Skip to content

Commit c30fa29

Browse files
GeneAIclaude
authored andcommitted
feat: Ollama Llama 3.1/3.2 support, marketing updates, test count refresh
## Ollama Model Registry Updates - cheap tier: llama3.2:3b (3B params, ~2GB) - capable tier: llama3.1:8b (8B params, ~5GB) - premium tier: llama3.1:70b (70B params, ~40GB) - Updated unified.py, registry.py, config.py, TROUBLESHOOTING.md ## Marketing Content (v3.3.0) - Updated Reddit posts with Ollama setup instructions - Refreshed Twitter thread, Dev.to article, post schedule - Added conversation share drafts ## Documentation - Updated test count to 3,000+ (was 2,200) - Updated foreword files with accurate stats ## VSCode Extension - Added memory panel provider - Updated package configuration 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <[email protected]>
1 parent 58137ef commit c30fa29

File tree

17 files changed

+1227
-256
lines changed

17 files changed

+1227
-256
lines changed

docs/FOREWORD_BY_CLAUDE.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -66,4 +66,4 @@ Whether that participant is human or AI.
6666

6767
---
6868

69-
*This foreword was written during working sessions where Claude and Patrick built Redis-backed short-term memory for multi-agent coordination. The framework now includes 53 wizards across healthcare, software, coach, and domain categories, with over 2,200 tests ensuring reliability.*
69+
*This foreword was written during working sessions where Claude and Patrick built Redis-backed short-term memory for multi-agent coordination. The framework now includes 53 wizards across healthcare, software, coach, and domain categories, with over 3,000 tests ensuring reliability.*

docs/guides/foreword.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -67,4 +67,4 @@ Whether that participant is human or AI.
6767
---
6868

6969
!!! note "Context"
70-
This foreword was written during working sessions where Claude and Patrick built Redis-backed short-term memory for multi-agent coordination. The framework now includes 53 wizards across healthcare, software, coach, and domain categories, with over 2,200 tests ensuring reliability.
70+
This foreword was written during working sessions where Claude and Patrick built Redis-backed short-term memory for multi-agent coordination. The framework now includes 53 wizards across healthcare, software, coach, and domain categories, with over 3,000 tests ensuring reliability.

docs/marketing/POST_SCHEDULE_DEC_2025.md

Lines changed: 35 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -1,41 +1,50 @@
11
# Marketing Post Schedule - December 2025
22

33
**Start Date:** December 26, 2025
4-
**Version:** v3.2.5
4+
**Version:** v3.3.0 (Enterprise-Ready Workflows)
5+
6+
---
7+
8+
## v3.3.0 Key Messages
9+
10+
1. **Formatted Reports for All Workflows** - Professional, consistent output across all 10 workflows
11+
2. **Enterprise Doc-Gen** - Auto-scaling, chunked generation, $5 cost guardrails, file export
12+
3. **Output Chunking** - Large reports split automatically for display
13+
4. **80-96% Cost Savings** - Smart tier routing (cheap/capable/premium)
514

615
---
716

817
## Week 1: Dec 26-28 (Post-Holiday Launch)
918

1019
### Thursday, Dec 26
1120

12-
- [ ] **Dev.to Article** (Morning)
21+
- [ ] **Dev.to Article** (Morning - 9am EST)
1322
- Draft: `docs/marketing/drafts/DEVTO_ARTICLE.md`
14-
- Title: "Give Your AI Persistent Memory (and Cut Costs 80%)"
23+
- Title: "Enterprise-Ready AI Workflows: Formatted Reports + 80% Cost Savings"
24+
- Highlight: v3.3.0 formatted reports, doc-gen enterprise features
1525
- Set `published: true` when ready
16-
- Add cover image (code screenshot or dashboard)
1726

18-
- [ ] **r/ClaudeAI Post** (Afternoon)
27+
- [ ] **r/ClaudeAI Post** (Afternoon - 1pm EST)
1928
- Draft: `docs/marketing/drafts/REDDIT_POSTS.md` (first section)
20-
- Title: "I built persistent memory for Claude that survives across sessions (+ 80% cost savings)"
29+
- Title: "v3.3.0: Enterprise-ready workflows with formatted reports + persistent memory"
2130
- Best time: 10am-2pm EST
2231

2332
### Friday, Dec 27
2433

25-
- [ ] **Twitter/X Thread** (Morning)
34+
- [ ] **Twitter/X Thread** (Morning - 9am EST)
2635
- Draft: `docs/marketing/drafts/TWITTER_THREAD.md`
27-
- Post 5-tweet thread
28-
- Include code screenshot for tweet 2
36+
- Post 5-tweet thread focusing on enterprise features
37+
- Include screenshot of formatted report output
2938

