11---
2- title : Give Claude Persistent Memory in 10 Lines of Python (Now with 80% Cost Savings )
2+ title : Give Your AI Persistent Memory (and Cut Costs 80%)
33published : false
4- description : How to make Claude remember your preferences across sessions using the Empathy Framework v3.0.1
5- tags : python, ai, claude, anthropic, openai
4+ description : How to make Claude/GPT remember your preferences across sessions using the Empathy Framework v3.2.5
5+ tags : python, ai, claude, openai, llm
66cover_image :
77---
88
9- # Give Claude Persistent Memory in 10 Lines of Python
9+ # Give Your AI Persistent Memory (and Cut Costs 80%)
1010
11- Every conversation with Claude starts from scratch. Tell it you prefer concise code examples, and next session? It's forgotten .
11+ Every conversation with Claude starts from scratch. Tell it you prefer concise code examples, and next session? Forgotten .
1212
13- Here's how to fix that—plus save 80% on API costs with v3.0.0's multi-provider system .
13+ Here's how to fix that—and save 80% on API costs while you're at it .
1414
1515## The Problem
1616
17- Claude's API is stateless. Each request is independent. For simple Q&A, that's fine. But for:
17+ LLM APIs are stateless. Each request is independent. For simple Q&A, that's fine. But for:
1818
1919- Development assistants that learn your coding style
20- - Customer support that remembers history
20+ - Support bots that remember customer history
2121- Personal tools that adapt to preferences
2222
2323...you need memory that persists.
2424
25- ## The Solution
25+ ## The Solution: 10 Lines of Python
2626
2727``` python
2828from empathy_llm_toolkit import EmpathyLLM
2929
3030llm = EmpathyLLM(
3131 provider = " anthropic" , # or "openai", "ollama", "hybrid"
32- api_key = " your-key" ,
3332 memory_enabled = True
3433)
3534
@@ -40,158 +39,115 @@ response = await llm.interact(
4039)
4140```
4241
43- That's it. Next time this user connects—even days later—Claude remembers.
42+ That's it. Next time this user connects—even days later—the AI remembers.
4443
45- ## New in v3.0.1: Multi-Provider Support + XML-Enhanced Prompts
44+ ## Why This Actually Matters
4645
47- Choose your provider—or mix them:
46+ ### 1. Cost Savings (80%)
4847
49- ``` bash
50- # Check available providers (auto-detects API keys)
51- python -m empathy_os.models.cli provider status
48+ Smart routing automatically picks the right model for each task:
5249
53- # Switch providers
54- python -m empathy_os.models.cli provider set openai
50+ | Task | Model | Cost |
51+ | ------| -------| ------|
52+ | Summarize text | Haiku/GPT-4o-mini | $0.25/M tokens |
53+ | Fix bugs | Sonnet/GPT-4o | $3/M tokens |
54+ | Design architecture | Opus/o1 | $15/M tokens |
5555
56- # Enable hybrid mode (best model from each provider)
57- python -m empathy_os.models.cli provider set hybrid
58- ```
56+ ** Real numbers:**
57+ - Without routing (all Opus): $4.05/complex task
58+ - With routing (tiered): $0.83/complex task
59+ - ** Savings: 80%**
5960
60- Supported providers:
61- - ** Anthropic** — Claude (Haiku/Sonnet/Opus)
62- - ** OpenAI** — GPT (GPT-4o-mini/GPT-4o/o1)
63- - ** Ollama** — Local models (Llama 3.2)
64- - ** Hybrid** — Best of each provider per tier
61+ ``` python
62+ llm = EmpathyLLM(provider = " anthropic" , enable_model_routing = True )
6563
66- ## Real-World Example: Debugging Wizard
64+ # Automatically routes to Haiku
65+ await llm.interact(user_id = " dev" , user_input = " Summarize this" , task_type = " summarize" )
6766
68- Here's what persistent memory enables. I built a debugging wizard that correlates current bugs with historical patterns:
67+ # Automatically routes to Opus
68+ await llm.interact(user_id = " dev" , user_input = " Design the system" , task_type = " coordinate" )
69+ ```
6970
70- ``` python
71- from empathy_software_plugin.wizards import MemoryEnhancedDebuggingWizard
71+ ### 2. Bug Memory
7272
73- wizard = MemoryEnhancedDebuggingWizard()
73+ My debugging wizard remembers every fix:
7474
75+ ``` python
7576result = await wizard.analyze({
7677 " error_message" : " TypeError: Cannot read property 'map' of undefined" ,
7778 " file_path" : " src/components/UserList.tsx"
7879})
7980
8081print (result[" historical_matches" ])
81- # Shows: "This looks like bug #247 from 3 months ago"
82- # Suggests: "Add null check: data?.items ?? []"
83- # Time saved: ~12 minutes
82+ # "This looks like bug #247 from 3 months ago"
83+ # "Suggested fix: data?.items ?? []"
8484```
8585
86- Without persistent memory, every bug starts from zero. With it, your AI assistant ** remembers every fix** and suggests proven solutions.
