-
Notifications
You must be signed in to change notification settings - Fork 20
Open
Description
I am using a SingleCellExperiment object to create a reference.
The object is quite large and I have imported it using zellkonverter using out of memory representation.
The data is public and can be downloaded using these steps from here: https://github.com/AllenInstitute/abc_atlas_access/blob/main/notebooks/WHB_cluster_annotation_tutorial.ipynb
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pathlib import Path
from abc_atlas_access.abc_atlas_cache.abc_project_cache import AbcProjectCache
abc_cache.get_directory_metadata('WHB-taxonomy')
abc_cache.get_directory_metadata('WHB-10Xv3')
abc_cache.get_directory_data('WHB-10Xv3') # ~70 Gb
Then after some preprocessing to find the classes I wanted a subset the dataset I tried to make a reference using:
h5ad_file <- "./vol_data/_data/expression_matrices/WHB-10Xv3/20240330/WHB-10Xv3-Nonneurons-log2.h5ad"
sce <- zellkonverter::readH5AD(h5ad_file, use_hdf5 = TRUE)
identical(colnames(sce), cell_extended$cell_label)
colData(sce)$supercluster <- cell_extended$supercluster
names(assays(sce)) <- "logcounts"
trained <- trainSingleR(sce, labels = sce$supercluster, test.genes = rownames(sce), aggr.ref = TRUE)
Error: std::bad_alloc
How could I trace what could cause the error?
Thank you in advance!
Metadata
Metadata
Assignees
Labels
No labels