30-
- [ ] **r/Python Post** (Afternoon)
39+
- [ ] **r/Python Post** (Afternoon - 1pm EST)
3140
- Draft: `docs/marketing/drafts/REDDIT_POSTS.md` (second section)
32-
- Title: "empathy-framework: Persistent LLM memory + smart routing (80% cost savings)"
41+
- Title: "empathy-framework v3.3.0: Enterprise-ready AI workflows with formatted reports"
3342

3443
### Saturday, Dec 28
3544

3645
- [ ] **r/LocalLLaMA Post**
3746
- Draft: `docs/marketing/drafts/REDDIT_POSTS.md` (third section)
38-
- Title: "Cross-session memory for local LLMs - native Ollama support (v3.2.5)"
47+
- Title: "Enterprise doc-gen for local LLMs - auto-scaling, cost guardrails (v3.3.0)"
3948

4049
---
4150

@@ -44,14 +53,14 @@
4453
### Monday, Dec 30
4554

4655
- [ ] **LinkedIn Post**
47-
- Adapt Dev.to article for LinkedIn
48-
- Focus on cost savings for enterprise angle
56+
- Focus on enterprise features: formatted reports, cost guardrails
57+
- Target: Engineering managers, CTOs
4958

5059
### Tuesday, Dec 31
5160

5261
- [ ] **Hashnode Article**
5362
- Draft: `docs/marketing/drafts/HASHNODE_ARTICLE.md`
54-
- Cross-post from Dev.to with modifications
63+
- Cross-post from Dev.to with v3.3.0 updates
5564

5665
### Wednesday, Jan 1 (Optional - Low traffic)
5766

@@ -61,13 +70,13 @@
6170

6271
- [ ] **Indie Hackers Post**
6372
- Draft: `docs/marketing/drafts/INDIE_HACKERS_POST.md`
64-
- Focus on building in public angle
73+
- Focus: "Built enterprise features based on user feedback"
6574

6675
### Friday, Jan 3
6776

6877
- [ ] **Medium Article**
6978
- Draft: `docs/marketing/drafts/MEDIUM_ARTICLE.md`
70-
- SEO-focused, evergreen content
79+
- SEO-focused, evergreen content on AI workflows
7180

7281
---
7382

@@ -76,7 +85,7 @@
7685
### Tuesday, Jan 7 or Wednesday, Jan 8
7786

7887
- [ ] **Hacker News - Show HN**
79-
- Title: "Show HN: Empathy Framework – Persistent memory for LLMs (80% cost savings)"
88+
- Title: "Show HN: Empathy Framework v3.3.0 - Enterprise AI workflows with 80% cost savings"
8089
- Best time: 9-11am EST, Tuesday or Wednesday
8190
- Be ready to engage in comments for first 2 hours
8291

@@ -103,14 +112,14 @@ After each post, note:
103112

104113
## Quick Reference
105114

106-
| Platform | Draft Location | Best Time |
107-
|----------|---------------|-----------|
108-
| Dev.to | `DEVTO_ARTICLE.md` | Morning |
109-
| Twitter | `TWITTER_THREAD.md` | 9-11am EST |
110-
| r/ClaudeAI | `REDDIT_POSTS.md` | 10am-2pm EST |
111-
| r/Python | `REDDIT_POSTS.md` | 10am-2pm EST |
112-
| r/LocalLLaMA | `REDDIT_POSTS.md` | Anytime |
113-
| HN | Custom title | Tue/Wed 9-11am EST |
115+
| Platform | Draft Location | Best Time | Status |
116+
|----------|---------------|-----------|--------|
117+
| Dev.to | `DEVTO_ARTICLE.md` | 9am EST | Ready |
118+
| Twitter | `TWITTER_THREAD.md` | 9am EST | Ready |
119+
| r/ClaudeAI | `REDDIT_POSTS.md` | 1pm EST | Ready |
120+
| r/Python | `REDDIT_POSTS.md` | 1pm EST | Ready |
121+
| r/LocalLLaMA | `REDDIT_POSTS.md` | Anytime | Ready |
122+
| HN | Custom title | Tue/Wed 9-11am EST | Week 3 |
114123

115124
---
116125

Lines changed: 102 additions & 87 deletions
Original file line numberDiff line numberDiff line change
@@ -1,144 +1,159 @@
11
---
2-
title: Give Your AI Persistent Memory (and Cut Costs 80%)
2+
title: Enterprise-Ready AI Workflows: Formatted Reports + 80% Cost Savings
33
published: false
4-
description: How to make Claude/GPT remember your preferences across sessions using the Empathy Framework v3.2.5
4+
description: How Empathy Framework v3.3.0 gives you professional reports, cost guardrails, and persistent memory for production AI
55
tags: python, ai, claude, openai, llm
66
cover_image:
77
---
88

