|
23 | 23 | ] |
24 | 24 | }, |
25 | 25 | "work": [ |
| 26 | + { |
| 27 | + "name": "BEST S.A.", |
| 28 | + "position": "Data Governance Specialist", |
| 29 | + "url": "https://www.best.com.pl", |
| 30 | + "startDate": "2024-02-01", |
| 31 | + "endDate": "", |
| 32 | + "summary": "", |
| 33 | + "highlights": [ |
| 34 | + |
| 35 | + ] |
| 36 | + }, |
26 | 37 | { |
27 | 38 | "name": "Hogart/Pernod Ricard", |
28 | 39 | "position": "Data Consultant", |
|
100 | 111 | "volunteer": [ |
101 | 112 | { |
102 | 113 | "organization": "L!der", |
103 | | - "location": "Zurich, Switzerland", |
| 114 | + "location": "Gdansk, Poland", |
104 | 115 | "position": "Członek", |
105 | 116 | "url": "", |
106 | 117 | "startDate": "2019-10-01", |
|
137 | 148 | } |
138 | 149 | ], |
139 | 150 | "certificates": [ |
| 151 | + { |
| 152 | + "name": "Ataccama Data Quality", |
| 153 | + "date": "2025-01-15", |
| 154 | + "issuer": "Ataccama", |
| 155 | + "url":"", |
| 156 | + "icon":"" |
| 157 | + }, |
140 | 158 | { |
141 | 159 | "name": "Machine Learning", |
142 | 160 | "date": "2018-01-01", |
|
186 | 204 | ], |
187 | 205 | "skills": [ |
188 | 206 | { |
189 | | - |
| 207 | + "name": "AI Companionship", |
| 208 | + "level": "Prompt Engineer", |
| 209 | + "icon": "fa-solid fa-robot", |
| 210 | + "keywords": [ |
| 211 | + "LLM Whispering", |
| 212 | + "Neural Network Taming", |
| 213 | + "Generative AI Storytelling", |
| 214 | + "NLP Conversation Mastery", |
| 215 | + "AI Model Fine-tuning", |
| 216 | + "Prompt Craftsmanship" |
| 217 | + ] |
| 218 | + }, |
| 219 | + { |
| 220 | + "name": "Polish Data Explorer", |
| 221 | + "level": "National Statistician", |
| 222 | + "icon": "fa-solid fa-magnifying-glass-chart", |
| 223 | + "keywords": [ |
| 224 | + "Cultural Pattern Mining", |
| 225 | + "Regional Trend Spotting", |
| 226 | + "Survey Design Architecture", |
| 227 | + "Opinion Data Cartography", |
| 228 | + "Demographic Insight Extraction", |
| 229 | + "Statistical Storytelling" |
| 230 | + ] |
| 231 | + }, |
| 232 | + { |
| 233 | + "name": "Digital Homesteading", |
| 234 | + "level": "Self-Hosting Settler", |
| 235 | + "icon": "fa-solid fa-server", |
| 236 | + "keywords": [ |
| 237 | + "Homelab Ecosystem Building", |
| 238 | + "Container Orchestration Ranching", |
| 239 | + "Virtual Machine Breeding", |
| 240 | + "Network Infrastructure Cultivation", |
| 241 | + "Open Source Harvesting", |
| 242 | + "Data Privacy Fortification" |
| 243 | + ] |
190 | 244 | } |
191 | 245 | ], |
192 | 246 | "languages": [ |
|
203 | 257 | ], |
204 | 258 | "interests": [ |
205 | 259 | { |
| 260 | + "name": "Data Science", |
| 261 | + "icon": "fa-solid fa-tag", |
| 262 | + "keywords": [ |
| 263 | + "Machine Learning", |
| 264 | + "Data Engineering", |
| 265 | + "Statistical Models" |
| 266 | + ] |
| 267 | + }, |
| 268 | + { |
| 269 | + "name": "Data Stats", |
| 270 | + "icon": "fa-solid fa-tag", |
| 271 | + "keywords": [ |
| 272 | + "La Liga History", |
| 273 | + "Sports Analytics", |
| 274 | + "Historical Sports Data" |
| 275 | + ] |
| 276 | + }, |
| 277 | + { |
