|
| 1 | +# # qsub -I -P xv83 -q express -l mem=47GB -l storage=scratch/gh0+scratch/xv83 -l walltime=01:00:00 -l ncpus=12 |
| 2 | +# # This is Fig. 1 in Pasquier et al. (GRL, 2025) |
| 3 | + |
| 4 | +# using Pkg |
| 5 | +# Pkg.activate(".") |
| 6 | +# Pkg.instantiate() |
| 7 | + |
| 8 | +# using OceanTransportMatrixBuilder |
| 9 | +# using NetCDF |
| 10 | +# using YAXArrays |
| 11 | +# using DataFrames |
| 12 | +# using DimensionalData |
| 13 | +# # using SparseArrays |
| 14 | +# # using LinearAlgebra |
| 15 | +# using Unitful |
| 16 | +# using Unitful: s, yr |
| 17 | +# try |
| 18 | +# using CairoMakie |
| 19 | +# catch |
| 20 | +# using CairoMakie |
| 21 | +# end |
| 22 | +# using GeoMakie |
| 23 | +# using Interpolations |
| 24 | +# using OceanBasins |
| 25 | +# using Statistics |
| 26 | +# using NaNStatistics |
| 27 | +# using StatsBase |
| 28 | +# using FileIO |
| 29 | +# using Contour |
| 30 | +# using GeometryBasics |
| 31 | +# using GeometryOps |
| 32 | +# using LibGEOS |
| 33 | +# using Format |
| 34 | + |
| 35 | +# model = "ACCESS-ESM1-5" |
| 36 | + |
| 37 | +# time_window_1850s = "Jan1850-Dec1859" |
| 38 | +# time_window_2030s = "Jan2030-Dec2039" |
| 39 | +# time_window_2090s = "Jan2090-Dec2099" |
| 40 | +# time_windows = ["1850s", "2030s", "2090s"] |
| 41 | +# experiments = ["historical", "ssp370", "ssp370"] |
| 42 | +# experiments2 = ["historical", "SSP3-7.0", "SSP3-7.0"] |
| 43 | + |
| 44 | +# members = ["r$(r)i1p1f1" for r in 1:40] |
| 45 | +# # members = ["r$(r)i1p1f1" for r in 1:3] |
| 46 | + |
| 47 | +# # Load areacello and volcello for grid geometry |
| 48 | +# fixedvarsinputdir = "/scratch/xv83/TMIP/data/$model" |
| 49 | +# volcello_ds = open_dataset(joinpath(fixedvarsinputdir, "volcello.nc")) |
| 50 | +# areacello_ds = open_dataset(joinpath(fixedvarsinputdir, "areacello.nc")) |
| 51 | + |
| 52 | +# # Load fixed variables in memory |
| 53 | +# areacello = readcubedata(areacello_ds.areacello) |
| 54 | +# volcello = readcubedata(volcello_ds.volcello) |
| 55 | +# lon = readcubedata(volcello_ds.lon) |
| 56 | +# lat = readcubedata(volcello_ds.lat) |
| 57 | +# lev = volcello_ds.lev |
| 58 | +# # Identify the vertices keys (vary across CMIPs / models) |
| 59 | +# volcello_keys = propertynames(volcello_ds) |
| 60 | +# lon_vertices_key = volcello_keys[findfirst(x -> occursin("lon", x) & occursin("vert", x), string.(volcello_keys))] |
| 61 | +# lat_vertices_key = volcello_keys[findfirst(x -> occursin("lat", x) & occursin("vert", x), string.(volcello_keys))] |
| 62 | +# lon_vertices = readcubedata(getproperty(volcello_ds, lon_vertices_key)) |
| 63 | +# lat_vertices = readcubedata(getproperty(volcello_ds, lat_vertices_key)) |
| 64 | +# # Make makegridmetrics |
| 65 | +# gridmetrics = makegridmetrics(; areacello, volcello, lon, lat, lev, lon_vertices, lat_vertices) |
| 66 | +# (; lon_vertices, lat_vertices, lon, lat, zt, v3D, thkcello, Z3D) = gridmetrics |
| 67 | +# lev = zt |
| 68 | +# # Make indices |
| 69 | +# indices = makeindices(gridmetrics.v3D) |
| 70 | +# (; wet3D, N) = indices |
| 71 | + |