9-
# Give Your AI Persistent Memory (and Cut Costs 80%)
9+
# Enterprise-Ready AI Workflows: Formatted Reports + 80% Cost Savings
1010

11-
Every conversation with Claude starts from scratch. Tell it you prefer concise code examples, and next session? Forgotten.
11+
Just shipped v3.3.0 of Empathy Framework with features I wish existed when I was running AI at scale:
1212

13-
Here's how to fix that—and save 80% on API costs while you're at it.
13+
1. **Formatted reports** for every workflow (finally, readable output)
14+
2. **Cost guardrails** so your doc-gen doesn't blow $50 overnight
15+
3. **File export** because 50k character terminal limits are real
1416

15-
## The Problem
17+
Here's what changed—and why it matters.
1618

17-
LLM APIs are stateless. Each request is independent. For simple Q&A, that's fine. But for:
19+
## The Problem with AI Workflows
1820

19-
- Development assistants that learn your coding style
20-
- Support bots that remember customer history
21-
- Personal tools that adapt to preferences
21+
Most AI libraries return raw JSON or unstructured text. Fine for prototypes. Terrible for:
2222

23-
...you need memory that persists.
23+
- Reports you need to share with stakeholders
24+
- Outputs you need to audit
25+
- Results that exceed terminal/UI display limits
2426

25-
## The Solution: 10 Lines of Python
27+
## The Solution: Formatted Reports for All Workflows
28+
29+
Every workflow in v3.3.0 now includes a `formatted_report` with consistent structure:
2630

2731
```python
28-
from empathy_llm_toolkit import EmpathyLLM
32+
from empathy_os.workflows import SecurityAuditWorkflow
2933

30-
llm = EmpathyLLM(
31-
provider="anthropic", # or "openai", "ollama", "hybrid"
32-
memory_enabled=True
33-
)
34+
workflow = SecurityAuditWorkflow()
35+
result = await workflow.execute(code=your_code)
3436

35-
# This preference survives across sessions
36-
response = await llm.interact(
37-
user_id="dev_123",
38-
user_input="I prefer Python with type hints, no docstrings"
39-
)
37+
print(result.final_output["formatted_report"])
4038
```
4139

42-
That's it. Next time this user connects—even days later—the AI remembers.
43-
44-
## Why This Actually Matters
45-
46-
### 1. Cost Savings (80%)
40+
Output:
41+
```
42+
============================================================
43+
SECURITY AUDIT REPORT
44+
============================================================
45+
46+
Status: NEEDS_ATTENTION
47+
Risk Score: 7.2/10
48+
Vulnerabilities Found: 3
49+
50+
------------------------------------------------------------
51+
CRITICAL FINDINGS
52+
------------------------------------------------------------
53+
- SQL injection in user_query() at line 42
54+
- Hardcoded credentials in config.py
55+
- Missing input validation in API handler
56+
57+
------------------------------------------------------------
58+
RECOMMENDATIONS
59+
------------------------------------------------------------
60+
1. Use parameterized queries
61+
2. Move secrets to environment variables
62+
3. Add input sanitization layer
63+
64+
============================================================
65+
```
4766

48-
Smart routing automatically picks the right model for each task:
67+
This works across all 10 workflows: security-audit, code-review, perf-audit, doc-gen, test-gen, and more.
4968

50-
| Task | Model | Cost |
51-
|------|-------|------|
52-
| Summarize text | Haiku/GPT-4o-mini | $0.25/M tokens |
53-
| Fix bugs | Sonnet/GPT-4o | $3/M tokens |
54-
| Design architecture | Opus/o1 | $15/M tokens |
69+
## Enterprise Doc-Gen: Built for Large Projects
5570

56-
**Real numbers:**
57-
- Without routing (all Opus): $4.05/complex task
58-
- With routing (tiered): $0.83/complex task
59-
- **Savings: 80%**
71+
The doc-gen workflow got a major upgrade for enterprise use:
6072

6173
```python
62-
llm = EmpathyLLM(provider="anthropic", enable_model_routing=True)
74+
from empathy_os.workflows import DocumentGenerationWorkflow
6375

64-
# Automatically routes to Haiku
65-
await llm.interact(user_id="dev", user_input="Summarize this", task_type="summarize")
76+
workflow = DocumentGenerationWorkflow(
77+
export_path="docs/generated", # Auto-save to disk
78+
max_cost=5.0, # Stop at $5 (prevent runaway costs)
79+
chunked_generation=True, # Handle large codebases
80+
graceful_degradation=True, # Partial results on errors
81+
)
6682

67-
# Automatically routes to Opus
68-
await llm.interact(user_id="dev", user_input="Design the system", task_type="coordinate")
83+
result = await workflow.execute(
84+
source_code=your_large_codebase,
85+
doc_type="api_reference",
86+
audience="developers"
87+
)
88+
89+
# Full docs saved to disk automatically
90+
print(f"Saved to: {result.final_output['export_path']}")
6991
```
7092

