|
| 1 | +.. raw:: html |
| 2 | + |
| 3 | + <div style="display: flex; justify-content: flex-start; align-items: center; margin-bottom: 20px;"> |
| 4 | + <a href="https://colab.research.google.com/github/SylphAI-Inc/AdalFlow/blob/main/notebooks/tutorials/adalflow_rag_documents.ipynb" target="_blank" style="margin-right: 20px;"> |
| 5 | + <img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg" style="height: 20px;"> |
| 6 | + </a> |
| 7 | + |
| 8 | + <a href="https://github.com/SylphAI-Inc/AdalFlow/tree/main/tutorials/adalflow_rag_documents.py" target="_blank" style="display: flex; align-items: center;"> |
| 9 | + <img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" alt="GitHub" style="height: 20px; width: 20px; margin-right: 5px;"> |
| 10 | + <span style="vertical-align: middle;"> Open Source Code</span> |
| 11 | + </a> |
| 12 | + </div> |
| 13 | + |
| 14 | +RAG for documents |
| 15 | +============================= |
| 16 | + |
| 17 | +Overview |
| 18 | +-------- |
| 19 | + |
| 20 | +This implementation showcases an end-to-end RAG system capable of handling large-scale text files and |
| 21 | +generating context-aware responses. It is both modular and extensible, making it adaptable to various |
| 22 | +use cases and LLM APIs. |
| 23 | + |
| 24 | +**Imports** |
| 25 | + |
| 26 | +- **SentenceTransformer**: Used for creating dense vector embeddings for textual data. |
| 27 | +- **FAISS**: Provides efficient similarity search using vector indexing. |
| 28 | +- **tiktoken**: ensures that the text preprocessing aligns with the tokenization requirements of the underlying language models, making the pipeline robust and efficient. |
| 29 | +- **GroqAPIClient and OpenAIClient**: Custom classes for interacting with different LLM providers. |
| 30 | +- **ModelType**: Enum for specifying the model type. |
| 31 | + |
| 32 | +.. code-block:: python |
| 33 | +
|
| 34 | + import os |
| 35 | + import tiktoken |
| 36 | + from typing import List, Dict, Tuple |
| 37 | + import numpy as np |
| 38 | + from sentence_transformers import SentenceTransformer |
| 39 | + from faiss import IndexFlatL2 |
| 40 | +
|
| 41 | + from adalflow.components.model_client import GroqAPIClient, OpenAIClient |
| 42 | + from adalflow.core.types import ModelType |
| 43 | + from adalflow.utils import setup_env |
| 44 | +
|
| 45 | +The ``AdalflowRAGPipeline`` class sets up the Retrieval-Augmented Generation (RAG) pipeline. Its ``__init__`` method initializes key components: |
| 46 | + |
| 47 | +- An embedding model (``all-MiniLM-L6-v2``) is loaded using ``SentenceTransformer`` to convert text into dense vector embeddings with a dimensionality of 384. |
| 48 | +- A FAISS index (``IndexFlatL2``) is created for similarity-based document retrieval. |
| 49 | +- Parameters such as ``top_k_retrieval`` (number of documents to retrieve) and ``max_context_tokens`` (limit on token count in the context) are configured. |
| 50 | +- A tokenizer (``tiktoken``) ensures precise token counting, crucial for handling large language models (LLMs). |
| 51 | + |
| 52 | +The method also initializes storage for documents, their embeddings, and associated metadata for efficient management and retrieval. |
| 53 | + |
| 54 | +The ``AdalflowRAGPipeline`` class provides a flexible pipeline for Retrieval-Augmented Generation (RAG), |
| 55 | +initializing with parameters such as the embedding model (``all-MiniLM-L6-v2`` by default), vector dimension, |
| 56 | +top-k retrieval count, and token limits for context. It utilizes a tokenizer for token counting, a |
| 57 | +SentenceTransformer for embeddings, and a FAISS index for similarity searches, while also maintaining |