| 72 | +# experiment_dir = "/scratch/xv83/TMIP/data/$model/$(experiments[1])" |
| 73 | +# mlotst_files_1850s = [joinpath(experiment_dir, member, time_window_1850s, "cyclomonth", "mlotst.nc") for member in members] |
| 74 | +# mlotst_1850s_ds = open_mfdataset(DimArray(mlotst_files_1850s, Dim{:member}(members))) |
| 75 | +# mlotst_1850s = readcubedata(mlotst_1850s_ds.mlotst) |
| 76 | + |
| 77 | +# experiment_dir = "/scratch/xv83/TMIP/data/$model/$(experiments[2])" |
| 78 | +# mlotst_files_2030s = [joinpath(experiment_dir, member, time_window_2030s, "cyclomonth", "mlotst.nc") for member in members] |
| 79 | +# mlotst_2030s_ds = open_mfdataset(DimArray(mlotst_files_2030s, Dim{:member}(members))) |
| 80 | +# mlotst_2030s = readcubedata(mlotst_2030s_ds.mlotst) |
| 81 | + |
| 82 | +# experiment_dir = "/scratch/xv83/TMIP/data/$model/$(experiments[3])" |
| 83 | +# mlotst_files_2090s = [joinpath(experiment_dir, member, time_window_2090s, "cyclomonth", "mlotst.nc") for member in members] |
| 84 | +# mlotst_2090s_ds = open_mfdataset(DimArray(mlotst_files_2090s, Dim{:member}(members))) |
| 85 | +# mlotst_2090s = readcubedata(mlotst_2090s_ds.mlotst) |
| 86 | + |
| 87 | +# mlotst_1850s_yearlymax = dropdims(maximum(mlotst_1850s, dims = :month), dims = :month) |
| 88 | +# mlotst_2030s_yearlymax = dropdims(maximum(mlotst_2030s, dims = :month), dims = :month) |
| 89 | +# mlotst_2090s_yearlymax = dropdims(maximum(mlotst_2090s, dims = :month), dims = :month) |
| 90 | + |
| 91 | +# mlotst_1850s_yearlymax_ensemblemean = dropdims(mean(mlotst_1850s_yearlymax, dims = :member), dims = :member) |
| 92 | +# mlotst_1850s_yearlymax_ensemblemax = dropdims(maximum(mlotst_1850s_yearlymax, dims = :member), dims = :member) |
| 93 | +# mlotst_1850s_yearlymax_ensemblemin = dropdims(minimum(mlotst_1850s_yearlymax, dims = :member), dims = :member) |
| 94 | +# mlotst_1850s_yearlymax_ensemblerange = mlotst_1850s_yearlymax_ensemblemax - mlotst_1850s_yearlymax_ensemblemin |
| 95 | + |
| 96 | +# mlotst_2030s_yearlymax_ensemblemean = dropdims(mean(mlotst_2030s_yearlymax, dims = :member), dims = :member) |
| 97 | +# mlotst_2030s_yearlymax_ensemblemax = dropdims(maximum(mlotst_2030s_yearlymax, dims = :member), dims = :member) |
| 98 | +# mlotst_2030s_yearlymax_ensemblemin = dropdims(minimum(mlotst_2030s_yearlymax, dims = :member), dims = :member) |
| 99 | +# mlotst_2030s_yearlymax_ensemblerange = mlotst_2030s_yearlymax_ensemblemax - mlotst_2030s_yearlymax_ensemblemin |
| 100 | + |
| 101 | +# mlotst_2090s_yearlymax_ensemblemean = dropdims(mean(mlotst_2090s_yearlymax, dims = :member), dims = :member) |
| 102 | +# mlotst_2090s_yearlymax_ensemblemax = dropdims(maximum(mlotst_2090s_yearlymax, dims = :member), dims = :member) |
| 103 | +# mlotst_2090s_yearlymax_ensemblemin = dropdims(minimum(mlotst_2090s_yearlymax, dims = :member), dims = :member) |
| 104 | +# mlotst_2090s_yearlymax_ensemblerange = mlotst_2090s_yearlymax_ensemblemax - mlotst_2090s_yearlymax_ensemblemin |
| 105 | + |
| 106 | +# MLD_ensemble_means = [mlotst_1850s_yearlymax_ensemblemean, mlotst_2030s_yearlymax_ensemblemean, mlotst_2090s_yearlymax_ensemblemean] |
