Skip to content

Commit e01921e

Browse files
author
coverney
committed
Added DataFile objects to TASBE tutorials
1 parent 7b4c845 commit e01921e

File tree

3 files changed

+25
-25
lines changed

3 files changed

+25
-25
lines changed

01_flow_cytometry/exercises.m

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -15,11 +15,11 @@
1515
% Examples of flow data (Fig1 to Fig4)
1616
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1717
% pure scatter - often hard to interpret
18-
fcs_scatter([dosedata 'LacI-CAGop_C4_P3.fcs'],'PE-Tx-Red-YG-A','Pacific Blue-A',0,[0 0; 6 6],1); % Fig1
19-
fcs_scatter([colordata '07-29-11_EYFP_P3.fcs'],'FITC-A','Pacific Blue-A',0,[0 0; 6 6],1); % Fig2
18+
fcs_scatter(DataFile('fcs', [dosedata 'LacI-CAGop_C4_P3.fcs']),'PE-Tx-Red-YG-A','Pacific Blue-A',0,[0 0; 6 6],1); % Fig1
19+
fcs_scatter(DataFile('fcs', [colordata '07-29-11_EYFP_P3.fcs']),'FITC-A','Pacific Blue-A',0,[0 0; 6 6],1); % Fig2
2020
% smoothed density plot omits details but often summarizes collective better
21-
data1 = fcs_scatter([dosedata 'LacI-CAGop_C4_P3.fcs'],'PE-Tx-Red-YG-A','Pacific Blue-A',1,[0 0; 6 6],1); % Fig3
22-
data2 = fcs_scatter([colordata '07-29-11_EYFP_P3.fcs'],'FITC-A','Pacific Blue-A',1,[0 0; 6 6],1); % Fig4
21+
data1 = fcs_scatter(DataFile('fcs', [dosedata 'LacI-CAGop_C4_P3.fcs']),'PE-Tx-Red-YG-A','Pacific Blue-A',1,[0 0; 6 6],1); % Fig3
22+
data2 = fcs_scatter(DataFile('fcs', [colordata '07-29-11_EYFP_P3.fcs']),'FITC-A','Pacific Blue-A',1,[0 0; 6 6],1); % Fig4
2323

2424
% Things to notice:
2525
% - look at the size of data1 and data2: there's a *LOT* of points in these samples
@@ -91,10 +91,10 @@
9191

9292
CM = ColorModel('','',channels,colorfiles,{}); % simplified ColorModel, more features will be introduced in future tutorials
9393

94-
filtered = read_filtered_au(CM,[colordata '07-29-11_EYFP_P3.fcs']); % applies any filters set in ColorModel
94+
filtered = read_filtered_au(CM,DataFile('fcs', [colordata '07-29-11_EYFP_P3.fcs'])); % applies any filters set in ColorModel
9595

9696
CM = set_dequantization(CM,true); % dequantization adds noise to spread the data out more, especially useful at low levels
97-
[dequantized hdr] = read_filtered_au(CM,[dosedata 'LacI-CAGop_C4_P3.fcs']);
97+
[dequantized hdr] = read_filtered_au(CM,DataFile('fcs', [dosedata 'LacI-CAGop_C4_P3.fcs']));
9898
xc = dequantized(:,10); yc = dequantized(:,11);
9999
pos = xc>0 & yc>0;
100100
figure; smoothhist2D(log10([xc(pos) yc(pos)]),10,[200, 200],[],'image',[0 0; 6 6]); % Fig5

