@@ -471,15 +471,288 @@ Based on testing with llama3.1:8b on M4 Max (128GB):
471471- [Memory Management](memory.md)
472472- [Model Management](model-management.md)
473473
474+ # # Quick Start Guide
475+
476+ # ## 🚀 Complete DSPy Optimizer Workflow
477+
478+ Here are ready-to-run commands for each DSPy optimizer. Each example includes pull, compile, optimize, and test steps.
479+
480+ # ### GEPA - Graph Enhanced Prompting Algorithm
481+ **Best for**: Oracle-tier agents, complex reasoning, mathematical problems
482+
483+ ` ` ` bash
484+ # Quick start with GEPA demo agent
485+ super agent pull gepa_demo
486+ super agent compile gepa_demo
487+ super agent optimize gepa_demo --timeout 300
488+ super agent evaluate gepa_demo
489+ super agent run gepa_demo --goal "Demonstrate reflective optimization capabilities"
490+
491+ # Advanced math with GEPA
492+ super agent pull advanced_math_gepa
493+ super agent compile advanced_math_gepa
494+ super agent optimize advanced_math_gepa --timeout 300
495+ super agent run advanced_math_gepa --goal "Solve x² + 5x - 6 = 0 showing all steps"
496+ ` ` `
497+
498+ # ### SIMBA - Stochastic Introspective Mini-Batch Ascent
499+ **Best for**: Performance-critical applications, systematic improvement
500+
501+ ` ` ` bash
502+ # Mathematics problems with SIMBA
503+ super agent pull simba_math
504+ super agent compile simba_math
505+ super agent optimize simba_math --timeout 300
506+ super agent evaluate simba_math
507+ super agent run simba_math --goal "Calculate the area of a circle with radius 7"
508+
509+ # General SIMBA optimization
510+ super agent pull simba_playbook
511+ super agent compile simba_playbook
512+ super agent optimize simba_playbook --timeout 300
513+ super agent run simba_playbook --goal "Optimize reasoning with mini-batch processing"
514+ ` ` `
515+
516+ # ### MIPROv2 - Multi-step Instruction Prompt Optimization
517+ **Best for**: Instruction-following tasks, detailed reasoning
518+
519+ ` ` ` bash
520+ # Mathematics with MIPROv2
521+ super agent pull miprov2_math
522+ super agent compile miprov2_math
523+ super agent optimize miprov2_math --timeout 300
524+ super agent evaluate miprov2_math
525+ super agent run miprov2_math --goal "Solve quadratic equation using multiple methods"
526+
527+ # General MIPROv2 optimization
528+ super agent pull miprov2_playbook
529+ super agent compile miprov2_playbook
530+ super agent optimize miprov2_playbook --timeout 300
531+ super agent run miprov2_playbook --goal "Demonstrate multi-step instruction optimization"
532+ ` ` `
533+
534+ # ### BootstrapFewShot - Traditional Few-Shot Learning
535+ **Best for**: Getting started, reliable baselines, tool-calling agents
536+
537+ ` ` ` bash
538+ # Mathematics with Bootstrap
539+ super agent pull bootstrap_math
540+ super agent compile bootstrap_math
541+ super agent optimize bootstrap_math --timeout 300
542+ super agent evaluate bootstrap_math
543+ super agent run bootstrap_math --goal "Solve algebraic equation with step-by-step explanation"
544+
545+ # General Bootstrap optimization
546+ super agent pull bootstrapfewshot_playbook
547+ super agent compile bootstrapfewshot_playbook
548+ super agent optimize bootstrapfewshot_playbook --timeout 300
549+ super agent run bootstrapfewshot_playbook --goal "Demonstrate traditional few-shot learning"
550+ ` ` `
551+
552+ # ### BetterTogether - Ensemble Few-Shot Learning
553+ **Best for**: Robust performance, collaborative learning
554+
555+ ` ` ` bash
556+ # Mathematics with BetterTogether
557+ super agent pull bettertogether_math
558+ super agent compile bettertogether_math
559+ super agent optimize bettertogether_math --timeout 300
560+ super agent evaluate bettertogether_math
561+ super agent run bettertogether_math --goal "Solve geometry problem using ensemble methods"
562+
563+ # General BetterTogether optimization
564+ super agent pull bettertogether_playbook
565+ super agent compile bettertogether_playbook
566+ super agent optimize bettertogether_playbook --timeout 300
567+ super agent run bettertogether_playbook --goal "Demonstrate ensemble optimization"