| 107 | +# MLD_ensemble_ranges = [mlotst_1850s_yearlymax_ensemblerange, mlotst_2030s_yearlymax_ensemblerange, mlotst_2090s_yearlymax_ensemblerange] |
| 108 | + |
| 109 | + |
| 110 | +include("plotting_functions.jl") |
| 111 | + |
| 112 | +usecontourf = false |
| 113 | + |
| 114 | +axs = Array{Any,2}(undef, (3, 2)) |
| 115 | +contours = Array{Any,2}(undef, (3, 2)) |
| 116 | +nrows, ncols = size(axs) |
| 117 | + |
| 118 | +fig = Figure(size = (ncols * 500, nrows * 250 + 100), fontsize = 18) |
| 119 | + |
| 120 | +yticks = -60:30:60 |
| 121 | +xticks = -120:60:120 + 360 |
| 122 | + |
| 123 | +# myscale = ReversibleScale( |
| 124 | +# x -> sign(x) * log10(abs(x / 5) + 1), |
| 125 | +# x -> sign(x) * (exp10(abs(x)) - 1) * 5; |
| 126 | +# # x -> x, |
| 127 | +# # x -> x; |
| 128 | +# limits=(0f0, 3f0), |
| 129 | +# name=:myscale |
| 130 | +# ) |
| 131 | + |
| 132 | +# levels = [0, 50, 70, 100, 140, 200, 300, 500, 700, 1000, 1400, 2000, 3000] |
| 133 | +levels = [0, 50, 100, 200, 500, 1000, 2000] |
| 134 | +colorscale = mk_piecewise_linear(levels) |
| 135 | + |
| 136 | +colorrange = extrema(levels) |
| 137 | +# pseudocolorrange = myscale.(colorrange) |
| 138 | +colormap = cgrad(:thermal, length(levels); categorical=true) |
| 139 | +extendlow = lowclip = nothing |
| 140 | +extendhigh = highclip = colormap[end] |
| 141 | +colormap = cgrad(colormap[1:end-1], categorical=true) |
| 142 | + |
| 143 | +# colormap = cgrad(:tol_ylorbr, length(levels); categorical=true) |
| 144 | +# lowclip = nothing |
| 145 | +# highclip = colormap[end] |
| 146 | +# colormap = cgrad(colormap[1:end-1], categorical=true) |
| 147 | +# # pseudologlevels = myscale.(levels) |
| 148 | + |
| 149 | +for (irow, (MLD_ensemble_mean, MLD_ensemble_range)) in enumerate(zip(MLD_ensemble_means, MLD_ensemble_ranges)) |
| 150 | + # Plot ensemble mean |
| 151 | + icol = 1 |
| 152 | + axs[irow, icol] = ax = Axis(fig[irow, icol]; yticks, xticks, xtickformat, ytickformat, aspect = DataAspect()) |
| 153 | + contours[irow, icol] = if usecontourf |
| 154 | + plotcontourfmap!(ax, MLD_ensemble_mean, gridmetrics; levels, colormap, extendhigh, colorscale) |
| 155 | + else |
| 156 | + plotmap!(ax, MLD_ensemble_mean, gridmetrics; colorrange, colormap, highclip, colorscale) # <- need to fix wrapping longitude for contour levels |
| 157 | + end |
| 158 | + myhidexdecorations!(ax, irow < nrows) |
| 159 | + myhideydecorations!(ax, icol > 1) |
| 160 | + |
| 161 | + # Plot ensemble range |
| 162 | + icol = 2 |
| 163 | + axs[irow, icol] = ax = Axis(fig[irow, icol]; yticks, xticks, xtickformat, ytickformat, aspect = DataAspect()) |
| 164 | + contours[irow, icol] = if usecontourf |
| 165 | + plotcontourfmap!(ax, MLD_ensemble_range, gridmetrics; levels, colormap, colorscale, extendhigh) |
| 166 | + else |
| 167 | + plotmap!(ax, MLD_ensemble_range, gridmetrics; colorrange, colormap, highclip, colorscale) # <- need to fix wrapping longitude for contour levels |
| 168 | + end |
| 169 | + myhidexdecorations!(ax, irow < nrows) |