86+ Without memory, every bug starts from zero. With it, your AI assistant ** remembers every fix** and suggests proven solutions.
8787
88- ## How It Works
88+ ### 3. Provider Freedom
8989
90- The [ Empathy Framework ] ( https://github.com/Smart-AI-Memory/empathy-framework ) stores user context in a memory layer that :
90+ Not locked into one provider. Switch anytime :
9191
92- 1 . ** Persists across sessions** - Preferences survive restarts
93- 2 . ** Scopes by user** - Each user has isolated memory
94- 3 . ** Supports projects** - Different contexts for different work
95- 4 . ** Includes privacy controls** - Clear memory, forget specific info
92+ ``` bash
93+ empathy provider set anthropic # Use Claude
94+ empathy provider set openai # Use GPT
95+ empathy provider set ollama # Use local models
96+ empathy provider set hybrid # Best of each
97+ ```
9698
97- ## Five Levels of Empathy
99+ Use Ollama for sensitive code, Claude for complex reasoning, GPT for specific tasks.
98100
99- The framework implements five collaboration levels:
101+ ## Smart Router
100102
101- | Level | Behavior | Example |
102- | -------| ----------| ---------|
103- | 1 - Reactive | Standard request-response | Basic Q&A |
104- | 2 - Informed | Uses stored preferences | Remembers coding style |
105- | 3 - Proactive | Offers help when stuck | Detects struggle patterns |
106- | 4 - Anticipatory | Predicts needs | "This will break in 3 days" |
107- | 5 - Collaborative | Full partnership | Cross-domain learning |
103+ Natural language routing—no need to know which tool to use:
108104
109105``` python
110- # Level 4: Claude predicts and warns
111- response = await llm.interact(
112- user_id = " dev_123" ,
113- user_input = " Starting a new FastAPI project" ,
114- empathy_level = 4
115- )
116- # Might warn: "You had async issues last time—here's a pattern that worked"
117- ```
118-
119- ## Privacy Built In
106+ from empathy_os.routing import SmartRouter
120107
121- ``` python
122- # Clear all memory
123- await llm.clear_memory(user_id = " dev_123" )
108+ router = SmartRouter()
124109
125- # Forget specific information
126- await llm.forget(user_id = " dev_123" , pattern = " email" )
110+ # Natural language → right wizard
111+ decision = router.route_sync(" Fix the security vulnerability in auth.py" )
112+ print (f " Primary: { decision.primary_wizard} " ) # → security-audit
113+ print (f " Confidence: { decision.confidence} " ) # → 0.92
127114```
128115
129- ## Results
130-
131- On a real codebase (364 debt items, 81 security findings):
132-
133- - ** Bug correlation** : 100% similarity matching with proven fixes
134- - ** Security noise reduction** : 84% (81 → 13 findings after learning)
135- - ** Tech debt tracking** : Trajectory predicts 2x growth in 170 days
116+ Examples:
117+ - "Fix security in auth.py" → SecurityWizard
118+ - "Review this PR" → CodeReviewWizard
119+ - "Why is this slow?" → PerformanceWizard
136120
137- ## v3.0.1: Smart Model Routing (80% Cost Savings)
121+ ## Quick Start
138122
139- Why pay Opus prices for simple tasks? The ModelRouter automatically picks the right model across any provider.