| 278 | + "name": "Artificial Intelligence", |
| 279 | + "icon": "fa-solid fa-tag", |
| 280 | + "keywords": [ |
| 281 | + "Machine Learning", |
| 282 | + "Natural Language Processing", |
| 283 | + "Generative AI" |
| 284 | + ] |
| 285 | + }, |
| 286 | + { |
| 287 | + "name": "Self-Hosting", |
| 288 | + "icon": "fa-solid fa-tag", |
| 289 | + "keywords": [ |
| 290 | + "Docker", |
| 291 | + "Data Privacy", |
| 292 | + "Open Source Solutions", |
| 293 | + "Local LLMs" |
| 294 | + ] |
206 | 295 |
|
207 | | - |
208 | 296 | } |
209 | 297 | ], |
210 | 298 | "references": [ |
211 | 299 |
|
212 | 300 | ], |
213 | 301 | "projects": [ |
214 | | - |
| 302 | + { |
| 303 | + "name": "bAIka - AI Stories", |
| 304 | + "summary": "Projekt wykorzystujący sztuczną inteligencję do tworzenia spersonalizowanych opowieści i narracji.", |
| 305 | + "highlights": ["Natural Language Generation", "Interactive Storytelling", "User Customization", "Polish Language Support"], |
| 306 | + "startDate": "2024-01-01", |
| 307 | + "endDate": "Present", |
| 308 | + "url": "https://baika.skszymon.com" |
| 309 | + }, |
| 310 | + { |
| 311 | + "name": "La Liga Historical Data Analysis", |
| 312 | + "summary": "Projekt analizy danych skupiający się na meczach La Liga sięgających lat 90. Projekt obejmuje zbieranie danych, czyszczenie, wizualizację i ostatecznie modelowanie predykcyjne w celu odkrycia historycznych trendów i wzorców w hiszpańskiej piłce nożnej.", |
| 313 | + "highlights": ["Sports Analytics", "Historical Data Visualization", "Statistical Modeling", "Interactive Dashboard", "Football Performance Metrics"], |
| 314 | + "startDate": "2023-06-01", |
| 315 | + "endDate": "Present", |
| 316 | + "url": "" |
| 317 | + }, |
| 318 | + { |
| 319 | + "name": "Polish Job Market Scraper", |
| 320 | + "summary": "Zautomatyzowane narzędzie, które scrapuje i analizuje oferty pracy z polskiego rynku, ze szczególnym uwzględnieniem stanowisk z zakresu inżynierii danych i data science. Projekt pomaga śledzić trendy rynkowe, zakresy wynagrodzeń i wymagane umiejętności w polskiej branży technologicznej.", |
| 321 | + "highlights": ["Web Scraping", "Data Engineering", "Market Analysis", "Automated Reporting", "Skills Gap Analysis"], |
| 322 | + "startDate": "2022-09-01", |
| 323 | + "endDate": "Present", |
| 324 | + "url": "" |
| 325 | + }, |
| 326 | + { |
| 327 | + "name": "Poland Statistical Survey Forms", |
| 328 | + "summary": "Projekt zbierania danych skoncentrowany na gromadzeniu interesujących statystyk o Polsce poprzez specjalnie zaprojektowane formularze ankietowe. Projekt zbiera odpowiedzi od różnych grup demograficznych, aby zbudować kompleksowy zbiór danych na temat różnych aspektów polskiego życia, kultury i społeczeństwa.", |
| 329 | + "highlights": ["Statistical Analysis", "Data Collection", "Survey Design", "Demographic Insights", "Public Opinion Tracking", "Regional Comparisons"], |
| 330 | + "startDate": "2023-11-01", |
| 331 | + "endDate": "Present", |
| 332 | + "url": "https://malystatystyk.skszymon.com" |
| 333 | + } |
215 | 334 | ] |
216 | 335 | } |
0 commit comments