You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Training large AI models on numerous GPUs consumes a massive amount of energy, making power delivery one of the largest limiting factors in building and operating datacenters for AI workloads. However, we observe that not all energy consumed during training directly contributes to end-to-end throughput; a significant portion can be removed without slowing down training. We call this portion energy bloat.
1702
+
1703
+
In this work, we identify two independent sources of energy bloat in large model training and propose Perseus, a training system that mitigates both. To do this, Perseus obtains the time–energy tradeoff frontier of a large model training job using an efficient graph cut-based algorithm, and schedules computation energy consumption across time to reduce both types of energy bloat. Evaluation on large models, including GPT-3 and Bloom, shows that Perseus reduces the energy consumption of large model training by up to 30% without any throughput loss or hardware modification.
1704
+
}}
1705
+
1685
1706
@Article{llm-survey:arxiv23,
1686
1707
author = {Zhongwei Wan and Xin Wang and Che Liu and Samiul Alam and Yu Zheng and Zhongnan Qu and Shen Yan and Yi Zhu and Quanlu Zhang and Mosharaf Chowdhury and Mi Zhang},
0 commit comments