|
| 1 | + |
| 2 | +#include "../util.hpp" |
| 3 | +#include <spblas/spblas.hpp> |
| 4 | + |
| 5 | +#include <gtest/gtest.h> |
| 6 | +#include <thrust/device_vector.h> |
| 7 | + |
| 8 | +using value_t = float; |
| 9 | +using index_t = spblas::index_t; |
| 10 | +using offset_t = spblas::offset_t; |
| 11 | + |
| 12 | +TEST(CsrView, SpGEMMReuse) { |
| 13 | + for (auto&& [m, k, nnz] : util::dims) { |
| 14 | + for (auto&& n : {m, k}) { |
| 15 | + auto [a_values, a_rowptr, a_colind, a_shape, a_nnz] = |
| 16 | + spblas::generate_csr<value_t, index_t, offset_t>(m, k, nnz); |
| 17 | + thrust::device_vector<value_t> d_a_values(a_values); |
| 18 | + thrust::device_vector<offset_t> d_a_rowptr(a_rowptr); |
| 19 | + thrust::device_vector<index_t> d_a_colind(a_colind); |
| 20 | + spblas::csr_view<value_t, index_t, offset_t> d_a( |
| 21 | + d_a_values.data().get(), d_a_rowptr.data().get(), |
| 22 | + d_a_colind.data().get(), a_shape, a_nnz); |
| 23 | + spblas::csr_view<value_t, index_t, offset_t> a(a_values, a_rowptr, |
| 24 | + a_colind, a_shape, a_nnz); |
| 25 | + |
| 26 | + auto [b_values, b_rowptr, b_colind, b_shape, b_nnz] = |
| 27 | + spblas::generate_csr<value_t, index_t, offset_t>(k, n, nnz); |
| 28 | + thrust::device_vector<value_t> d_b_values(b_values); |
| 29 | + thrust::device_vector<offset_t> d_b_rowptr(b_rowptr); |
| 30 | + thrust::device_vector<index_t> d_b_colind(b_colind); |
| 31 | + spblas::csr_view<value_t, index_t, offset_t> d_b( |
| 32 | + d_b_values.data().get(), d_b_rowptr.data().get(), |
| 33 | + d_b_colind.data().get(), b_shape, b_nnz); |
| 34 | + spblas::csr_view<value_t, index_t, offset_t> b(b_values, b_rowptr, |
| 35 | + b_colind, b_shape, b_nnz); |
| 36 | + |
| 37 | + thrust::device_vector<offset_t> d_c_rowptr(m + 1); |
| 38 | + |
| 39 | + spblas::csr_view<value_t, index_t, offset_t> d_c( |
| 40 | + nullptr, d_c_rowptr.data().get(), nullptr, {m, n}, 0); |
| 41 | + |
| 42 | + spblas::spgemm_state_t state; |
| 43 | + spblas::multiply_symbolic_compute(state, d_a, d_b, d_c); |
| 44 | + auto nnz = state.result_nnz(); |
| 45 | + thrust::device_vector<value_t> d_c_values(nnz); |
| 46 | + thrust::device_vector<index_t> d_c_colind(nnz); |
| 47 | + std::span<value_t> d_c_values_span(d_c_values.data().get(), nnz); |
| 48 | + std::span<offset_t> d_c_rowptr_span(d_c_rowptr.data().get(), m + 1); |
| 49 | + std::span<index_t> d_c_colind_span(d_c_colind.data().get(), nnz); |
| 50 | + d_c.update(d_c_values_span, d_c_rowptr_span, d_c_colind_span, {m, n}, |
| 51 | + nnz); |
| 52 | + |
| 53 | + spblas::multiply_symbolic_fill(state, d_a, d_b, d_c); |
| 54 | + std::mt19937 g(0); |
| 55 | + for (int i = 0; i < 3; i++) { |
| 56 | + // we can change the value of a and b but only need to call |
| 57 | + // multiply_numeric answer here. |
| 58 | + if (i != 0) { |
| 59 | + // regenerate value of a and b; |
| 60 | + std::uniform_real_distribution val_dist(0.0, 100.0); |
| 61 | + for (auto& v : a_values) { |