140-
141- * API users save money. Subscription users (Max/Pro) preserve their premium model quota for complex tasks.*
142-
143- ``` python
144- llm = EmpathyLLM(
145- provider = " anthropic" , # or "openai", "ollama", "hybrid"
146- enable_model_routing = True
147- )
123+ ``` bash
124+ # Install
125+ pip install empathy-framework
148126
149- # Summarization → Haiku/GPT-4o-mini ($0.25/M tokens )
150- await llm.interact( user_id = " dev " , user_input = " Summarize this " , task_type = " summarize " )
127+ # Check available providers (auto-detects API keys )
128+ empathy provider status
151129
152- # Code generation → Sonnet/GPT-4o ($3/M tokens)
153- await llm.interact( user_id = " dev " , user_input = " Write a function " , task_type = " generate_code " )
130+ # Set your provider
131+ empathy provider set anthropic
154132
155- # Architecture → Opus/o1 ($15/M tokens)
156- await llm.interact( user_id = " dev " , user_input = " Design the system " , task_type = " architectural_decision " )
133+ # See all commands
134+ empathy cheatsheet
157135```
158136
159- ** Cost comparison on real workload:**
160- - Without routing (all Opus): $4.05/complex task
161- - With routing (tiered): $0.83/complex task
162- - ** Savings: 80%**
163-
164- ## v3.0.1: VSCode Dashboard + XML-Enhanced Prompts
165-
166- The biggest additions in v3.0.1 include a complete VSCode Dashboard with ** 10 integrated workflows** and ** XML-Enhanced Prompts** for structured, parseable LLM responses:
167-
168- 1 . ** Research Synthesis** — Deep dive research with citations
169- 2 . ** Code Review** — Comprehensive PR analysis
170- 3 . ** Debug Assistant** — Smart error diagnosis
171- 4 . ** Refactor Advisor** — Code improvement suggestions
172- 5 . ** Test Generator** — Automated test creation
173- 6 . ** Documentation Writer** — Auto-generate docs
174- 7 . ** Security Scanner** — Vulnerability detection
175- 8 . ** Performance Analyzer** — Bottleneck identification
176- 9 . ** Explain Code** — Code explanation for onboarding
177- 10 . ** Morning Briefing** — Daily project status report
137+ ## What's in v3.2.5
178138
179- Plus ** 6 Quick Action commands** for common tasks.
139+ - ** Unified CLI** — One ` empathy ` command with Rich output
140+ - ** Dev Container** — Clone → Open in VS Code → Start coding
141+ - ** Python 3.10-3.13** — Full test matrix across all versions
142+ - ** Smart Router** — Natural language wizard dispatch
143+ - ** Memory Graph** — Cross-wizard knowledge sharing
180144
181- All with real-time cost tracking showing your savings.
182-
183- ## Get Started
184-
185- ``` bash
186- pip install empathy-framework
187- ```
145+ ## Resources
188146
189- ** Resources:**
190- - ** PyPI:** 3,400+ monthly downloads
191147- [ GitHub] ( https://github.com/Smart-AI-Memory/empathy-framework )
192- - [ Documentation] ( https://www. smartaimemory.com/docs )
193- - [ Live Demo ] ( https://www.smartaimemory.com/tools/debug-wizard )
148+ - [ Documentation] ( https://smartaimemory.com/framework- docs/ )
149+ - [ PyPI ] ( https://pypi.org/project/empathy-framework/ )
194150
195151---
196152
197- * What would you build with an AI that remembers—and costs 80% less? Drop a comment below. *
153+ * What would you build with an AI that remembers—and costs 80% less?*
0 commit comments