|
| 1 | +/* |
| 2 | + * SonarQube Python Plugin |
| 3 | + * Copyright (C) 2011-2024 SonarSource SA |
| 4 | + * mailto:info AT sonarsource DOT com |
| 5 | + * |
| 6 | + * This program is free software; you can redistribute it and/or |
| 7 | + * modify it under the terms of the GNU Lesser General Public |
| 8 | + * License as published by the Free Software Foundation; either |
| 9 | + * version 3 of the License, or (at your option) any later version. |
| 10 | + * |
| 11 | + * This program is distributed in the hope that it will be useful, |
| 12 | + * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | + * Lesser General Public License for more details. |
| 15 | + * |
| 16 | + * You should have received a copy of the GNU Lesser General Public License |
| 17 | + * along with this program; if not, write to the Free Software Foundation, |
| 18 | + * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| 19 | + */ |
| 20 | +package org.sonar.python.checks; |
| 21 | + |
| 22 | +import java.util.List; |
| 23 | +import java.util.Map; |
| 24 | +import java.util.Objects; |
| 25 | +import java.util.Optional; |
| 26 | +import java.util.Set; |
| 27 | +import java.util.stream.Collectors; |
| 28 | +import org.sonar.check.Rule; |
| 29 | +import org.sonar.plugins.python.api.PythonSubscriptionCheck; |
| 30 | +import org.sonar.plugins.python.api.SubscriptionContext; |
| 31 | +import org.sonar.plugins.python.api.symbols.Symbol; |
| 32 | +import org.sonar.plugins.python.api.symbols.Usage; |
| 33 | +import org.sonar.plugins.python.api.tree.CallExpression; |
| 34 | +import org.sonar.plugins.python.api.tree.Name; |
| 35 | +import org.sonar.plugins.python.api.tree.QualifiedExpression; |
| 36 | +import org.sonar.plugins.python.api.tree.RegularArgument; |
| 37 | +import org.sonar.plugins.python.api.tree.Tree; |
| 38 | +import org.sonar.python.checks.utils.Expressions; |
| 39 | +import org.sonar.python.tree.TreeUtils; |
| 40 | + |
| 41 | +import static org.sonar.plugins.python.api.tree.Tree.Kind.CALL_EXPR; |
| 42 | +import static org.sonar.plugins.python.api.tree.Tree.Kind.REGULAR_ARGUMENT; |
| 43 | +import static org.sonar.python.tree.TreeUtils.toOptionalInstanceOfMapper; |
| 44 | + |
| 45 | +@Rule(key = "S6973") |
| 46 | +public class MissingHyperParameterCheck extends PythonSubscriptionCheck { |
| 47 | + private static final String SKLEARN_MESSAGE = "Add the missing hyperparameter%s %s for this Scikit-learn estimator."; |
| 48 | + private static final String PYTORCH_MESSAGE = "Add the missing hyperparameter%s %s for this PyTorch optimizer."; |
| 49 | + |
| 50 | + private record Param(String name, Optional<Integer> position) { |
| 51 | + public Param(String name) { |
| 52 | + this(name, Optional.empty()); |
| 53 | + } |
| 54 | + |
| 55 | + public Param(String name, int position) { |
| 56 | + this(name, Optional.of(position)); |
| 57 | + } |
| 58 | + } |
| 59 | + |
| 60 | + @Override |
| 61 | + public void initialize(Context context) { |
| 62 | + context.registerSyntaxNodeConsumer(CALL_EXPR, MissingHyperParameterCheck::checkEstimator); |
| 63 | + } |
| 64 | + |
| 65 | + private static void checkEstimator(SubscriptionContext ctx) { |
| 66 | + CallExpression callExpression = (CallExpression) ctx.syntaxNode(); |
| 67 | + Symbol calleeSymbol = callExpression.calleeSymbol(); |
| 68 | + |
| 69 | + Optional.ofNullable(calleeSymbol) |
| 70 | + .map(Symbol::fullyQualifiedName).ifPresent(name -> { |
| 71 | + checkPyTorchOptimizer(name, callExpression, ctx); |
| 72 | + checkSkLearnEstimator(name, callExpression, ctx); |
| 73 | + }); |
| 74 | + } |
| 75 | + |
| 76 | + private static void checkPyTorchOptimizer(String name, CallExpression callExpression, SubscriptionContext ctx) { |
| 77 | + PyTorchCheck.getMissingParameters(name, callExpression) |
