container image with MONAI Deploy MAP Runner, with a cleaned output folder
8074
rm -rf output
81-
monai-deploy run simple_app-x64-workstation-dgpu-linux-amd64:latest -i $HOLOSCAN_INPUT_PATH -o output
75+
monai-deploy run simple_app-x64-workstation-dgpu-linux-amd64:latest -i input -o output
8276

8377
# Check the output file
8478
ls output

0 commit comments

Comments
 (0)