| 62 | + v = val_dist(g); |
| 63 | + } |
| 64 | + for (auto& v : b_values) { |
| 65 | + v = val_dist(g); |
| 66 | + } |
| 67 | + thrust::copy(a_values.begin(), a_values.end(), d_a_values.begin()); |
| 68 | + thrust::copy(b_values.begin(), b_values.end(), d_b_values.begin()); |
| 69 | + } |
| 70 | + spblas::multiply_numeric(state, d_a, d_b, d_c); |
| 71 | + std::vector<value_t> c_values(nnz); |
| 72 | + std::vector<offset_t> c_rowptr(m + 1); |
| 73 | + std::vector<index_t> c_colind(nnz); |
| 74 | + thrust::copy(d_c_values.begin(), d_c_values.end(), c_values.begin()); |
| 75 | + thrust::copy(d_c_rowptr.begin(), d_c_rowptr.end(), c_rowptr.begin()); |
| 76 | + thrust::copy(d_c_colind.begin(), d_c_colind.end(), c_colind.begin()); |
| 77 | + spblas::csr_view<value_t, index_t, offset_t> c(c_values, c_rowptr, |
| 78 | + c_colind, {m, n}, nnz); |
| 79 | + |
| 80 | + spblas::__backend::spa_accumulator<value_t, index_t> c_row_ref( |
| 81 | + spblas::__backend::shape(c)[1]); |
| 82 | + |
| 83 | + spblas::__backend::spa_accumulator<value_t, index_t> c_row_acc( |
| 84 | + spblas::__backend::shape(c)[1]); |
| 85 | + |
| 86 | + for (auto&& [i, a_row] : spblas::__backend::rows(a)) { |
| 87 | + c_row_ref.clear(); |
| 88 | + for (auto&& [k, a_v] : a_row) { |
| 89 | + auto&& b_row = spblas::__backend::lookup_row(b, k); |
| 90 | + |
| 91 | + for (auto&& [j, b_v] : b_row) { |
| 92 | + c_row_ref[j] += a_v * b_v; |
| 93 | + } |
| 94 | + } |
| 95 | + |
| 96 | + auto&& c_row = spblas::__backend::lookup_row(c, i); |
| 97 | + |
| 98 | + // Accumulate output into `c_row_acc` so that we can allow |
| 99 | + // duplicate column indices. |
| 100 | + c_row_acc.clear(); |
| 101 | + for (auto&& [j, c_v] : c_row) { |
| 102 | + c_row_acc[j] += c_v; |
| 103 | + } |
| 104 | + |
| 105 | + for (auto&& [j, c_v] : c_row) { |
| 106 | + EXPECT_EQ_(c_row_ref[j], c_row_acc[j]); |
| 107 | + } |
| 108 | + |
| 109 | + EXPECT_EQ(c_row_ref.size(), c_row_acc.size()); |
| 110 | + } |
| 111 | + } |
| 112 | + } |
| 113 | + } |
| 114 | +} |
| 115 | + |
| 116 | +TEST(CsrView, SpGEMMReuse_AScaled) { |
| 117 | + value_t alpha = 2.0f; |
| 118 | + for (auto&& [m, k, nnz] : util::dims) { |
| 119 | + for (auto&& n : {m, k}) { |
| 120 | + auto [a_values, a_rowptr, a_colind, a_shape, a_nnz] = |
| 121 | + spblas::generate_csr<value_t, index_t, offset_t>(m, k, nnz); |
| 122 | + thrust::device_vector<value_t> d_a_values(a_values); |
| 123 | + thrust::device_vector<offset_t> d_a_rowptr(a_rowptr); |
| 124 | + thrust::device_vector<index_t> d_a_colind(a_colind); |
| 125 | + spblas::csr_view<value_t, index_t, offset_t> d_a( |
| 126 | + d_a_values.data().get(), d_a_rowptr.data().get(), |
| 127 | + d_a_colind.data().get(), a_shape, a_nnz); |
| 128 | + spblas::csr_view<value_t, index_t, offset_t> a(a_values, a_rowptr, |
| 129 | + a_colind, a_shape, a_nnz); |
| 130 | + |
| 131 | + auto [b_values, b_rowptr, b_colind, b_shape, b_nnz] = |