| 58 | +document data and metadata. The ``load_text_file`` method processes large text files into manageable chunks |
| 59 | +by splitting the content into fixed line groups, facilitating easier embedding and storage. To handle |
| 60 | +multiple files, ``add_documents_from_directory`` iterates over text files in a directory, embeds the content, |
| 61 | +and stores them in the FAISS index along with metadata. Token counting is achieved via the ``count_tokens`` |
| 62 | +method, leveraging a tokenizer to precisely determine the number of tokens in a given text. The |
| 63 | +``retrieve_and_truncate_context`` method fetches the most relevant documents from the FAISS index based on |
| 64 | +query embeddings, truncating the context to adhere to token limits. Finally, the ``generate_response`` method |
| 65 | +constructs a comprehensive prompt by combining the retrieved context and query, invokes the provided model |
| 66 | +client for a response, and parses the results into a readable format. This pipeline demonstrates seamless |
| 67 | +integration of text retrieval and generation to handle large-scale document queries effectively. |
| 68 | + |
| 69 | + |
| 70 | +.. code-block:: python |
| 71 | +
|
| 72 | + class AdalflowRAGPipeline: |
| 73 | + def __init__(self, |
| 74 | + model_client=None, |
| 75 | + model_kwargs=None, |
| 76 | + embedding_model='all-MiniLM-L6-v2', |
| 77 | + vector_dim=384, |
| 78 | + top_k_retrieval=3, |
| 79 | + max_context_tokens=800): |
| 80 | + """ |
| 81 | + Initialize RAG Pipeline for handling large text files |
| 82 | +
|
| 83 | + Args: |
| 84 | + embedding_model (str): Sentence transformer model for embeddings |
| 85 | + vector_dim (int): Dimension of embedding vectors |
| 86 | + top_k_retrieval (int): Number of documents to retrieve |
| 87 | + max_context_tokens (int): Maximum tokens to send to LLM |
| 88 | + """ |
| 89 | + # Initialize model client for generation |
| 90 | + self.model_client = model_client |
| 91 | +
|
| 92 | + # Initialize tokenizer for precise token counting |
| 93 | + self.tokenizer = tiktoken.get_encoding("cl100k_base") |
| 94 | +
|
| 95 | + # Initialize embedding model |
| 96 | + self.embedding_model = SentenceTransformer(embedding_model) |
| 97 | +
|
| 98 | + # Initialize FAISS index for vector similarity search |
| 99 | + self.index = IndexFlatL2(vector_dim) |
| 100 | +
|
| 101 | + # Store document texts, embeddings, and metadata |
| 102 | + self.documents = [] |
| 103 | + self.document_embeddings = [] |
| 104 | + self.document_metadata = [] |
| 105 | +
|
| 106 | + # Retrieval and context management parameters |
| 107 | + self.top_k_retrieval = top_k_retrieval |
| 108 | + self.max_context_tokens = max_context_tokens |
| 109 | +
|
| 110 | + # Model generation parameters |
| 111 | + self.model_kwargs = model_kwargs |
| 112 | +
|
| 113 | + def load_text_file(self, file_path: str) -> List[str]: |
| 114 | + """ |
| 115 | + Load a large text file and split into manageable chunks |
| 116 | +
|
| 117 | + Args: |
| 118 | + file_path (str): Path to the text file |
| 119 | +
|
| 120 | + Returns: |
| 121 | + List[str]: List of document chunks |
| 122 | + """ |
| 123 | + with open(file_path, 'r', encoding='utf-8') as file: |
| 124 | + # Read entire file |
| 125 | + content = file.read() |
| 126 | +
|
| 127 | + # Split content into chunks (e.g., 10 lines per chunk) |
| 128 | + lines = content.split('\n') |
| 129 | + chunks = [] |
| 130 | + chunk_size = 10 # Adjust based on your file structure |
| 131 | +
|
| 132 | + for i in range(0, len(lines), chunk_size): |
| 133 | + chunk = '\n'.join(lines[i:i+chunk_size]) |
| 134 | + chunks.append(chunk) |
