|
| 1 | +"""Code reviewer Coach Wizard. |
| 2 | +
|
| 3 | +Auto-generated by Empathy Framework Scaffolding |
| 4 | +Methodology: pattern-compose |
| 5 | +Domain: software |
| 6 | +Patterns: empathy_level, user_guidance, code_analysis_input, risk_assessment, prediction, config_validation |
| 7 | +Generated: 2026-01-05T20:15:45.111917 |
| 8 | +""" |
| 9 | + |
| 10 | +import logging |
| 11 | +from typing import Any |
| 12 | + |
| 13 | +from fastapi import APIRouter, HTTPException |
| 14 | +from pydantic import BaseModel, Field |
| 15 | + |
| 16 | +from patterns import get_pattern_registry |
| 17 | + |
| 18 | +logger = logging.getLogger(__name__) |
| 19 | + |
| 20 | +router = APIRouter(prefix="/code_reviewer", tags=["code_reviewer"]) |
| 21 | + |
| 22 | +# Pattern registry for recommendations |
| 23 | +registry = get_pattern_registry() |
| 24 | + |
| 25 | + |
| 26 | +# Request/Response Models |
| 27 | +class AnalysisRequest(BaseModel): |
| 28 | + """Request to analyze code.""" |
| 29 | + |
| 30 | + code: str = Field(..., description="Code to analyze") |
| 31 | + context: dict[str, Any] = Field(default_factory=dict, description="Additional context") |
| 32 | + include_risk_assessment: bool = Field(default=True, description="Include risk analysis") |
| 33 | + |
| 34 | + |
| 35 | +class AnalysisResult(BaseModel): |
| 36 | + """Analysis result.""" |
| 37 | + |
| 38 | + wizard_id: str |
| 39 | + analysis: dict[str, Any] |
| 40 | + risk_assessment: dict[str, Any] | None = None |
| 41 | + predictions: list[dict[str, Any]] = Field(default_factory=list) |
| 42 | + |
| 43 | + |
| 44 | +# In-memory session storage (replace with Redis in production) |
| 45 | +sessions: dict[str, dict[str, Any]] = {} |
| 46 | + |
| 47 | + |
| 48 | +@router.post("/analyze", response_model=AnalysisResult) |
| 49 | +async def analyze_code(request: AnalysisRequest) -> AnalysisResult: |
| 50 | + """Analyze code and provide recommendations. |
| 51 | +
|
| 52 | + Args: |
| 53 | + request: Analysis request with code and context |
| 54 | +
|
| 55 | + Returns: |
| 56 | + Analysis results with recommendations |
| 57 | +
|
| 58 | + Raises: |
| 59 | + HTTPException: If analysis fails |
| 60 | + """ |
| 61 | + try: |
| 62 | + # Create session |
| 63 | + wizard_id = f"code_reviewer_{len(sessions) + 1}" |
| 64 | + |
| 65 | + # Perform code analysis |
| 66 | + analysis = await _analyze_code(request.code, request.context) |
| 67 | + |
| 68 | + result = AnalysisResult( |
| 69 | + wizard_id=wizard_id, |
| 70 | + analysis=analysis, |
| 71 | + ) |
| 72 | + |
| 73 | + # Perform risk assessment |
| 74 | + if request.include_risk_assessment: |
| 75 | + risk_assessment = await _assess_risk(analysis) |
| 76 | + result.risk_assessment = risk_assessment |
| 77 | + |
| 78 | + # Generate predictions |
| 79 | + predictions = await _generate_predictions(analysis) |
| 80 | + result.predictions = predictions |
| 81 | + |
| 82 | + # Store session |
| 83 | + sessions[wizard_id] = { |
| 84 | + "wizard_id": wizard_id, |
| 85 | + "code": request.code, |
| 86 | + "analysis": analysis, |
| 87 | + "result": result.model_dump(), |
| 88 | + } |
| 89 | + |
| 90 | + logger.info(f"Analysis complete for {wizard_id}") |
| 91 | + return result |
| 92 | + |
| 93 | + except Exception as e: |
| 94 | + logger.exception(f"Analysis failed: {e}") |
| 95 | + raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}") |
| 96 | + |
| 97 | + |
| 98 | +@router.get("/{wizard_id}/report", response_model=dict[str, Any]) |
| 99 | +async def get_report(wizard_id: str) -> dict[str, Any]: |
| 100 | + """Get analysis report. |
| 101 | +
|
| 102 | + Args: |
| 103 | + wizard_id: Wizard session ID |
| 104 | +
|
| 105 | + Returns: |
| 106 | + Complete analysis report |
| 107 | +
|
| 108 | + Raises: |
| 109 | + HTTPException: If session not found |
| 110 | + """ |
| 111 | + if wizard_id not in sessions: |
| 112 | + raise HTTPException(status_code=404, detail="Session not found") |
| 113 | + |
| 114 | + session = sessions[wizard_id] |
| 115 | + return { |
| 116 | + "wizard_id": wizard_id, |
| 117 | + "analysis": session["analysis"], |
| 118 | + "result": session["result"], |
| 119 | + } |
| 120 | + |
| 121 | + |
| 122 | +# Helper functions |
| 123 | +async def _analyze_code(code: str, context: dict[str, Any]) -> dict[str, Any]: |
| 124 | + """Analyze code (placeholder - implement actual analysis). |
| 125 | +
|
| 126 | + Args: |
| 127 | + code: Code to analyze |
| 128 | + context: Additional context |
| 129 | +
|
| 130 | + Returns: |
| 131 | + Analysis results |
| 132 | + """ |
| 133 | + # TODO: Implement actual code analysis |
| 134 | + return { |
| 135 | + "lines_of_code": len(code.split("\n")), |
| 136 | + "complexity": "medium", |
| 137 | + "issues_found": 0, |
| 138 | + "context": context, |
| 139 | + } |
| 140 | + |
| 141 | + |
| 142 | +async def _assess_risk(analysis: dict[str, Any]) -> dict[str, Any]: |
| 143 | + """Assess risk based on analysis. |
| 144 | +
|
| 145 | + Args: |
| 146 | + analysis: Code analysis results |
| 147 | +
|
| 148 | + Returns: |
| 149 | + Risk assessment |
| 150 | + """ |
| 151 | + # TODO: Implement actual risk assessment |
| 152 | + return { |
| 153 | + "alert_level": "LOW", |
| 154 | + "risk_score": 0.2, |
| 155 | + "by_risk_level": { |
| 156 | + "critical": 0, |
| 157 | + "high": 0, |
| 158 | + "medium": 0, |
| 159 | + "low": 0, |
| 160 | + }, |
| 161 | + } |
| 162 | + |
| 163 | + |
| 164 | +async def _generate_predictions(analysis: dict[str, Any]) -> list[dict[str, Any]]: |
| 165 | + """Generate predictions about future issues. |
| 166 | +
|
| 167 | + Args: |
| 168 | + analysis: Code analysis results |
| 169 | +
|
| 170 | + Returns: |
| 171 | + List of predictions |
| 172 | + """ |
| 173 | + # TODO: Implement actual predictions |
| 174 | + return [ |
| 175 | + { |
| 176 | + "type": "performance", |
| 177 | + "confidence": 0.8, |
| 178 | + "description": "May experience performance issues with large datasets", |
| 179 | + } |
| 180 | + ] |
0 commit comments