| 78 | + .map(MissingHyperParameterCheck::toParameterNames) |
| 79 | + .ifPresent(parameters -> ctx.addIssue(callExpression, formatMessage(parameters, PYTORCH_MESSAGE))); |
| 80 | + } |
| 81 | + |
| 82 | + private static void checkSkLearnEstimator(String name, CallExpression callExpression, SubscriptionContext ctx) { |
| 83 | + SkLearnCheck.getMissingParameters(name, callExpression) |
| 84 | + .map(MissingHyperParameterCheck::toParameterNames) |
| 85 | + .ifPresent(parameters -> ctx.addIssue(callExpression, formatMessage(parameters, SKLEARN_MESSAGE))); |
| 86 | + } |
| 87 | + |
| 88 | + private static List<String> toParameterNames(List<Param> parameters) { |
| 89 | + return parameters.stream().map(Param::name).toList(); |
| 90 | + } |
| 91 | + |
| 92 | + private static String formatMessage(List<String> missingArgs, String formatString) { |
| 93 | + String plural = missingArgs.size() == 1 ? "" : "s"; |
| 94 | + String missingArgsString = missingArgs.get(missingArgs.size() - 1); |
| 95 | + if (missingArgs.size() > 1) { |
| 96 | + missingArgsString = missingArgs.subList(0, missingArgs.size() - 1).stream().collect(Collectors.joining(", " + |
| 97 | + "")) + " and " + missingArgsString; |
| 98 | + } |
| 99 | + return formatString.formatted(plural, missingArgsString); |
| 100 | + } |
| 101 | + |
| 102 | + |
| 103 | + // common method used by both the PyTorchCheck class and SkLearnCheck class |
| 104 | + private static boolean isMissingAHyperparameter(CallExpression callExpression, List<Param> parametersToCheck) { |
| 105 | + return parametersToCheck.stream() |
| 106 | + .map(param -> param.position() |
| 107 | + .map(position -> TreeUtils.nthArgumentOrKeyword(position, param.name, callExpression.arguments())) |
| 108 | + .orElse(TreeUtils.argumentByKeyword(param.name, callExpression.arguments()))) |
| 109 | + .anyMatch(Objects::isNull); |
| 110 | + } |
| 111 | + |
| 112 | + private static class PyTorchCheck { |
| 113 | + public static final String LR = "lr"; |
| 114 | + public static final String WEIGHT_DECAY = "weight_decay"; |
| 115 | + |
| 116 | + private static final Map<String, List<Param>> PY_TORCH_ESTIMATORS_AND_PARAMETERS_TO_CHECK = Map.ofEntries( |
| 117 | + Map.entry("torch.utils.data.DataLoader", List.of(new Param("batch_size", 1))), |
| 118 | + Map.entry("torch.optim.Adadelta", List.of(new Param(LR, 1), new Param(WEIGHT_DECAY, 4))), |
| 119 | + Map.entry("torch.optim.Adagrad", List.of(new Param(LR, 1), new Param(WEIGHT_DECAY, 3))), |
| 120 | + Map.entry("torch.optim.Adam", List.of(new Param(LR, 1), new Param(WEIGHT_DECAY, 4))), |
| 121 | + Map.entry("torch.optim.AdamW", List.of(new Param(LR, 1), new Param(WEIGHT_DECAY, 4))), |
| 122 | + Map.entry("torch.optim.SparseAdam", List.of(new Param(LR, 1))), |
| 123 | + Map.entry("torch.optim.Adamax", List.of(new Param(LR, 1), new Param(WEIGHT_DECAY, 4))), |
| 124 | + Map.entry("torch.optim.ASGD", List.of(new Param(LR, 1), new Param(WEIGHT_DECAY, 5))), |
| 125 | + Map.entry("torch.optim.LBFGS", List.of(new Param(LR, 1))), |
| 126 | + Map.entry("torch.optim.NAdam", List.of(new Param(LR, 1), new Param(WEIGHT_DECAY, 4), new Param("momentum_decay", 5))), |
| 127 | + Map.entry("torch.optim.RAdam", List.of(new Param(LR, 1), new Param(WEIGHT_DECAY, 4))), |
| 128 | + Map.entry("torch.optim.RMSprop", List.of(new Param(LR, 1), new Param(WEIGHT_DECAY, 4), new Param("momentum", 5))), |
| 129 | + Map.entry("torch.optim.Rprop", List.of(new Param(LR, 1))), |
| 130 | + Map.entry("torch.optim.SGD", List.of(new Param(LR, 1), new Param("momentum", 2), new Param(WEIGHT_DECAY, 4))) |
| 131 | + ); |
| 132 | + |
| 133 | + public static Optional<List<Param>> getMissingParameters(String name, CallExpression callExpression) { |
