|
| 1 | +#!/usr/bin/env python3 |
| 2 | +""" |
| 3 | +Convert data from TUM "Euroc / DSO / ASL" benchmark format to Spectacular AI |
| 4 | +format. See <https://vision.in.tum.de/data/datasets/visual-inertial-dataset> |
| 5 | +for details about the data format. |
| 6 | +""" |
| 7 | + |
| 8 | +import argparse |
| 9 | +import csv |
| 10 | +import json |
| 11 | +import os |
| 12 | +from pathlib import Path |
| 13 | +import subprocess |
| 14 | +import yaml |
| 15 | +from contextlib import contextmanager |
| 16 | +import shutil |
| 17 | +import tempfile |
| 18 | +import tarfile |
| 19 | +import zipfile |
| 20 | +import numpy as np |
| 21 | + |
| 22 | +def define_args(parser): |
| 23 | + parser.add_argument('input', help='Path to the input data in TUM format (.tar, .zip or directory)') |
| 24 | + parser.add_argument('output', help='Path to the output directory') |
| 25 | + parser.add_argument('--fps', type=int, default=20, help='Frames per second (metadata only)') |
| 26 | + parser.add_argument('--crf', type=int, default=15, help='FFmpeg video compression quality (0=lossless)') |
| 27 | + parser.add_argument('--mono', action='store_true', help='Monocular mode') |
| 28 | + |
| 29 | +def convertVideo(files, output, fps, crf): |
| 30 | + # Use `-crf 0` for lossless compression. |
| 31 | + subprocess.check_call(["ffmpeg", |
| 32 | + "-y", |
| 33 | + "-r", str(fps), |
| 34 | + "-f", "image2", |
| 35 | + "-pattern_type", "glob", "-i", files, |
| 36 | + "-c:v", "libx264", |
| 37 | + "-preset", "veryfast", |
| 38 | + "-crf", str(crf), |
| 39 | + "-vf", "format=yuv420p", |
| 40 | + "-an", |
| 41 | + "-hide_banner", |
| 42 | + "-loglevel", "error", |
| 43 | + output]) |
| 44 | + |
| 45 | +@contextmanager |
| 46 | +def maybe_extract_tar_or_zip(path): |
| 47 | + temp_dir = None |
| 48 | + try: |
| 49 | + if not os.path.exists(path): |
| 50 | + raise FileNotFoundError(f"The path '{path}' does not exist.") |
| 51 | + |
| 52 | + if path.lower().endswith('.tar') and os.path.isfile(path): |
| 53 | + temp_dir = tempfile.mkdtemp(prefix="extracted_tar_") |
| 54 | + try: |
| 55 | + with tarfile.open(path, 'r') as tar: |
| 56 | + tar.extractall(path=temp_dir) |
| 57 | + except tarfile.TarError as e: |
| 58 | + shutil.rmtree(temp_dir) |
| 59 | + raise tarfile.TarError(f"Failed to extract tar file '{path}': {e}") |
| 60 | + |
| 61 | + subdirs = [d for d in os.listdir(temp_dir) if os.path.isdir(os.path.join(temp_dir, d))] |
| 62 | + if len(subdirs) != 1: |
| 63 | + raise ValueError(f"The directory '{path}' does not contain exactly one subfolder.") |
| 64 | + |
| 65 | + yield os.path.join(temp_dir, subdirs[0]) |
| 66 | + |
| 67 | + elif path.lower().endswith('.zip') and os.path.isfile(path): |
| 68 | + temp_dir = tempfile.mkdtemp(prefix="extracted_zip_") |
| 69 | + try: |
| 70 | + with zipfile.ZipFile(path, 'r') as zip_ref: |
| 71 | + zip_ref.extractall(path=temp_dir) |
| 72 | + except zipfile.BadZipFile as e: |
| 73 | + shutil.rmtree(temp_dir) |
| 74 | + raise zipfile.BadZipFile(f"Failed to extract zip file '{path}': {e}") |
| 75 | + yield temp_dir |
| 76 | + |
| 77 | + elif os.path.isdir(path): |
| 78 | + yield path |
| 79 | + else: |
| 80 | + raise ValueError(f"The path '{path}' is neither a .tar file nor a directory.") |