| 132 | + spblas::generate_csr<value_t, index_t, offset_t>(k, n, nnz); |
| 133 | + thrust::device_vector<value_t> d_b_values(b_values); |
| 134 | + thrust::device_vector<offset_t> d_b_rowptr(b_rowptr); |
| 135 | + thrust::device_vector<index_t> d_b_colind(b_colind); |
| 136 | + spblas::csr_view<value_t, index_t, offset_t> d_b( |
| 137 | + d_b_values.data().get(), d_b_rowptr.data().get(), |
| 138 | + d_b_colind.data().get(), b_shape, b_nnz); |
| 139 | + spblas::csr_view<value_t, index_t, offset_t> b(b_values, b_rowptr, |
| 140 | + b_colind, b_shape, b_nnz); |
| 141 | + |
| 142 | + thrust::device_vector<offset_t> d_c_rowptr(m + 1); |
| 143 | + |
| 144 | + spblas::csr_view<value_t, index_t, offset_t> d_c( |
| 145 | + nullptr, d_c_rowptr.data().get(), nullptr, {m, n}, 0); |
| 146 | + |
| 147 | + spblas::spgemm_state_t state; |
| 148 | + spblas::multiply_symbolic_compute(state, scaled(alpha, d_a), d_b, d_c); |
| 149 | + auto nnz = state.result_nnz(); |
| 150 | + thrust::device_vector<value_t> d_c_values(nnz); |
| 151 | + thrust::device_vector<index_t> d_c_colind(nnz); |
| 152 | + std::span<value_t> d_c_values_span(d_c_values.data().get(), nnz); |
| 153 | + std::span<offset_t> d_c_rowptr_span(d_c_rowptr.data().get(), m + 1); |
| 154 | + std::span<index_t> d_c_colind_span(d_c_colind.data().get(), nnz); |
| 155 | + d_c.update(d_c_values_span, d_c_rowptr_span, d_c_colind_span, {m, n}, |
| 156 | + nnz); |
| 157 | + |
| 158 | + spblas::multiply_symbolic_fill(state, scaled(alpha, d_a), d_b, d_c); |
| 159 | + std::mt19937 g(0); |
| 160 | + for (int i = 0; i < 3; i++) { |
| 161 | + // we can change the value of a and b but only need to call |
| 162 | + // multiply_numeric answer here. |
| 163 | + if (i != 0) { |
| 164 | + // regenerate value of a and b; |
| 165 | + std::uniform_real_distribution val_dist(0.0, 100.0); |
| 166 | + for (auto& v : a_values) { |
| 167 | + v = val_dist(g); |
| 168 | + } |
| 169 | + for (auto& v : b_values) { |
| 170 | + v = val_dist(g); |
| 171 | + } |
| 172 | + thrust::copy(a_values.begin(), a_values.end(), d_a_values.begin()); |
| 173 | + thrust::copy(b_values.begin(), b_values.end(), d_b_values.begin()); |
| 174 | + } |
| 175 | + spblas::multiply_numeric(state, scaled(alpha, d_a), d_b, d_c); |
| 176 | + std::vector<value_t> c_values(nnz); |
| 177 | + std::vector<offset_t> c_rowptr(m + 1); |
| 178 | + std::vector<index_t> c_colind(nnz); |
| 179 | + thrust::copy(d_c_values.begin(), d_c_values.end(), c_values.begin()); |
| 180 | + thrust::copy(d_c_rowptr.begin(), d_c_rowptr.end(), c_rowptr.begin()); |
| 181 | + thrust::copy(d_c_colind.begin(), d_c_colind.end(), c_colind.begin()); |
| 182 | + spblas::csr_view<value_t, index_t, offset_t> c(c_values, c_rowptr, |
| 183 | + c_colind, {m, n}, nnz); |
| 184 | + |
| 185 | + spblas::__backend::spa_accumulator<value_t, index_t> c_row_ref( |
| 186 | + spblas::__backend::shape(c)[1]); |
| 187 | + |
| 188 | + spblas::__backend::spa_accumulator<value_t, index_t> c_row_acc( |