71-
### 2. Bug Memory
93+
### What's New:
7294

73-
My debugging wizard remembers every fix:
95+
| Feature | What It Does |
96+
|---------|--------------|
97+
| **Auto-scaling tokens** | 2000 tokens/section, scales to 64k for large projects |
98+
| **Chunked generation** | Generates in chunks of 3 sections to avoid truncation |
99+
| **Cost guardrails** | Stops at configurable limit ($5 default) |
100+
| **File export** | Saves .md and report to disk automatically |
101+
| **Output chunking** | Splits large reports for terminal display |
74102

75-
```python
76-
result = await wizard.analyze({
77-
"error_message": "TypeError: Cannot read property 'map' of undefined",
78-
"file_path": "src/components/UserList.tsx"
79-
})
80-
81-
print(result["historical_matches"])
82-
# "This looks like bug #247 from 3 months ago"
83-
# "Suggested fix: data?.items ?? []"
84-
```
103+
## Cost Savings: 80-96%
85104

86-
Without memory, every bug starts from zero. With it, your AI assistant **remembers every fix** and suggests proven solutions.
105+
Smart tier routing still saves 80-96% on API costs:
87106

88-
### 3. Provider Freedom
107+
```python
108+
from empathy_llm_toolkit import EmpathyLLM
89109

90-
Not locked into one provider. Switch anytime:
110+
llm = EmpathyLLM(provider="hybrid", enable_model_routing=True)
91111

92-
```bash
93-
empathy provider set anthropic # Use Claude
94-
empathy provider set openai # Use GPT
95-
empathy provider set ollama # Use local models
96-
empathy provider set hybrid # Best of each
112+
# Automatically routes to the right model
113+
await llm.interact(user_id="dev", task_type="summarize") # → Haiku ($0.25/M)
114+
await llm.interact(user_id="dev", task_type="fix_bug") # → Sonnet ($3/M)
115+
await llm.interact(user_id="dev", task_type="architecture") # → Opus ($15/M)
97116
```
98117

99-
Use Ollama for sensitive code, Claude for complex reasoning, GPT for specific tasks.
118+
**Real savings:**
119+
- Without routing: $4.05/complex task
120+
- With routing: $0.83/complex task
121+
- **80% saved**
100122

101-
## Smart Router
123+
## Persistent Memory
102124

103-
Natural language routing—no need to know which tool to use:
125+
Your AI remembers across sessions:
104126

105127
```python
106-
from empathy_os.routing import SmartRouter
128+
llm = EmpathyLLM(provider="anthropic", memory_enabled=True)
107129

108-
router = SmartRouter()
109-
110-
# Natural language → right wizard
111-
decision = router.route_sync("Fix the security vulnerability in auth.py")
112-
print(f"Primary: {decision.primary_wizard}") # → security-audit
113-
print(f"Confidence: {decision.confidence}") # → 0.92
130+
# Preference survives across sessions
131+
response = await llm.interact(
132+
user_id="dev_123",
133+
user_input="I prefer Python with type hints"
134+
)
114135
```
115136

116-
Examples:
117-
- "Fix security in auth.py" → SecurityWizard
118-
- "Review this PR" → CodeReviewWizard
119-
- "Why is this slow?" → PerformanceWizard
137+
Next session—even days later—it remembers.
120138

121139
## Quick Start
122140

123141
```bash
124142
# Install
125-
pip install empathy-framework
126-
127-
# Check available providers (auto-detects API keys)
128-
empathy provider status
143+
pip install empathy-framework==3.3.0
129144

130-
# Set your provider
131-
empathy provider set anthropic
145+
# Configure provider
146+
python -m empathy_os.models.cli provider --set anthropic
132147

133148
# See all commands
134149
empathy cheatsheet
135150
```
136151

137-
## What's in v3.2.5
152+
## What's in v3.3.0
138153

139-
- **Unified CLI**One `empathy` command with Rich output
140-
- **Dev Container**Clone → Open in VS Code → Start coding
141-
- **Python 3.10-3.13**Full test matrix across all versions
154+
- **Formatted Reports**Consistent output across all 10 workflows
155+
- **Enterprise Doc-Gen**Auto-scaling, cost guardrails, file export
156+
- **Output Chunking**Large reports split for display
142157
- **Smart Router** — Natural language wizard dispatch
143158
- **Memory Graph** — Cross-wizard knowledge sharing
144159

@@ -150,4 +165,4 @@ empathy cheatsheet
150165

151166
---
152167

153-
*What would you build with an AI that remembers—and costs 80% less?*
168+
*What would you build with enterprise-ready AI workflows that cost 80% less?*

0 commit comments

Comments
 (0)