| 134 | + return Optional.ofNullable(PY_TORCH_ESTIMATORS_AND_PARAMETERS_TO_CHECK.get(name)) |
| 135 | + .filter(parameters -> !Expressions.containsSpreadOperator(callExpression.arguments())) |
| 136 | + .filter(parameters -> isMissingAHyperparameter(callExpression, parameters)); |
| 137 | + } |
| 138 | + } |
| 139 | + |
| 140 | + private static class SkLearnCheck { |
| 141 | + private static final String LEARNING_RATE = "learning_rate"; |
| 142 | + private static final String N_NEIGHBORS = "n_neighbors"; |
| 143 | + private static final String KERNEL = "kernel"; |
| 144 | + private static final String GAMMA = "gamma"; |
| 145 | + private static final String C = "C"; |
| 146 | + |
| 147 | + private static final Map<String, List<Param>> SK_LEARN_ESTIMATORS_AND_PARAMETERS_TO_CHECK = Map.ofEntries( |
| 148 | + Map.entry("sklearn.ensemble._weight_boosting.AdaBoostClassifier", List.of(new Param(LEARNING_RATE))), |
| 149 | + Map.entry("sklearn.ensemble._weight_boosting.AdaBoostRegressor", List.of(new Param(LEARNING_RATE))), |
| 150 | + Map.entry("sklearn.ensemble._gb.GradientBoostingClassifier", List.of(new Param(LEARNING_RATE))), |
| 151 | + Map.entry("sklearn.ensemble._gb.GradientBoostingRegressor", List.of(new Param(LEARNING_RATE))), |
| 152 | + Map.entry("sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier", |
| 153 | + List.of(new Param(LEARNING_RATE))), |
| 154 | + Map.entry("sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingRegressor", |
| 155 | + List.of(new Param(LEARNING_RATE))), |
| 156 | + Map.entry("sklearn.ensemble._forest.RandomForestClassifier", List.of(new Param("min_samples_leaf"), new Param("max_features"))), |
| 157 | + Map.entry("sklearn.ensemble._forest.RandomForestRegressor", List.of(new Param("min_samples_leaf"), new Param("max_features"))), |
| 158 | + Map.entry("sklearn.linear_model._coordinate_descent.ElasticNet", List.of(new Param("alpha", 0), new Param("l1_ratio"))), |
| 159 | + Map.entry("sklearn.neighbors._unsupervised.NearestNeighbors", List.of(new Param(N_NEIGHBORS, 0))), |
| 160 | + Map.entry("sklearn.neighbors._classification.KNeighborsClassifier", List.of(new Param(N_NEIGHBORS, 0))), |
| 161 | + Map.entry("sklearn.neighbors._regression.KNeighborsRegressor", List.of(new Param(N_NEIGHBORS, 0))), |
| 162 | + Map.entry("sklearn.svm._classes.NuSVC", List.of(new Param("nu"), new Param(KERNEL), new Param(GAMMA))), |
| 163 | + Map.entry("sklearn.svm._classes.NuSVR", List.of(new Param(C), new Param(KERNEL), new Param(GAMMA))), |
| 164 | + Map.entry("sklearn.svm._classes.SVC", List.of(new Param(C), new Param(KERNEL), new Param(GAMMA))), |
| 165 | + Map.entry("sklearn.svm._classes.SVR", List.of(new Param(C), new Param(KERNEL), new Param(GAMMA))), |
| 166 | + Map.entry("sklearn.tree._classes.DecisionTreeClassifier", List.of(new Param("ccp_alpha"))), |
| 167 | + Map.entry("sklearn.tree._classes.DecisionTreeRegressor", List.of(new Param("ccp_alpha"))), |
| 168 | + Map.entry("sklearn.neural_network._multilayer_perceptron.MLPClassifier", List.of(new Param("hidden_layer_sizes", 0))), |
| 169 | + Map.entry("sklearn.neural_network._multilayer_perceptron.MLPRegressor", List.of(new Param("hidden_layer_sizes", 0))), |
| 170 | + Map.entry("sklearn.preprocessing._polynomial.PolynomialFeatures", List.of(new Param("degree", 0), new Param("interaction_only")))); |
| 171 | + |
| 172 | + private static final Set<String> SEARCH_CV_FQNS = Set.of( |
| 173 | + "sklearn.model_selection._search.GridSearchCV", |
| 174 | + "sklearn.model_selection._search.RandomizedSearchCV", |
| 175 | + "sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV", |
| 176 | + "sklearn.model_selection._search_successive_halving.HalvingGridSearchCV"); |
| 177 | + |
| 178 | + private static final Set<String> PIPELINE_FQNS = Set.of( |