02_flow_compensation/exercises.m

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -16,21 +16,21 @@
1616
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1717
% Let's look at some single-color positive controls:
1818
% no significant spectral overlap
19-
fcs_scatter([colordata '07-29-11_EYFP_P3.fcs'],'FITC-A','Pacific Blue-A',1,[0 0; 6 6],1); % Fig1
19+
fcs_scatter(DataFile('fcs', [colordata '07-29-11_EYFP_P3.fcs']),'FITC-A','Pacific Blue-A',1,[0 0; 6 6],1); % Fig1
2020
% minor spectral overlap
21-
fcs_scatter([colordata '07-29-11_EYFP_P3.fcs'],'FITC-A','PE-TxRed YG-A',1,[0 0; 6 6],1); % Fig2
21+
fcs_scatter(DataFile('fcs', [colordata '07-29-11_EYFP_P3.fcs']),'FITC-A','PE-TxRed YG-A',1,[0 0; 6 6],1); % Fig2
2222
% significant spectral overlap
23-
fcs_scatter([colordata '07-29-11_mkate_P3.fcs'],'PE-TxRed YG-A','FITC-A',1,[0 0; 6 6],1); % Fig3
24-
fcs_scatter([colordata '07-29-11_EYFP_P3.fcs'],'FITC-A','AmCyan-A',1,[0 0; 6 6],1); % Fig4
23+
fcs_scatter(DataFile('fcs', [colordata '07-29-11_mkate_P3.fcs']),'PE-TxRed YG-A','FITC-A',1,[0 0; 6 6],1); % Fig3
24+
fcs_scatter(DataFile('fcs', [colordata '07-29-11_EYFP_P3.fcs']),'FITC-A','AmCyan-A',1,[0 0; 6 6],1); % Fig4
2525
% massive spectral overlap
26-
fcs_scatter([colordata '07-29-11_EBFP2_P3.fcs'],'Pacific Blue-A','AmCyan-A',1,[0 0; 6 6],1); % Fig5
26+
fcs_scatter(DataFile('fcs', [colordata '07-29-11_EBFP2_P3.fcs']),'Pacific Blue-A','AmCyan-A',1,[0 0; 6 6],1); % Fig5
2727

2828
% let's look at some of these without blending (plot 'density' set to 0):
29-
fcs_scatter([colordata '07-29-11_EYFP_P3.fcs'],'FITC-A','PE-TxRed YG-A',0,[0 0; 6 6],1); % Fig6
30-
fcs_scatter([colordata '07-29-11_EYFP_P3.fcs'],'FITC-A','AmCyan-A',0,[0 0; 6 6],1); % Fig7
31-
fcs_scatter([colordata '07-29-11_EBFP2_P3.fcs'],'Pacific Blue-A','AmCyan-A',0,[0 0; 6 6],1); % Fig8
29+
fcs_scatter(DataFile('fcs', [colordata '07-29-11_EYFP_P3.fcs']),'FITC-A','PE-TxRed YG-A',0,[0 0; 6 6],1); % Fig6
30+
fcs_scatter(DataFile('fcs', [colordata '07-29-11_EYFP_P3.fcs']),'FITC-A','AmCyan-A',0,[0 0; 6 6],1); % Fig7
31+
fcs_scatter(DataFile('fcs', [colordata '07-29-11_EBFP2_P3.fcs']),'Pacific Blue-A','AmCyan-A',0,[0 0; 6 6],1); % Fig8
3232
% notice that these are extremely tight compared to a two-color experiment:
33-
fcs_scatter([colordata '2012-03-12_EBFP2_EYFP_P3.fcs'],'Pacific Blue-A','FITC-A',0,[0 0; 6 6],1); % Fig9
33+
fcs_scatter(DataFile('fcs', [colordata '2012-03-12_EBFP2_EYFP_P3.fcs']),'Pacific Blue-A','FITC-A',0,[0 0; 6 6],1); % Fig9
3434

3535
% What does autofluorescence look like?
3636
[raw hdr data] = fca_readfcs([colordata '07-29-11_blank_P3.fcs']);
@@ -42,8 +42,8 @@
4242
% of autofluorescence and instrument error. There is not currently any elegant way of separating these.
4343

4444
% fit to a gaussian model:
45-
mu = mean(data(:,10))
46-
sigma = std(data(:,10))
45+
mu = mean(data(:,10));
46+
sigma = std(data(:,10));
4747

4848
% Notice that the fit to a gaussian is pretty good:
4949
range = -100:5:150;
@@ -115,7 +115,7 @@
115115
CM = set_ERF_channel_name(CM, 'FITC-A'); % We'll explain this in the next exercise
116116

117117
% Now let's read some files...
118-
raw = read_filtered_au(CM,[dosedata 'LacI-CAGop_C3_P3.fcs']);
118+
raw = read_filtered_au(CM,DataFile('fcs', [dosedata 'LacI-CAGop_C3_P3.fcs']));
119119
% compensated = readfcs_compensated_au(CM,[dosedata 'LacI-CAGop_C3_P3.fcs'],0,1);
120120
% You should see an error: need to "resolve" the color model first! Comment
121121
% out above line of code and run again.
@@ -160,7 +160,7 @@
160160
% even when it can be compensated for.
161161