| 189 | + spblas::__backend::shape(c)[1]); |
| 190 | + |
| 191 | + for (auto&& [i, a_row] : spblas::__backend::rows(a)) { |
| 192 | + c_row_ref.clear(); |
| 193 | + for (auto&& [k, a_v] : a_row) { |
| 194 | + auto&& b_row = spblas::__backend::lookup_row(b, k); |
| 195 | + |
| 196 | + for (auto&& [j, b_v] : b_row) { |
| 197 | + c_row_ref[j] += alpha * a_v * b_v; |
| 198 | + } |
| 199 | + } |
| 200 | + |
| 201 | + auto&& c_row = spblas::__backend::lookup_row(c, i); |
| 202 | + |
| 203 | + // Accumulate output into `c_row_acc` so that we can allow |
| 204 | + // duplicate column indices. |
| 205 | + c_row_acc.clear(); |
| 206 | + for (auto&& [j, c_v] : c_row) { |
| 207 | + c_row_acc[j] += c_v; |
| 208 | + } |
| 209 | + |
| 210 | + for (auto&& [j, c_v] : c_row) { |
| 211 | + EXPECT_EQ_(c_row_ref[j], c_row_acc[j]); |
| 212 | + } |
| 213 | + |
| 214 | + EXPECT_EQ(c_row_ref.size(), c_row_acc.size()); |
| 215 | + } |
| 216 | + } |
| 217 | + } |
| 218 | + } |
| 219 | +} |
| 220 | + |
| 221 | +TEST(CsrView, SpGEMMReuse_BScaled) { |
| 222 | + value_t alpha = 2.0f; |
| 223 | + for (auto&& [m, k, nnz] : util::dims) { |
| 224 | + for (auto&& n : {m, k}) { |
| 225 | + auto [a_values, a_rowptr, a_colind, a_shape, a_nnz] = |
| 226 | + spblas::generate_csr<value_t, index_t, offset_t>(m, k, nnz); |
| 227 | + thrust::device_vector<value_t> d_a_values(a_values); |
| 228 | + thrust::device_vector<offset_t> d_a_rowptr(a_rowptr); |
| 229 | + thrust::device_vector<index_t> d_a_colind(a_colind); |
| 230 | + spblas::csr_view<value_t, index_t, offset_t> d_a( |
| 231 | + d_a_values.data().get(), d_a_rowptr.data().get(), |
| 232 | + d_a_colind.data().get(), a_shape, a_nnz); |
| 233 | + spblas::csr_view<value_t, index_t, offset_t> a(a_values, a_rowptr, |
| 234 | + a_colind, a_shape, a_nnz); |
| 235 | + |
| 236 | + auto [b_values, b_rowptr, b_colind, b_shape, b_nnz] = |
| 237 | + spblas::generate_csr<value_t, index_t, offset_t>(k, n, nnz); |
| 238 | + thrust::device_vector<value_t> d_b_values(b_values); |
| 239 | + thrust::device_vector<offset_t> d_b_rowptr(b_rowptr); |
| 240 | + thrust::device_vector<index_t> d_b_colind(b_colind); |
| 241 | + spblas::csr_view<value_t, index_t, offset_t> d_b( |
| 242 | + d_b_values.data().get(), d_b_rowptr.data().get(), |
| 243 | + d_b_colind.data().get(), b_shape, b_nnz); |
| 244 | + spblas::csr_view<value_t, index_t, offset_t> b(b_values, b_rowptr, |
| 245 | + b_colind, b_shape, b_nnz); |
| 246 | + |
| 247 | + thrust::device_vector<offset_t> d_c_rowptr(m + 1); |
| 248 | + |
| 249 | + spblas::csr_view<value_t, index_t, offset_t> d_c( |
| 250 | + nullptr, d_c_rowptr.data().get(), nullptr, {m, n}, 0); |
| 251 | + |
| 252 | + spblas::spgemm_state_t state; |
| 253 | + spblas::multiply_symbolic_compute(state, d_a, scaled(alpha, d_b), d_c); |
| 254 | + auto nnz = state.result_nnz(); |
| 255 | + thrust::device_vector<value_t> d_c_values(nnz); |