| 81 | + finally: |
| 82 | + if temp_dir and os.path.isdir(temp_dir): |
| 83 | + try: |
| 84 | + shutil.rmtree(temp_dir) |
| 85 | + except Exception as e: |
| 86 | + print(f"Warning: Failed to delete temporary directory '{temp_dir}': {e}") |
| 87 | + |
| 88 | +def get_calibration(input_dir, stereo): |
| 89 | + calibration = { "cameras": [] } |
| 90 | + |
| 91 | + def convert_distortion(model, coeffs): |
| 92 | + if coeffs is None: |
| 93 | + return ('pinhole', None) |
| 94 | + if model == "radial-tangential": |
| 95 | + c1,c2,c3,c4 = coeffs |
| 96 | + return ('brown-conrady', [c1, c2, c3, c4, 0, 0, 0, 0]) |
| 97 | + elif model == "equidistant": |
| 98 | + return ('kannala-brandt4', coeffs) |
| 99 | + else: |
| 100 | + raise ValueError("Unknown distortion model: " + model) |
| 101 | + |
| 102 | + def convert_camera_model(yaml_data): |
| 103 | + intrinsics = yaml_data["intrinsics"] |
| 104 | + out = { |
| 105 | + "focalLengthX": intrinsics[0], |
| 106 | + "focalLengthY": intrinsics[1], |
| 107 | + "principalPointX": intrinsics[2], |
| 108 | + "principalPointY": intrinsics[3], |
| 109 | + "imageWidth": yaml_data["resolution"][0], |
| 110 | + "imageHeight": yaml_data["resolution"][1], |
| 111 | + } |
| 112 | + |
| 113 | + model, coeffs = convert_distortion( |
| 114 | + yaml_data.get("distortion_model"), |
| 115 | + yaml_data.get("distortion_coeffs", yaml_data.get("distortion_coefficients"))) |
| 116 | + |
| 117 | + if 'T_cam_imu' in yaml_data: |
| 118 | + out['imuToCamera'] = yaml_data['T_cam_imu'] |
| 119 | + else: |
| 120 | + if 'T_imu_cam' in yaml_data: |
| 121 | + cam_to_imu = yaml_data['T_imu_cam'] |
| 122 | + elif 'T_BS' in yaml_data: |
| 123 | + cam_to_imu = np.array(yaml_data['T_BS']['data']).reshape((4, 4)) |
| 124 | + else: |
| 125 | + raise ValueError("No IMU to cam transformation found") |
| 126 | + out['imuToCamera'] = np.linalg.inv(cam_to_imu).tolist() |
| 127 | + |
| 128 | + out['model'] = model |
| 129 | + out['distortionCoefficients'] = coeffs |
| 130 | + return out |
| 131 | + |
| 132 | + if stereo: |
| 133 | + cams = [0, 1] |
| 134 | + else: |
| 135 | + cams = [0] |
| 136 | + |
| 137 | + dsoPath = os.path.join(input_dir, 'dso', 'camchain.yaml') |
| 138 | + if os.path.exists(dsoPath): |
| 139 | + with open(dsoPath) as yamlFile: |
| 140 | + data = yaml.load(yamlFile, Loader=yaml.FullLoader) |
| 141 | + for i in cams: |
| 142 | + cam = "cam{}".format(i) |
| 143 | + d = data[cam] |
| 144 | + calibration["cameras"].append(convert_camera_model(d)) |
| 145 | + |
| 146 | + elif os.path.exists(os.path.join(input_dir, 'mav0', 'cam0', 'sensor.yaml')): |
| 147 | + for cam in cams: |
| 148 | + with open(os.path.join(input_dir, 'mav0', 'cam%d' % cam, 'sensor.yaml')) as f: |
| 149 | + p = yaml.load(f, Loader=yaml.FullLoader) |
| 150 | + calibration["cameras"].append(convert_camera_model(p)) |
| 151 | + else: |
| 152 | + print('Warning: no TUM calibration files found') |
| 153 | + return None |
| 154 | + |
| 155 | + return calibration |
| 156 | + |
| 157 | +def convert_with_existing_folders(rawPath, outPath, fps, crf, stereo): |
| 158 | + calibration = get_calibration(rawPath, stereo) |
| 159 | + if calibration is not None: |
| 160 | + with open(os.path.join(outPath, "calibration.json"), "w") as f: |