162162

163-
compensated = readfcs_compensated_au(CM,[dosedata 'LacI-CAGop_C3_P3.fcs'],0,1);
163+
compensated = readfcs_compensated_au(CM,DataFile('fcs', [dosedata 'LacI-CAGop_C3_P3.fcs']),0,1);
164164
% The last two arguments are:
165165
% 1) Whether to add autofluorescence back in after reading (generally not done)
166166
% 2) Whether to map all values <= 0 to 1 (which is zero on the log scale)

03_flow_MEFL/exercises.m

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -15,9 +15,9 @@
1515
% Calibration beads (Plots folder and Fig1 to Fig4):
1616
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1717
% Let's look at an example of SpheroTech RCP-30-5A calibration beads:
18-
fcs_scatter([colordata '2012-03-12_Beads_P3.fcs'],'Pacific Blue-A','PE-Tx-Red-YG-A',1,[0 0; 6 6],1); % Fig1
18+
fcs_scatter(DataFile('fcs', [colordata '2012-03-12_Beads_P3.fcs']),'Pacific Blue-A','PE-Tx-Red-YG-A',1,[0 0; 6 6],1); % Fig1
1919
% and without blending (density is 0)...
20-
fcs_scatter([colordata '2012-03-12_Beads_P3.fcs'],'Pacific Blue-A','PE-Tx-Red-YG-A',0,[0 0; 6 6],1); % Fig2
20+
fcs_scatter(DataFile('fcs', [colordata '2012-03-12_Beads_P3.fcs']),'Pacific Blue-A','PE-Tx-Red-YG-A',0,[0 0; 6 6],1); % Fig2
2121
% Notice that there is a nice, nearly linear sequence of 5 peaks
2222
% the last one (bottom left) is pretty blurry, as it comes down into
2323
% autofluorescence (failed transfection)
@@ -31,8 +31,8 @@
3131
% down near the bottom instead.
3232

3333
% Let's take a look at a different pair of channels:
34-
fcs_scatter([colordata '2012-03-12_Beads_P3.fcs'],'PE-Tx-Red-YG-A','FITC-A',1,[0 0; 6 6],1); % Fig3
35-
fcs_scatter([colordata '2012-03-12_Beads_P3.fcs'],'PE-Tx-Red-YG-A','FITC-A',0,[0 0; 6 6],1); % Fig4
34+
fcs_scatter(DataFile('fcs', [colordata '2012-03-12_Beads_P3.fcs']),'PE-Tx-Red-YG-A','FITC-A',1,[0 0; 6 6],1); % Fig3
35+
fcs_scatter(DataFile('fcs', [colordata '2012-03-12_Beads_P3.fcs']),'PE-Tx-Red-YG-A','FITC-A',0,[0 0; 6 6],1); % Fig4
3636
% Notice that the relationship of the peaks is not linear any more.
3737
% This is because the FITC peaks are much lower, and are blurring into autofluorescence
3838
% Thus, we need to calibrate using only peaks far from autofluorescence.
@@ -147,9 +147,9 @@
147147

148148
% We recommend 3 colors as best practices:
149149
% Let's look at such a multi-color control file:
150-
fcs_scatter([colordata '2012-03-12_mkate_EBFP2_EYFP_P3.fcs'],'FITC-A','Pacific Blue-A',1,[0 0; 6 6],1); % Fig5
150+
fcs_scatter(DataFile('fcs', [colordata '2012-03-12_mkate_EBFP2_EYFP_P3.fcs']),'FITC-A','Pacific Blue-A',1,[0 0; 6 6],1); % Fig5
151151
% and without blending...
152-
fcs_scatter([colordata '2012-03-12_mkate_EBFP2_EYFP_P3.fcs'],'FITC-A','Pacific Blue-A',0,[0 0; 6 6],1); % Fig6
152+
fcs_scatter(DataFile('fcs', [colordata '2012-03-12_mkate_EBFP2_EYFP_P3.fcs']),'FITC-A','Pacific Blue-A',0,[0 0; 6 6],1); % Fig6
153153
% Notice that it's only nicely linear for the higher levels,
154154
% and that it's much smearier than our compensation controls
155155
% The first is what set_translation_channel_min is for

0 commit comments

Comments
 (0)