| 170 | + myhideydecorations!(ax, icol > 1) |
| 171 | + |
| 172 | + Label(fig[irow, 0]; text = "$(experiments2[irow]) $(time_windows[irow])", rotation = π/2, tellheight = false) |
| 173 | +end |
| 174 | + |
| 175 | + |
| 176 | +label = "ensemble mean MLD (m)" |
| 177 | +# cb = Colorbar(fig[nrows + 1, 1], contours[1, 1]; label, vertical = false, flipaxis = false, ticks = levels) |
| 178 | +# cb.width = Relative(2/3) |
| 179 | + |
| 180 | +cb = Colorbar(fig[nrows + 1, 1]; |
| 181 | + limits = (1, length(levels)), |
| 182 | + label, |
| 183 | + vertical = false, |
| 184 | + flipaxis = false, |
| 185 | + colormap, |
| 186 | + highclip, |
| 187 | + ticks = (1:length(levels), string.(levels)), |
| 188 | +) |
| 189 | +cb.width = Relative(2/3) |
| 190 | + |
| 191 | +label = "ensemble range MLD (m)" |
| 192 | +cb = Colorbar(fig[nrows + 1, 2]; |
| 193 | + limits = (1, length(levels)), |
| 194 | + label, |
| 195 | + vertical = false, |
| 196 | + flipaxis = false, |
| 197 | + colormap, |
| 198 | + highclip, |
| 199 | + ticks = (1:length(levels), string.(levels)), |
| 200 | +) |
| 201 | +cb.width = Relative(2/3) |
| 202 | +# cb = Colorbar(fig[nrows + 1, 2], contours[1, 2]; label, vertical = false, flipaxis = false, ticks = levels, scale = colorscale) |
| 203 | +# cb.width = Relative(2/3) |
| 204 | + |
| 205 | +# column labels |
| 206 | +# Label(fig[0, 1]; text = "ensemble mean", tellwidth = false) |
| 207 | +# Label(fig[0, 2]; text = "ensemble range (internal variability)", tellwidth = false) |
| 208 | + |
| 209 | +labels = [ |
| 210 | + "a" "b" |
| 211 | + "c" "d" |
| 212 | + "e" "f" |
| 213 | +] |
| 214 | + |
| 215 | +labeloptions = ( |
| 216 | + font = :bold, |
| 217 | + align = (:left, :bottom), |
| 218 | + offset = (5, 2), |
| 219 | + space = :relative, |
| 220 | + fontsize = 24 |
| 221 | +) |
| 222 | + |
| 223 | +for (ax, label) in zip(axs, labels) |
| 224 | + txt = text!(ax, 0, 0; text = "$label", labeloptions..., strokecolor = :white, strokewidth = 3) |
| 225 | + translate!(txt, 0, 0, 100) |
| 226 | + txt = text!(ax, 0, 0; text = "$label", labeloptions...) |
| 227 | + translate!(txt, 0, 0, 100) |
| 228 | +end |
| 229 | + |
| 230 | +# Label(fig[0, 1:2]; text = "$(time_window[4:7])s Seafloor Sequestration Efficiency ($(length(members)) members)$(yearly_str2)", fontsize = 24, tellwidth = false) |
| 231 | +rowgap!(fig.layout, 10) |
| 232 | +colgap!(fig.layout, 10) |
| 233 | + |
| 234 | +colsize!(fig.layout, 1, Aspect(1, 2.0)) |
| 235 | +colsize!(fig.layout, 2, Aspect(1, 2.0)) |
| 236 | + |
| 237 | +# save plot |
| 238 | +suffix = usecontourf ? "_ctrf" : "" |
| 239 | + |
| 240 | +resize_to_layout!(fig) |
| 241 | + |
| 242 | +outputdir = "/scratch/xv83/TMIP/data/$model/$(experiments[2])/all_members" |
| 243 | + |
| 244 | + |
| 245 | +outputfile = joinpath(outputdir, "MLDs.png") |
| 246 | +@info "Saving MLD image file:\n $(outputfile)" |
| 247 | +save(outputfile, fig) |
| 248 | +outputfile = joinpath(outputdir, "MLDs.pdf") |
| 249 | +@info "Saving MLD image file:\n $(outputfile)" |
| 250 | +save(outputfile, fig) |
0 commit comments