|
| 1 | +#!/usr/bin/env python |
| 2 | +# coding: utf-8 |
| 3 | + |
| 4 | +import argparse |
| 5 | +import os |
| 6 | +import re |
| 7 | +from collections import defaultdict |
| 8 | +import pandas as pd |
| 9 | +import numpy as np |
| 10 | +import matplotlib.pyplot as plt |
| 11 | + |
| 12 | +parser = argparse.ArgumentParser(description='Script that generates epidemic plots and csv reports.') |
| 13 | + |
| 14 | +parser.add_argument('-l', '--log_file', type=str, required=True, help='Input log file') |
| 15 | +parser.add_argument('-d', '--dim', type=str, default="200,200", help='Dimensions of the cell grid (WIDTH,HEIGHT)') |
| 16 | +parser.add_argument('-i', '--initial_val', default=0, help='Force initial val for the cells') |
| 17 | +parser.add_argument('-c', '--state_changes', action="store_true", help='Log state changes to csv file') |
| 18 | + |
| 19 | +args = parser.parse_args() |
| 20 | + |
| 21 | +log_filename = args.log_file |
| 22 | +dim = list(map(int, args.dim.split(","))) |
| 23 | +initial_val = args.initial_val |
| 24 | +#log_filename = "covid_store.log" |
| 25 | +#dim = 64, 100 |
| 26 | +#initial_val = None |
| 27 | +log_state_changes_to_file = args.state_changes |
| 28 | + |
| 29 | +patt_out_line = ".*Y / (?P<time>[0-9]{2}:[0-9]{2}:[0-9]{2}:[0-9]{3})(?::0)? / [a-zA-Z0-9]+\((?P<x>[0-9]+),(?P<y>[0-9]+)\)\([0-9]+\) / out / +(?P<state>[0-9.-]+) (?:/|para) [a-zA-Z0-9]+\([0-9]+\)" |
| 30 | + |
| 31 | +ID_SUSCEPTIBLE = 0 |
| 32 | +ID_INFECTED = 1 |
| 33 | +ID_SICK = 8 |
| 34 | +ID_RECOVERED = 16 |
| 35 | +ID_DEAD = -1 |
| 36 | +ID_WALL = -10 |
| 37 | + |
| 38 | +COLOR_SUSCEPTIBLE = "#3498db" |
| 39 | +COLOR_INFECTED = "#e74c3c" |
| 40 | +COLOR_SICK = "#f1c40f" |
| 41 | +COLOR_RECOVERED = "#2ecc71" |
| 42 | +COLOR_DEAD = "#9b59b6" |
| 43 | + |
| 44 | + |
| 45 | +def time_str_to_ts(time_str): |
| 46 | + patt_time = "([0-9]{2}):([0-9]{2}):([0-9]{2}):([0-9]{3})" |
| 47 | + match = re.match(patt_time, time_str) |
| 48 | + if not match: |
| 49 | + raise RuntimeError("Error converting simulation time") |
| 50 | + tu = list(map(int, match.groups())) |
| 51 | + return tu[3] + tu[2]*1000 + tu[1]*60000 + tu[0]*3600000 |
| 52 | + |
| 53 | + |
| 54 | +def dict_to_states_row(states_dict): |
| 55 | + row = [] |
| 56 | + row.append(states_dict[ID_SUSCEPTIBLE] if ID_SUSCEPTIBLE in states_dict else 0) |
| 57 | + |
| 58 | + infected_count = 0 |
| 59 | + for state in range(ID_INFECTED, ID_SICK): |
| 60 | + if state in states_dict: |
| 61 | + infected_count += states_dict[state] |
| 62 | + row.append(infected_count) |
| 63 | + |
| 64 | + sick_count = 0 |
| 65 | + for state in range(ID_SICK, ID_RECOVERED): |
| 66 | + if state in states_dict: |
| 67 | + sick_count += states_dict[state] |
| 68 | + row.append(sick_count) |
| 69 | + |
| 70 | + for state in [ID_RECOVERED, ID_DEAD, ID_WALL]: |
| 71 | + row.append(states_dict[state] if state in states_dict else 0) |
| 72 | + return row |
| 73 | + |
| 74 | + |
| 75 | +state_count = defaultdict(int) |
| 76 | +df_rows = [] |
| 77 | +curr_states = [[initial_val] * dim[1] for _ in range(dim[0])] |
| 78 | +if initial_val is not None: |
| 79 | + state_count[initial_val] = dim[0]*dim[1] |
| 80 | + |
| 81 | +if log_state_changes_to_file: |
| 82 | + csv_file = open("state_changing.csv", "w") |
| 83 | + csv_file.write(",".join(("time", "x", "y", "previous_state", "current_state")) + "\n") |
| 84 | +curr_time = None |
| 85 | + |
| 86 | +with open(log_filename, "r") as log_file: |
| 87 | + for line in log_file: |
| 88 | + line = line.strip() |
| 89 | + match = re.match(patt_out_line, line) |
| 90 | + if not match: |
| 91 | + if line.startswith("Mensaje Y"): |
| 92 | + print(line) |
| 93 | + continue |
| 94 | + if curr_time is None: |
| 95 | + curr_time = match.group("time") |
| 96 | + elif curr_time != match.group("time"): |
| 97 | + #print("Changed to " + match.group("time")) |
| 98 | + |
| 99 | + row = [time_str_to_ts(curr_time)] + dict_to_states_row(dict(state_count.items())) |
| 100 | + df_rows.append(row) |
| 101 | + |
| 102 | + curr_time = match.group("time") |
