@@ -241,8 +241,8 @@ def test_uniform_activation_quantizer(self):
241241 self .assertTrue (quantizer_config ['max_range' ] == max_range )
242242
243243 # Initialize a random input to quantize between -50 to 50. Input includes positive and negative values.
244- input_tensor = np .random .rand (1 , 50 , 50 , 3 ) * 50
245- signs = np .where (np .indices ((1 , 50 , 50 , 3 )).sum (axis = 0 ) % 2 == 0 , 1 , - 1 ).astype (np .int8 )
244+ input_tensor = np .random .rand (1 , 50 , 4 , 50 ) * 50
245+ signs = np .where (np .indices ((1 , 50 , 4 , 50 )).sum (axis = 0 ) % 2 == 0 , 1 , - 1 ).astype (np .int8 )
246246 input_tensor = tf .constant (input_tensor * signs , dtype = tf .float32 )
247247 fake_quantized_tensor = quantizer (input_tensor )
248248
@@ -283,8 +283,8 @@ def test_illegal_range_uniform_activation_quantizer(self):
283283 # self.assertTrue(quantizer_config['max_range'] == max_range)
284284
285285 # Initialize a random input to quantize between -50 to 50. Input includes positive and negative values.
286- input_tensor = np .random .rand (1 , 50 , 50 , 3 ) * 50
287- signs = np .where (np .indices ((1 , 50 , 50 , 3 )).sum (axis = 0 ) % 2 == 0 , 1 , - 1 ).astype (np .int8 )
286+ input_tensor = np .random .rand (1 , 50 , 4 , 50 ) * 50
287+ signs = np .where (np .indices ((1 , 50 , 4 , 50 )).sum (axis = 0 ) % 2 == 0 , 1 , - 1 ).astype (np .int8 )
288288 input_tensor = tf .constant (input_tensor * signs , dtype = tf .float32 )
289289 fake_quantized_tensor = quantizer (input_tensor )
290290
0 commit comments