|
| 1 | +#!/usr/bin/python3 |
| 2 | + |
| 3 | +# Copyright 2015-2017 Francisco Pina Martins <[email protected]> |
| 4 | +# This file is part of speedup_plotter. |
| 5 | +# speedup_plotter is free software: you can redistribute it and/or modify |
| 6 | +# it under the terms of the GNU General Public License as published by |
| 7 | +# the Free Software Foundation, either version 3 of the License, or |
| 8 | +# (at your option) any later version. |
| 9 | + |
| 10 | +# speedup_plotter is distributed in the hope that it will be useful, |
| 11 | +# but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | +# GNU General Public License for more details. |
| 14 | + |
| 15 | +# You should have received a copy of the GNU General Public License |
| 16 | +# along with speedup_plotter. If not, see <http://www.gnu.org/licenses/>. |
| 17 | + |
| 18 | +import matplotlib.pyplot as plt |
| 19 | +import numpy |
| 20 | + |
| 21 | +def data_harverster(datafile_name): |
| 22 | + """ |
| 23 | + Gather speedup data from a csv file and return a np array with it. |
| 24 | + """ |
| 25 | + timearray = numpy.genfromtxt(datafile_name, delimiter=";", autostrip=True, |
| 26 | + dtype=float, skip_header=False, names=True, |
| 27 | + filling_values=False) |
| 28 | + |
| 29 | + return timearray |
| 30 | + |
| 31 | + |
| 32 | +def draw_plot(timearray): |
| 33 | + """ |
| 34 | + Draw a line plot based on speedup data. |
| 35 | + """ |
| 36 | + system_cores = max(map(int, timearray["CPUs"])) |
| 37 | + names = [x for x in timearray.dtype.names if x != "CPUs"] |
| 38 | + linetypes = ("k-", "k:", "k--") |
| 39 | + lines = {k: v for k, v in zip(names, linetypes)} |
| 40 | + plt.axis([1, system_cores + 1, 1, system_cores + 1]) |
| 41 | + for name in names: |
| 42 | + plt.plot(list(map(int, timearray["CPUs"])), timearray[name], |
| 43 | + lines[name], |
| 44 | + fillstyle="full", ms=7, label=name) |
| 45 | + plt.plot(range(1, system_cores + 2), range(1, system_cores + 2), 'k-.', |
| 46 | + label="Linear scaling") |
| 47 | + |
| 48 | + plt.grid(True) |
| 49 | + plt.xlabel("Number of threads") |
| 50 | + plt.ylabel("Speed increase") |
| 51 | + plt.xticks(list(map(int, timearray["CPUs"]))) |
| 52 | + plt.legend(loc=2, fontsize="small") |
| 53 | + plt.savefig(argv[1] + "_plot.svg", format="svg") |
| 54 | + #plt.show() |
| 55 | + |
| 56 | +if __name__ == "__main__": |
| 57 | + from sys import argv |
| 58 | + TIMEARRAY = data_harverster(argv[1]) |
| 59 | + draw_plot(TIMEARRAY) |
0 commit comments