| 103 | + |
| 104 | + x = int(match.group("x")) |
| 105 | + y = int(match.group("y")) |
| 106 | + |
| 107 | + if not curr_states[x][y] is None: |
| 108 | + state_count[curr_states[x][y]] -= 1 |
| 109 | + |
| 110 | + if log_state_changes_to_file: |
| 111 | + csv_file.write((",".join((match.group("time"), match.group("x"), match.group("y"), str(curr_states[x][y]), str(int(float(match.group("state")))))))) |
| 112 | + csv_file.write("\n") |
| 113 | + #print("Time: %s, cell (%s, %s) changing from %d to %s" % (match.group("time"), match.group("x"), match.group("y"), curr_states[x][y], match.group("state"))) |
| 114 | + curr_states[x][y] = int(float(match.group("state"))) |
| 115 | + state_count[int(float(match.group("state")))] += 1 |
| 116 | + |
| 117 | +if log_state_changes_to_file: |
| 118 | + csv_file.close() |
| 119 | + |
| 120 | + |
| 121 | +# ## Dataframe creation and visualization |
| 122 | +columns = ["time", "susceptible", "infected", "sick", "recovered", "dead", "walls"] |
| 123 | +df = pd.DataFrame(df_rows, columns=columns) |
| 124 | +df = df.set_index("time") |
| 125 | + |
| 126 | +total_cells = sum(df.iloc[0,:]) |
| 127 | +population = total_cells - df.iloc[0,:]["walls"] |
| 128 | +print("Total cells: %d, population: %d" % (total_cells, population)) |
| 129 | + |
| 130 | +df_vis = df.copy() |
| 131 | +df_vis = df_vis.drop(["walls"], axis=1) |
| 132 | +df_vis = df_vis.divide(population) |
| 133 | +df_vis.index = df_vis.index.map(lambda x: x/1000) |
| 134 | + |
| 135 | +base_name = os.path.splitext(os.path.basename(log_filename))[0] |
| 136 | + |
| 137 | +col_names = ["infected", "sick", "recovered", "dead"] |
| 138 | +colors=[COLOR_INFECTED, COLOR_SICK, COLOR_RECOVERED, COLOR_DEAD] |
| 139 | + |
| 140 | +x = list(df_vis.index) |
| 141 | +y = np.vstack([df_vis[col] for col in col_names]) |
| 142 | + |
| 143 | +fig, ax = plt.subplots(figsize=(12,7)) |
| 144 | +ax.stackplot(x, y, labels=col_names, colors=colors) |
| 145 | +plt.legend(loc='upper right') |
| 146 | +plt.margins(0,0) |
| 147 | +plt.title('Epidemic percentages (%s)' % base_name) |
| 148 | +#plt.show() |
| 149 | +plt.xlabel("Time (s)") |
| 150 | +plt.ylabel("Population (%)") |
| 151 | +plt.savefig(base_name + "_area.png") |
| 152 | + |
| 153 | + |
| 154 | +fig, ax = plt.subplots(figsize=(12,7)) |
| 155 | +linewidth = 2 |
| 156 | + |
| 157 | +x = list(df_vis.index) |
| 158 | +ax.plot(x, df_vis["susceptible"], label="susceptible", color=COLOR_SUSCEPTIBLE, linewidth=linewidth) |
| 159 | +ax.plot(x, df_vis["infected"], label="infected", color=COLOR_INFECTED, linewidth=linewidth) |
| 160 | +ax.plot(x, df_vis["sick"], label="sick", color=COLOR_SICK, linewidth=linewidth) |
| 161 | +ax.plot(x, df_vis["recovered"], label="recovered", color=COLOR_RECOVERED, linewidth=linewidth) |
| 162 | +ax.plot(x, df_vis["dead"], label="dead", color=COLOR_DEAD, linewidth=linewidth) |
| 163 | +plt.legend(loc='upper right') |
| 164 | +plt.margins(0,0) |
| 165 | +plt.title('Epidemic percentages (%s)' % base_name) |
| 166 | +plt.xlabel("Time (s)") |
| 167 | +plt.ylabel("Population (%)") |
| 168 | +plt.savefig(base_name + "_lines.png") |
| 169 | + |
| 170 | + |
| 171 | +df_nums = df.drop("walls", axis=1) |
| 172 | +df_nums.to_csv(base_name + ".csv") |
| 173 | + |
| 174 | + |
| 175 | +fig, ax = plt.subplots(figsize=(12,7)) |
| 176 | +linewidth = 2 |
| 177 | + |
| 178 | +x = list(df_vis.index) |
| 179 | +ax.plot(x, df_vis["infected"], label="infected", color=COLOR_INFECTED, linewidth=linewidth) |
| 180 | +ax.plot(x, df_vis["sick"], label="sick", color=COLOR_SICK, linewidth=linewidth) |
| 181 | +ax.plot(x, df_vis["recovered"], label="recovered", color=COLOR_RECOVERED, linewidth=linewidth) |
| 182 | +ax.plot(x, df_vis["dead"], label="dead", color=COLOR_DEAD, linewidth=linewidth) |
| 183 | +plt.legend(loc='upper right') |
| 184 | +plt.margins(0,0) |
| 185 | +plt.title('Epidemic percentages (%s)' % base_name) |
| 186 | +plt.xlabel("Time (s)") |
| 187 | +plt.ylabel("Population (%)") |
| 188 | +plt.savefig(base_name + "_lines_nosus.png") |
0 commit comments