| 161 | + f.write(json.dumps(calibration, indent=2)) |
| 162 | + |
| 163 | + # The two stereo folder image files seem to be perfectly matched, unlike in the EuRoC data. |
| 164 | + NS_TO_SECONDS = 1000 * 1000 * 1000 # Timestamps are in nanoseconds |
| 165 | + |
| 166 | + # Use images that are present for both cameras. |
| 167 | + # Rename bad files so that they do not match glob `*.png` given for ffmpeg. |
| 168 | + timestamps = [] |
| 169 | + timestamps0 = [] |
| 170 | + timestamps1 = [] |
| 171 | + dir0 = os.path.join(rawPath, 'mav0', 'cam0', 'data') |
| 172 | + dir1 = os.path.join(rawPath, 'mav0', 'cam1', 'data') |
| 173 | + n_bad_frames = 0 |
| 174 | + for filename in os.listdir(dir0): |
| 175 | + timestamps0.append(filename) |
| 176 | + if stereo: |
| 177 | + for filename in os.listdir(dir1): |
| 178 | + timestamps1.append(filename) |
| 179 | + for t in timestamps0: |
| 180 | + if stereo and t not in timestamps1: |
| 181 | + n_bad_frames += 1 |
| 182 | + else: |
| 183 | + timestamps.append(int(os.path.splitext(t)[0])) |
| 184 | + |
| 185 | + temp_dir = None |
| 186 | + if n_bad_frames > 0: |
| 187 | + print('Warning: {} frame(s) are missing in one of the stereo cameras, creating temp dir'.format(n_bad_frames)) |
| 188 | + assert(stereo) |
| 189 | + temp_dir = tempfile.mkdtemp(prefix="fixed_frames_") |
| 190 | + for cam in ["cam0", "cam1"]: |
| 191 | + tmp_cam_dir = os.path.join(temp_dir, cam, 'data') |
| 192 | + os.makedirs(tmp_cam_dir) |
| 193 | + for t in timestamps: |
| 194 | + src = os.path.join(rawPath, 'mav0', cam, 'data', '{}.png'.format(t)) |
| 195 | + dst = os.path.join(tmp_cam_dir, '{}.png'.format(t)) |
| 196 | + shutil.copyfile(src, dst) |
| 197 | + |
| 198 | + # shift timestamps to around zero to avoid floating point accuracy issues. |
| 199 | + timestamps = sorted(timestamps) |
| 200 | + t0 = timestamps[0] |
| 201 | + |
| 202 | + output = [] |
| 203 | + number = 0 |
| 204 | + for timestamp in timestamps: |
| 205 | + t = (timestamp - t0) / NS_TO_SECONDS |
| 206 | + x = { |
| 207 | + "number": number, |
| 208 | + "time": t, |
| 209 | + "frames": [ |
| 210 | + {"cameraInd": 0, "time": t}, |
| 211 | + ], |
| 212 | + } |
| 213 | + if stereo: |
| 214 | + x['frames'].append({"cameraInd": 1, "time": t}) |
| 215 | + output.append(x) |
| 216 | + number += 1 |
| 217 | + |
| 218 | + with open(os.path.join(rawPath, 'mav0', 'imu0', 'data.csv')) as csvfile: |
| 219 | + # timestamp [ns],w_RS_S_x [rad s^-1],w_RS_S_y [rad s^-1],w_RS_S_z [rad s^-1], |
| 220 | + # a_RS_S_x [m s^-2],a_RS_S_y [m s^-2],a_RS_S_z [m s^-2] |
| 221 | + csvreader = csv.reader(csvfile, delimiter=',') |
| 222 | + next(csvreader) # Skip header |
| 223 | + for row in csvreader: |
| 224 | + timestamp = (int(row[0]) - t0) / NS_TO_SECONDS |
| 225 | + output.append({ |
| 226 | + "sensor": { |
| 227 | + "type": "gyroscope", |
| 228 | + "values": [float(row[1]), float(row[2]), float(row[3])] |
| 229 | + }, |
| 230 | + "time": timestamp |
| 231 | + }) |
| 232 | + output.append({ |
| 233 | + "sensor": { |
| 234 | + "type": "accelerometer", |
| 235 | + "values": [float(row[4]), float(row[5]), float(row[6])] |
| 236 | + }, |
| 237 | + "time": timestamp |
| 238 | + }) |
| 239 | + |
| 240 | + gtPath = None |
| 241 | + |