568+ ` ` `
569+
570+ # ### COPRO - Collaborative Prompt Optimization
571+ **Best for**: Search-based improvement (requires special setup)
572+
573+ ` ` ` bash
574+ # Set required environment variable
575+ export LITELLM_DROP_PARAMS=true
576+
577+ # Mathematics with COPRO
578+ super agent pull copro_math
579+ super agent compile copro_math
580+ super agent optimize copro_math --timeout 300
581+ super agent evaluate copro_math
582+ super agent run copro_math --goal "Solve calculus problem with collaborative optimization"
583+
584+ # General COPRO optimization
585+ super agent pull copro_playbook
586+ super agent compile copro_playbook
587+ super agent optimize copro_playbook --timeout 300
588+ super agent run copro_playbook --goal "Demonstrate collaborative prompt optimization"
589+ ` ` `
590+
591+ # ### KNNFewShot - K-Nearest Neighbor Learning
592+ **Best for**: Pattern recognition, similarity-based learning
593+
594+ ` ` ` bash
595+ # Mathematics with KNN
596+ super agent pull knn_math
597+ super agent compile knn_math
598+ super agent optimize knn_math --timeout 300
599+ super agent evaluate knn_math
600+ super agent run knn_math --goal "Solve trigonometry using pattern recognition"
601+
602+ # General KNN optimization
603+ super agent pull knnfewshot_playbook
604+ super agent compile knnfewshot_playbook
605+ super agent optimize knnfewshot_playbook --timeout 300
606+ super agent run knnfewshot_playbook --goal "Demonstrate K-nearest neighbor optimization"
607+ ` ` `
608+
609+ # ### LabeledFewShot - Traditional Labeled Learning
610+ **Best for**: Small datasets, simple scenarios
611+
612+ ` ` ` bash
613+ # Traditional labeled learning
614+ super agent pull labeledfewshot_playbook
615+ super agent compile labeledfewshot_playbook
616+ super agent optimize labeledfewshot_playbook --timeout 300
617+ super agent evaluate labeledfewshot_playbook
618+ super agent run labeledfewshot_playbook --goal "Demonstrate traditional labeled few-shot learning"
619+ ` ` `
620+
621+ ---
622+
623+ # ## 📊 Comparison Workflow
624+
625+ Compare multiple optimizers on the same task :
626+
627+ ` ` ` bash
628+ # Test all optimizers on math problems
629+ agents=("bootstrap_math" "bettertogether_math" "simba_math" "miprov2_math")
630+
631+ for agent in "${agents[@]}"; do
632+ echo "Testing $agent optimizer..."
633+ super agent pull $agent
634+ super agent compile $agent
635+ super agent evaluate $agent > baseline_$agent.txt
636+ super agent optimize $agent --timeout 300
637+ super agent evaluate $agent > optimized_$agent.txt
638+ echo "Results saved for $agent"
639+ done
640+
641+ # Compare results
642+ echo "Baseline vs Optimized Performance:"
643+ for agent in "${agents[@]}"; do
644+ echo "=== $agent ==="
645+ echo "Baseline:" && cat baseline_$agent.txt
646+ echo "Optimized:" && cat optimized_$agent.txt
647+ echo ""
648+ done
649+ ` ` `
650+
651+ ---
652+
653+ # ## 🎯 Domain-Specific Quick Starts
654+
655+ # ### For Mathematical Problem Solving
656+ ` ` ` bash
657+ # Try different optimizers for math
658+ super agent pull advanced_math_gepa # GEPA for complex reasoning
659+ super agent pull simba_math # SIMBA for performance
660+ super agent pull miprov2_math # MIPROv2 for instruction clarity
661+ super agent pull bootstrap_math # Bootstrap for reliability
662+
663+ # Pick one and optimize
664+ super agent compile simba_math
665+ super agent optimize simba_math --timeout 300
666+ super agent run simba_math --goal "Find the integral of 2x³ + 3x² - x + 5"
667+ ` ` `
668+
669+ # ### For General Purpose Optimization
670+ ` ` ` bash
671+ # Try general-purpose optimizers
672+ super agent pull gepa_demo # GEPA demonstration
673+ super agent pull simba_playbook # SIMBA optimization
674+ super agent pull bettertogether_playbook # Ensemble methods
675+ super agent pull bootstrapfewshot_playbook # Traditional approach
676+
677+ # Pick one and test
678+ super agent compile bettertogether_playbook
679+ super agent optimize bettertogether_playbook --timeout 300
680+ super agent run bettertogether_playbook --goal "Demonstrate optimization capabilities"