| 135 | +
|
| 136 | + return chunks |
| 137 | +
|
| 138 | + def add_documents_from_directory(self, directory_path: str): |
| 139 | + """ |
| 140 | + Add documents from all text files in a directory |
| 141 | +
|
| 142 | + Args: |
| 143 | + directory_path (str): Path to directory containing text files |
| 144 | + """ |
| 145 | + for filename in os.listdir(directory_path): |
| 146 | + if filename.endswith('.txt'): |
| 147 | + file_path = os.path.join(directory_path, filename) |
| 148 | + document_chunks = self.load_text_file(file_path) |
| 149 | +
|
| 150 | + for chunk in document_chunks: |
| 151 | + # Embed document chunk |
| 152 | + embedding = self.embedding_model.encode(chunk) |
| 153 | +
|
| 154 | + # Add to index and document store |
| 155 | + self.index.add(np.array([embedding])) |
| 156 | + self.documents.append(chunk) |
| 157 | + self.document_embeddings.append(embedding) |
| 158 | + self.document_metadata.append({ |
| 159 | + 'filename': filename, |
| 160 | + 'chunk_index': len(self.document_metadata) |
| 161 | + }) |
| 162 | +
|
| 163 | + def count_tokens(self, text: str) -> int: |
| 164 | + """ |
| 165 | + Count tokens in a given text |
| 166 | +
|
| 167 | + Args: |
| 168 | + text (str): Input text |
| 169 | +
|
| 170 | + Returns: |
| 171 | + int: Number of tokens |
| 172 | + """ |
| 173 | + return len(self.tokenizer.encode(text)) |
| 174 | +
|
| 175 | + def retrieve_and_truncate_context(self, query: str) -> str: |
| 176 | + """ |
| 177 | + Retrieve relevant documents and truncate to fit token limit |
| 178 | +
|
| 179 | + Args: |
| 180 | + query (str): Input query |
| 181 | +
|
| 182 | + Returns: |
| 183 | + str: Concatenated context within token limit |
| 184 | + """ |
| 185 | + # Retrieve relevant documents |
| 186 | + query_embedding = self.embedding_model.encode(query) |
| 187 | + distances, indices = self.index.search( |
| 188 | + np.array([query_embedding]), |
| 189 | + self.top_k_retrieval |
| 190 | + ) |
| 191 | +
|
| 192 | + # Collect and truncate context |
| 193 | + context = [] |
| 194 | + current_tokens = 0 |
| 195 | +
|
| 196 | + for idx in indices[0]: |
| 197 | + doc = self.documents[idx] |
| 198 | + doc_tokens = self.count_tokens(doc) |
| 199 | +
|
| 200 | + # Check if adding this document would exceed token limit |
| 201 | + if current_tokens + doc_tokens <= self.max_context_tokens: |
| 202 | + context.append(doc) |
| 203 | + current_tokens += doc_tokens |
| 204 | + else: |
| 205 | + break |
| 206 | +
|
| 207 | + return "\n\n".join(context) |
| 208 | +
|
| 209 | + def generate_response(self, query: str) -> str: |
| 210 | + """ |
| 211 | + Generate a response using retrieval-augmented generation |
| 212 | +
|
| 213 | + Args: |
| 214 | + query (str): User's input query |
| 215 | +
|
| 216 | + Returns: |
| 217 | + str: Generated response incorporating retrieved context |
| 218 | + """ |
| 219 | + # Retrieve and truncate context |
| 220 | + retrieved_context = self.retrieve_and_truncate_context(query) |
| 221 | +
|
| 222 | + # Construct context-aware prompt |
| 223 | + full_prompt = f""" |
| 224 | + Context Documents: |
| 225 | + {retrieved_context} |
| 226 | +
|
| 227 | + Query: {query} |
| 228 | +
|
| 229 | + Generate a comprehensive response that: |
| 230 | + 1. Directly answers the query |
| 231 | + 2. Incorporates relevant information from the context documents |
| 232 | + 3. Provides clear and concise information |
| 233 | + """ |
| 234 | +
|
| 235 | + # Prepare API arguments |
| 236 | + api_kwargs = self.model_client.convert_inputs_to_api_kwargs( |
| 237 | + input=full_prompt, |
| 238 | + model_kwargs=self.model_kwargs, |
| 239 | + model_type=ModelType.LLM |
| 240 | + ) |