| 256 | + thrust::device_vector<index_t> d_c_colind(nnz); |
| 257 | + std::span<value_t> d_c_values_span(d_c_values.data().get(), nnz); |
| 258 | + std::span<offset_t> d_c_rowptr_span(d_c_rowptr.data().get(), m + 1); |
| 259 | + std::span<index_t> d_c_colind_span(d_c_colind.data().get(), nnz); |
| 260 | + d_c.update(d_c_values_span, d_c_rowptr_span, d_c_colind_span, {m, n}, |
| 261 | + nnz); |
| 262 | + |
| 263 | + spblas::multiply_symbolic_fill(state, d_a, scaled(alpha, d_b), d_c); |
| 264 | + std::mt19937 g(0); |
| 265 | + for (int i = 0; i < 3; i++) { |
| 266 | + // we can change the value of a and b but only need to call |
| 267 | + // multiply_numeric answer here. |
| 268 | + if (i != 0) { |
| 269 | + // regenerate value of a and b; |
| 270 | + std::uniform_real_distribution val_dist(0.0, 100.0); |
| 271 | + for (auto& v : a_values) { |
| 272 | + v = val_dist(g); |
| 273 | + } |
| 274 | + for (auto& v : b_values) { |
| 275 | + v = val_dist(g); |
| 276 | + } |
| 277 | + thrust::copy(a_values.begin(), a_values.end(), d_a_values.begin()); |
| 278 | + thrust::copy(b_values.begin(), b_values.end(), d_b_values.begin()); |
| 279 | + } |
| 280 | + spblas::multiply_numeric(state, d_a, scaled(alpha, d_b), d_c); |
| 281 | + std::vector<value_t> c_values(nnz); |
| 282 | + std::vector<offset_t> c_rowptr(m + 1); |
| 283 | + std::vector<index_t> c_colind(nnz); |
| 284 | + thrust::copy(d_c_values.begin(), d_c_values.end(), c_values.begin()); |
| 285 | + thrust::copy(d_c_rowptr.begin(), d_c_rowptr.end(), c_rowptr.begin()); |
| 286 | + thrust::copy(d_c_colind.begin(), d_c_colind.end(), c_colind.begin()); |
| 287 | + spblas::csr_view<value_t, index_t, offset_t> c(c_values, c_rowptr, |
| 288 | + c_colind, {m, n}, nnz); |
| 289 | + |
| 290 | + spblas::__backend::spa_accumulator<value_t, index_t> c_row_ref( |
| 291 | + spblas::__backend::shape(c)[1]); |
| 292 | + |
| 293 | + spblas::__backend::spa_accumulator<value_t, index_t> c_row_acc( |
| 294 | + spblas::__backend::shape(c)[1]); |
| 295 | + |
| 296 | + for (auto&& [i, a_row] : spblas::__backend::rows(a)) { |
| 297 | + c_row_ref.clear(); |
| 298 | + for (auto&& [k, a_v] : a_row) { |
| 299 | + auto&& b_row = spblas::__backend::lookup_row(b, k); |
| 300 | + |
| 301 | + for (auto&& [j, b_v] : b_row) { |
| 302 | + c_row_ref[j] += alpha * a_v * b_v; |
| 303 | + } |
| 304 | + } |
| 305 | + |
| 306 | + auto&& c_row = spblas::__backend::lookup_row(c, i); |
| 307 | + |
| 308 | + // Accumulate output into `c_row_acc` so that we can allow |
| 309 | + // duplicate column indices. |
| 310 | + c_row_acc.clear(); |
| 311 | + for (auto&& [j, c_v] : c_row) { |
| 312 | + c_row_acc[j] += c_v; |
| 313 | + } |
| 314 | + |
| 315 | + for (auto&& [j, c_v] : c_row) { |
| 316 | + EXPECT_EQ_(c_row_ref[j], c_row_acc[j]); |
| 317 | + } |
| 318 | + |
| 319 | + EXPECT_EQ(c_row_ref.size(), c_row_acc.size()); |
| 320 | + } |
| 321 | + } |
| 322 | + } |
| 323 | + } |
| 324 | +} |
0 commit comments