681+ ` ` `
682+
683+ # ### For Tool-Calling Agents (Genies Tier+)
684+ ` ` ` bash
685+ # GEPA doesn't work with tool-calling agents
686+ # Use these optimizers instead:
687+
688+ super agent pull bootstrapfewshot_playbook # Recommended default
689+ super agent compile bootstrapfewshot_playbook
690+ super agent optimize bootstrapfewshot_playbook --timeout 300
691+
692+ # Alternative: SIMBA for complex tool interactions
693+ super agent pull simba_playbook
694+ super agent compile simba_playbook
695+ super agent optimize simba_playbook --timeout 300
696+
697+ # Alternative: BetterTogether for robust tool usage
698+ super agent pull bettertogether_playbook
699+ super agent compile bettertogether_playbook
700+ super agent optimize bettertogether_playbook --timeout 300
701+ ` ` `
702+
703+ ---
704+
705+ # # Available DSPy Optimizer Agents
706+
707+ SuperOptiX provides pre-configured agents demonstrating each DSPy optimizer :
708+
709+ # ## 🧮 Mathematics-Focused Agents
710+
711+ | Agent ID | Optimizer | Best For | Command |
712+ |----------|-----------|----------|---------|
713+ | `bootstrap_math` | BootstrapFewShot | Reliable baselines | `super agent pull bootstrap_math` |
714+ | `bettertogether_math` | BetterTogether | Robust performance | `super agent pull bettertogether_math` |
715+ | `simba_math` | SIMBA | Performance critical | `super agent pull simba_math` |
716+ | `miprov2_math` | MIPROv2 | Instruction clarity | `super agent pull miprov2_math` |
717+ | `copro_math` | COPRO | Search-based optimization | `super agent pull copro_math` |
718+ | `knn_math` | KNNFewShot | Pattern recognition | `super agent pull knn_math` |
719+
720+ # ## 🔧 General Purpose Agents
721+
722+ | Agent ID | Optimizer | Best For | Command |
723+ |----------|-----------|----------|---------|
724+ | `gepa_demo` | GEPA | Complex reasoning demo | `super agent pull gepa_demo` |
725+ | `bootstrapfewshot_playbook` | BootstrapFewShot | Traditional optimization | `super agent pull bootstrapfewshot_playbook` |
726+ | `bettertogether_playbook` | BetterTogether | Ensemble learning | `super agent pull bettertogether_playbook` |
727+ | `simba_playbook` | SIMBA | Advanced optimization | `super agent pull simba_playbook` |
728+ | `miprov2_playbook` | MIPROv2 | Multi-step instructions | `super agent pull miprov2_playbook` |
729+ | `copro_playbook` | COPRO | Collaborative optimization | `super agent pull copro_playbook` |
730+ | `knnfewshot_playbook` | KNNFewShot | Similarity-based learning | `super agent pull knnfewshot_playbook` |
731+ | `labeledfewshot_playbook` | LabeledFewShot | Traditional labeled learning | `super agent pull labeledfewshot_playbook` |
732+
733+ ---
734+
474735# # Examples
475736
476737Explore working examples in `/superoptix/agents/dspy_optimizers/` :
477738
478- - ` gepa_playbook.yaml` - GEPA configuration
739+ # ## Mathematical Problem Solving
740+ - ` bootstrap_math_playbook.yaml` - Traditional few-shot for math
741+ - ` bettertogether_math_playbook.yaml` - Ensemble learning for math
479742- ` simba_math_playbook.yaml` - SIMBA for mathematics
480743- ` miprov2_math_playbook.yaml` - MIPROv2 advanced prompting
481- - ` bootstrap_math_playbook.yaml` - Traditional few-shot
482- - ` bettertogether_math_playbook.yaml` - Ensemble learning
744+ - ` copro_math_playbook.yaml` - Collaborative optimization for math
745+ - ` knn_math_playbook.yaml` - K-nearest neighbor for math
746+
747+ # ## General Purpose Optimization
748+ - ` gepa_playbook.yaml` - GEPA configuration and demonstration
749+ - ` bootstrapfewshot_playbook.yaml` - Traditional few-shot learning
750+ - ` bettertogether_playbook.yaml` - Ensemble learning methods
751+ - ` simba_playbook.yaml` - SIMBA optimization
752+ - ` miprov2_playbook.yaml` - Multi-step instruction optimization
753+ - ` copro_playbook.yaml` - Collaborative prompt optimization
754+ - ` knnfewshot_playbook.yaml` - K-nearest neighbor learning
755+ - ` labeledfewshot_playbook.yaml` - Traditional labeled few-shot
483756
484757# # Contributing
485758
0 commit comments