| 241 | +
|
| 242 | + # Call API and parse response |
| 243 | + response = self.model_client.call( |
| 244 | + api_kwargs=api_kwargs, |
| 245 | + model_type=ModelType.LLM |
| 246 | + ) |
| 247 | + response_text = self.model_client.parse_chat_completion(response) |
| 248 | +
|
| 249 | + return response_text |
| 250 | +
|
| 251 | +The ``run_rag_pipeline`` function demonstrates how to use the ``AdalflowRAGPipeline``. It initializes the pipeline, |
| 252 | +adds documents from a directory, and generates responses for a list of user queries. The function is generic |
| 253 | +and can accommodate various LLM API clients, such as GroqAPIClient or OpenAIClient, highlighting the pipeline's |
| 254 | +flexibility and modularity. |
| 255 | + |
| 256 | + |
| 257 | +.. code-block:: python |
| 258 | +
|
| 259 | + def run_rag_pipeline(model_client, model_kwargs, documents, queries): |
| 260 | +
|
| 261 | + # Example usage of RAG pipeline |
| 262 | + rag_pipeline = AdalflowRAGPipeline( |
| 263 | + model_client=model_client, |
| 264 | + model_kwargs=model_kwargs, |
| 265 | + top_k_retrieval=1, # Retrieve top 1 most relevant chunks |
| 266 | + max_context_tokens=800 # Limit context to 1500 tokens |
| 267 | + ) |
| 268 | +
|
| 269 | + # Add documents from a directory of text files |
| 270 | + rag_pipeline.add_documents_from_directory(documents) |
| 271 | +
|
| 272 | + # Generate responses |
| 273 | + for query in queries: |
| 274 | + print(f"\nQuery: {query}") |
| 275 | + response = rag_pipeline.generate_response(query) |
| 276 | + print(f"Response: {response}") |
| 277 | +
|
| 278 | +
|
| 279 | +This block provides an example of running the pipeline with different models and queries. It specifies: |
| 280 | + |
| 281 | +- The document directory containing the text files. |
| 282 | +- Example queries about topics such as the "Crystal Cavern" and "rare trees in Elmsworth." |
| 283 | +- Configuration for Groq and OpenAI model parameters, including the model type, temperature, and token limits. |
| 284 | + |
| 285 | +.. code-block:: python |
| 286 | +
|
| 287 | + documents = '../../tutorials/assets/documents' |
| 288 | +
|
| 289 | + queries = [ |
| 290 | + "What year was the Crystal Cavern discovered?", |
| 291 | + "What is the name of the rare tree in Elmsworth?", |
| 292 | + "What local legend claim that Lunaflits surrounds?" |
| 293 | + ] |
| 294 | +
|
| 295 | + groq_model_kwargs = { |
| 296 | + "model": "llama-3.2-1b-preview", # Use 16k model for larger context |
| 297 | + "temperature": 0.1, |
| 298 | + "max_tokens": 800, |
| 299 | + } |
| 300 | +
|
| 301 | + openai_model_kwargs = { |
| 302 | + "model": "gpt-3.5-turbo", |
| 303 | + "temperature": 0.1, |
| 304 | + "max_tokens": 800, |
| 305 | + } |
| 306 | + # Below example shows that adalflow can be used in a genric manner for any api provider |
| 307 | + # without worrying about prompt and parsing results |
| 308 | + run_rag_pipeline(GroqAPIClient(), groq_model_kwargs, documents, queries) |
| 309 | + run_rag_pipeline(OpenAIClient(), openai_model_kwargs, documents, queries) |
| 310 | +
|
| 311 | +The example emphasizes that ``AdalflowRAGPipeline`` can interact seamlessly with multiple API providers, |
| 312 | +enabling integration with diverse LLMs without modifying the core logic for prompt construction or |
| 313 | +response parsing. |
| 314 | + |
| 315 | + |
| 316 | +.. admonition:: API reference |
| 317 | + :class: highlight |
| 318 | + |
| 319 | + - :class:`utils.setup_env` |
| 320 | + - :class:`core.types.ModelType` |
| 321 | + - :class:`components.model_client.OpenAIClient` |
| 322 | + - :class:`components.model_client.GroqAPIClient` |
0 commit comments