Skip to content

Commit e4c1453

Browse files
committed
Fix linting issues: reduce errors from 1363 to 87
- Fixed import issues, unused variables, and formatting - Removed deprecated typing imports - Fixed whitespace and trailing spaces - Tests pass successfully (21/21 measurements tests) - Package imports correctly
1 parent ca2550c commit e4c1453

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

41 files changed

+1086
-1072
lines changed

examples/quantum_ml.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -588,12 +588,12 @@ def main():
588588
datasets = generate_quantum_datasets()
589589

590590
# Demonstrate feature maps
591-
feature_maps = demonstrate_feature_maps()
591+
demonstrate_feature_maps()
592592

593593
# Run examples
594594
classification_results = quantum_classification_example(datasets, client)
595595
regression_results = quantum_regression_example(datasets, client)
596-
network_results = quantum_neural_network_example(datasets, client)
596+
quantum_neural_network_example(datasets, client)
597597

598598
# Visualize results
599599
visualize_results(classification_results, regression_results)

examples/vqe_molecule.py

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@
1919
def hydrogen_molecule_hamiltonian():
2020
"""
2121
Create Hamiltonian for H2 molecule in STO-3G basis
22-
22+
2323
This is a simplified 2-qubit Hamiltonian for H2 at equilibrium
2424
bond distance (0.74 Å) using Jordan-Wigner mapping.
2525
"""
@@ -49,11 +49,11 @@ def hydrogen_molecule_hamiltonian():
4949
def create_hardware_efficient_ansatz(num_qubits, num_layers):
5050
"""
5151
Create hardware-efficient ansatz for VQE
52-
52+
5353
Args:
5454
num_qubits: Number of qubits
5555
num_layers: Number of ansatz layers
56-
56+
5757
Returns:
5858
Function that creates ansatz circuit from parameters
5959
"""
@@ -89,7 +89,7 @@ def ansatz(parameters):
8989
def create_uccsd_ansatz(num_qubits):
9090
"""
9191
Create simplified UCCSD (Unitary Coupled Cluster) ansatz
92-
92+
9393
This is a simplified version focusing on single and double excitations
9494
for educational purposes.
9595
"""
@@ -127,13 +127,13 @@ def ansatz(parameters):
127127
def run_vqe_simulation(hamiltonian, ansatz, num_params, client=None):
128128
"""
129129
Run VQE optimization using simulation
130-
130+
131131
Args:
132132
hamiltonian: Target Hamiltonian
133133
ansatz: Parameterized ansatz function
134134
num_params: Number of parameters
135135
client: SuperQuantX client (None for local simulation)
136-
136+
137137
Returns:
138138
VQE results dictionary
139139
"""
@@ -376,7 +376,7 @@ def main():
376376
# Example 4: Advanced features
377377
print("\n\n4. Advanced VQE Features")
378378
print("-" * 25)
379-
feature_results = demonstrate_vqe_features()
379+
demonstrate_vqe_features()
380380

381381
# Example 5: Visualization (if matplotlib available)
382382
try:

src/superquantx/__init__.py

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -1,35 +1,35 @@
11
"""SuperQuantX: Experimental Quantum AI Research Platform.
22
3-
⚠️ RESEARCH SOFTWARE WARNING: This is experimental research software developed by
4-
SuperXLab (Superagentic AI Research Division). NOT intended for production use.
3+
⚠️ RESEARCH SOFTWARE WARNING: This is experimental research software developed by
4+
SuperXLab (Superagentic AI Research Division). NOT intended for production use.
55
For research and educational purposes only.
66
7-
Part of SuperXLab's comprehensive quantum research program - the practical implementation
7+
Part of SuperXLab's comprehensive quantum research program - the practical implementation
88
platform for validating theoretical research in:
99
🔬 Quantum-Inspired Agentic Systems: Superposition, interference, entanglement in agents
10-
🔬 Quantum Neural Networks (QNNs): Hardware-validated quantum neural architectures
10+
🔬 Quantum Neural Networks (QNNs): Hardware-validated quantum neural architectures
1111
🔬 QuantumML for AI Training: Quantum-accelerated machine learning techniques
1212
🔬 Quantinuum Integration: Real hardware validation on H-Series quantum computers
1313
1414
Research Examples:
1515
Experimental quantum agent research:
1616
>>> import superquantx as sqx # EXPERIMENTAL
17-
>>> agent = sqx.QuantumTradingAgent(strategy="quantum_portfolio", backend="simulator")
17+
>>> agent = sqx.QuantumTradingAgent(strategy="quantum_portfolio", backend="simulator")
1818
>>> results = agent.solve(research_data) # Research use only
1919
>>> print(f"Research findings: {results.metadata}")
20-
20+
2121
Quantum neural network experiments:
2222
>>> qnn = sqx.QuantumNN(architecture='hybrid', backend='pennylane') # EXPERIMENTAL
2323
>>> qnn.fit(X_research, y_research) # Research data only
2424
>>> analysis = qnn.analyze_expressivity() # Research analysis
25-
25+
2626
Quantum algorithm benchmarking:
27-
>>> qsvm = sqx.QuantumSVM(backend='simulator') # EXPERIMENTAL
27+
>>> qsvm = sqx.QuantumSVM(backend='simulator') # EXPERIMENTAL
2828
>>> benchmark = sqx.benchmark_algorithm(qsvm, classical_baseline)
2929
"""
3030

3131
import logging
32-
from typing import Any, Dict
32+
from typing import Any
3333

3434
# Core imports - make available at top level
3535
from . import algorithms, backends, cli, datasets, utils
@@ -172,7 +172,7 @@ def get_version() -> str:
172172
"""Get SuperQuantX version."""
173173
return __version__
174174

175-
def get_backend_info() -> Dict[str, Any]:
175+
def get_backend_info() -> dict[str, Any]:
176176
"""Get information about available backends."""
177177
info = {}
178178

0 commit comments

Comments
 (0)