| 179 | + "sklearn.pipeline.make_pipeline", |
| 180 | + "sklearn.pipeline.Pipeline"); |
| 181 | + |
| 182 | + public static Optional<List<Param>> getMissingParameters(String name, CallExpression callExpression) { |
| 183 | + return Optional.ofNullable(SK_LEARN_ESTIMATORS_AND_PARAMETERS_TO_CHECK.get(name)) |
| 184 | + .filter(parameters -> !isDirectlyUsedInSearchCV(callExpression)) |
| 185 | + .filter(parameters -> !isSetParamsCalled(callExpression)) |
| 186 | + .filter(parameters -> !isPartOfPipelineAndSearchCV(callExpression)) |
| 187 | + .filter(parameters -> isMissingAHyperparameter(callExpression, parameters)); |
| 188 | + } |
| 189 | + |
| 190 | + private static boolean isDirectlyUsedInSearchCV(CallExpression callExpression) { |
| 191 | + return Optional.ofNullable(TreeUtils.firstAncestorOfKind(callExpression, REGULAR_ARGUMENT)) |
| 192 | + .flatMap(TreeUtils.toOptionalInstanceOfMapper(RegularArgument.class)) |
| 193 | + .map(SkLearnCheck::isArgumentPartOfSearchCV) |
| 194 | + .orElse(false); |
| 195 | + } |
| 196 | + |
| 197 | + private static boolean isSetParamsCalled(CallExpression callExpression) { |
| 198 | + return Expressions.getAssignedName(callExpression) |
| 199 | + .map(Name::symbol) |
| 200 | + .map(Symbol::usages) |
| 201 | + .map(SkLearnCheck::isUsedWithSetParams) |
| 202 | + .orElse(false); |
| 203 | + } |
| 204 | + |
| 205 | + private static boolean isUsedWithSetParams(List<Usage> usages) { |
| 206 | + return usages.stream() |
| 207 | + .map(Usage::tree) |
| 208 | + .map(Tree::parent) |
| 209 | + .filter(parent -> parent.is(Tree.Kind.QUALIFIED_EXPR)) |
| 210 | + .map(TreeUtils.toInstanceOfMapper(QualifiedExpression.class)) |
| 211 | + .filter(Objects::nonNull) |
| 212 | + .map(qExp -> qExp.name().name()) |
| 213 | + .anyMatch("set_params"::equals); |
| 214 | + } |
| 215 | + |
| 216 | + private static boolean isPartOfPipelineAndSearchCV(CallExpression callExpression) { |
| 217 | + return Expressions.getAssignedName(callExpression) |
| 218 | + .map(SkLearnCheck::isEstimatorUsedInSearchCV) |
| 219 | + .or(() -> getPipelineAssignement(callExpression) |
| 220 | + .map(SkLearnCheck::isEstimatorUsedInSearchCV)) |
| 221 | + .orElse(false); |
| 222 | + } |
| 223 | + |
| 224 | + private static boolean isEstimatorUsedInSearchCV(Name estimator) { |
| 225 | + return Optional.ofNullable(estimator.symbol()) |
| 226 | + .map(Symbol::usages) |
| 227 | + .map(usages -> usages.stream() |
| 228 | + .map(Usage::tree) |
| 229 | + .map(Tree::parent) |
| 230 | + .filter(parent -> parent.is(REGULAR_ARGUMENT)) |
| 231 | + .map(RegularArgument.class::cast) |
| 232 | + .anyMatch(SkLearnCheck::isArgumentPartOfSearchCV)) |
| 233 | + .orElse(false); |
| 234 | + } |
| 235 | + |
| 236 | + private static boolean isArgumentPartOfSearchCV(RegularArgument arg) { |
| 237 | + return Optional.ofNullable(TreeUtils.firstAncestorOfKind(arg, CALL_EXPR)) |
| 238 | + .flatMap(toOptionalInstanceOfMapper(CallExpression.class)) |
| 239 | + .map(CallExpression::calleeSymbol) |
| 240 | + .map(Symbol::fullyQualifiedName) |
| 241 | + .map(SEARCH_CV_FQNS::contains) |
| 242 | + .orElse(false); |
| 243 | + } |
| 244 | + |
| 245 | + private static Optional<Name> getPipelineAssignement(CallExpression callExpression) { |
| 246 | + return Optional.ofNullable(TreeUtils.firstAncestorOfKind(callExpression, CALL_EXPR)) |
| 247 | + .flatMap(TreeUtils.toOptionalInstanceOfMapper(CallExpression.class)) |
| 248 | + .filter(callExp -> Optional.ofNullable(callExp.calleeSymbol()) |
| 249 | + .map(Symbol::fullyQualifiedName) |
| 250 | + .map(PIPELINE_FQNS::contains) |
| 251 | + .orElse(false)) |
| 252 | + .flatMap(Expressions::getAssignedName); |
| 253 | + } |
| 254 | + } |
| 255 | +} |
0 commit comments