| 242 | + mocapPath = os.path.join(rawPath, 'mav0', 'mocap0', 'data.csv') |
| 243 | + gtStatePath = os.path.join(rawPath, 'mav0', 'state_groundtruth_estimate0', 'data.csv') |
| 244 | + if os.path.exists(mocapPath): |
| 245 | + gtPath = mocapPath |
| 246 | + elif os.path.exists(gtStatePath): |
| 247 | + gtPath = gtStatePath |
| 248 | + |
| 249 | + if gtPath is not None: |
| 250 | + with open(gtPath) as csvfile: |
| 251 | + # timestamp [ns], p_RS_R_x [m], p_RS_R_y [m], p_RS_R_z [m], |
| 252 | + # q_RS_w [], q_RS_x [], q_RS_y [], q_RS_z [] |
| 253 | + csvreader = csv.reader(csvfile, delimiter=',') |
| 254 | + next(csvreader) # Skip header |
| 255 | + for row in csvreader: |
| 256 | + timestamp = (int(row[0]) - t0) / NS_TO_SECONDS |
| 257 | + output.append({ |
| 258 | + "groundTruth": { |
| 259 | + "position": { |
| 260 | + "x": float(row[1]), "y": float(row[2]), "z": float(row[3]) |
| 261 | + }, |
| 262 | + "orientation": { |
| 263 | + "w": float(row[4]), "x": float(row[5]), "y": float(row[6]), "z": float(row[7]) |
| 264 | + } |
| 265 | + }, |
| 266 | + "time": timestamp |
| 267 | + }) |
| 268 | + |
| 269 | + output = sorted(output, key=lambda row: row["time"]) # Sort by time |
| 270 | + with open(os.path.join(outPath, 'data.jsonl'), "w") as f: |
| 271 | + for obj in output: |
| 272 | + f.write(json.dumps(obj, separators=(',', ':'))) |
| 273 | + f.write("\n") |
| 274 | + |
| 275 | + if not stereo: |
| 276 | + # would be nicer if this was not needed |
| 277 | + with open(os.path.join(outPath, 'vio_config.yaml'), 'w') as f: |
| 278 | + f.write('useStereo: false') |
| 279 | + |
| 280 | + if temp_dir is None: |
| 281 | + video_dir = os.path.join(rawPath, 'mav0') |
| 282 | + else: |
| 283 | + video_dir = temp_dir |
| 284 | + try: |
| 285 | + # convert videos last. This is the slowest step |
| 286 | + convertVideo(os.path.join(video_dir, 'cam0', 'data', '*.png'), os.path.join(outPath, 'data.mp4'), fps, crf) |
| 287 | + if stereo: |
| 288 | + convertVideo(os.path.join(video_dir, 'cam1', 'data', '*.png'), os.path.join(outPath, 'data2.mp4'), fps, crf) |
| 289 | + finally: |
| 290 | + if temp_dir: |
| 291 | + shutil.rmtree(temp_dir) |
| 292 | + |
| 293 | + |
| 294 | +def convert(inputPath, outputPath, **kwargs): |
| 295 | + Path(outputPath).mkdir(parents=True, exist_ok=True) |
| 296 | + with maybe_extract_tar_or_zip(inputPath) as path: |
| 297 | + convert_with_existing_folders(path, outputPath, **kwargs) |
| 298 | + |
| 299 | +def convert_cli(args): |
| 300 | + convert(args.input, args.output, fps=args.fps, crf=args.crf, stereo=not args.mono) |
| 301 | + |
| 302 | +def define_subparser(subparsers): |
| 303 | + sub = subparsers.add_parser('tum', |
| 304 | + description="Convert data from TUM format to Spectacular AI format", |
| 305 | + epilog=__doc__, |
| 306 | + formatter_class=argparse.RawDescriptionHelpFormatter) |
| 307 | + sub.set_defaults(func=convert_cli) |
| 308 | + return define_args(sub) |
| 309 | + |
| 310 | +if __name__ == '__main__': |
| 311 | + def parse_args(): |
| 312 | + import argparse |
| 313 | + parser = argparse.ArgumentParser(description=__doc__.strip()) |
| 314 | + define_args(parser) |
| 315 | + return parser.parse_args() |
| 316 | + |
| 317 | + args = parse_args() |
| 318 | + convert_cli(args) |
0 commit comments