You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -14,7 +14,7 @@
14
14
15
15
16
16
# LightGBMLSS - An extension of LightGBM to probabilistic modelling and prediction
17
-
We introduce a comprehensive framework that models and predicts the full conditional distribution of a univariate target as a function of covariate. Choosing from a wide range of continuous, discrete, and mixed discrete-continuous distributions, modelling and predicting the entire conditional distribution greatly enhances the flexibility of LightGBM, as it allows to create probabilistic forecasts from which prediction intervals and quantiles of interest can be derived.
17
+
We introduce a comprehensive framework that models and predicts the full conditional distribution of a univariate target as a function of covariates. Choosing from a wide range of continuous, discrete, and mixed discrete-continuous distributions, modelling and predicting the entire conditional distribution greatly enhances the flexibility of LightGBM, as it allows to create probabilistic forecasts from which prediction intervals and quantiles of interest can be derived.
18
18
19
19
## `Features`
20
20
:white_check_mark: Estimation of all distributional parameters. <br/>
0 commit comments