@@ -17,6 +17,22 @@ script: https://cdn.jsdelivr.net/chartist.js/latest/chartist.min.js
1717 https://cdn.plot.ly/plotly-latest.min.js
1818
1919link: https://cdnjs.cloudflare.com/ajax/libs/animate.css/3.7.0/animate.min.css
20+
21+ @eval: @Rextester._eval_(@uid, @Python, , , ,
22+ ```
23+ var string = data.Result.replace(/\n/g, ' ');
24+ var lines = string.match(/(?<=\[).+?(?=\])/g);
25+ var outcome = [];
26+ for (var i=0; i<lines.length; i++){
27+ outcome[i] = lines[i].split(' ').map(function(item) {
28+ return parseFloat(item);
29+ });
30+ }
31+ @input(1);
32+ Plotly.newPlot(span_id, plot, layout);
33+ console.log("Aus Maus");
34+ ```)
35+
2036-->
2137
2238# Vorlesung XII - Datenfusion
@@ -188,16 +204,10 @@ belief = np.array([1./10]*10)
188204print (belief)
189205```
190206``` js -Visualization
191- var line = data .Result .slice (1 , data .Result .length - 2 );
192- line = line .replace ( / \s\s + / g , ' ' );
193- var outcome = line .split (' ' ).map (function (item ) {
194- return parseFloat (item);
195- });
196-
197207var plot = [
198208 {
199209 x: d3 .range (0 , 10 ),
200- y: outcome,
210+ y: outcome[ 0 ] ,
201211 type: ' bar' ,
202212 name: ' Potential positions' ,
203213 }
@@ -222,12 +232,9 @@ var layout = {
222232 legend: { x: 1 , xanchor: ' right' , y: 1 },
223233 tracetoggle: false
224234};
235+ ```
236+ @eval
225237
226- Plotly .newPlot (' Diagram1' , plot, layout);
227- console .log (" Aus Maus" )
228- ` ` ` @Rextester._eval_(@uid, @Python,` @0 ` ,` @1 ` ,` ` ,` @input (1 )` )
229-
230- <div id="Diagram1"></div>
231238
232239Es wird deutlich, dass wir aktuell noch kein Wissen um die Position des Bootes haben. Man spricht vom "apriori-"Wissen.
233240
@@ -320,12 +327,6 @@ belief[markers == 0] = (1-truePositive)/np.count_nonzero(markers==0)
320327print (belief)
321328```
322329``` js -Visualization
323- var line = data .Result .slice (1 , data .Result .length - 2 );
324- line = line .replace ( / \s\s + / g , ' ' );
325- var outcome = line .split (' ' ).map (function (item ) {
326- return parseFloat (item);
327- });
328-
329330var plot = [
330331 {
331332 x: d3 .range (0 , 10 ),
@@ -354,12 +355,8 @@ var layout = {
354355 legend: { x: 1 , xanchor: ' right' , y: 1 },
355356 tracetoggle: false
356357};
357-
358- Plotly .newPlot (' Diagram2' , plot, layout);
359- console .log (" Aus Maus" )
360- ` ` ` @Rextester._eval_(@uid, @Python,` @0 ` ,` @1 ` ,` ` ,` @input (1 )` )
361-
362- <div id="Diagram2"></div>
358+ ```
359+ @eval
363360
364361### Abbildung auf apriori Wissen
365362
@@ -381,12 +378,6 @@ posteriori = (apriori * belief) / sum(apriori*belief)
381378print (posteriori)
382379```
383380``` js -Visualization
384- var line = data .Result .slice (1 , data .Result .length - 2 );
385- line = line .replace ( / \s\s + / g , ' ' );
386- var outcome = line .split (' ' ).map (function (item ) {
387- return parseFloat (item);
388- });
389-
390381var plot = [
391382 {
392383 x: d3 .range (0 , 10 ),
@@ -415,12 +406,8 @@ var layout = {
415406 legend: { x: 1 , xanchor: ' right' , y: 1 },
416407 tracetoggle: false
417408};
418-
419- Plotly .newPlot (' Diagram2' , plot, layout);
420- console .log (" Aus Maus" )
421- ` ` ` @Rextester._eval_(@uid, @Python,` @0 ` ,` @1 ` ,` ` ,` @input (1 )` )
422-
423- <div id="Diagram2"></div>
409+ ```
410+ @eval
424411
425412Wie erwartet haben die Segmente mit Schildern eine deutlich höhere Wahrscheinlichkeit von $p=0.24$ als die anderen Bereiche. Welche Veränderung
426413erwarten Sie, wenn wir die Qualität der Sensormessungen erhöhen?
@@ -448,12 +435,6 @@ for i in range(1, 10):
448435print (p_1)
449436```
450437``` js -Visualization
451- var line = data .Result .slice (1 , data .Result .length - 2 );
452- line = line .replace ( / \s\s + / g , ' ' );
453- var outcome = line .split (' ' ).map (function (item ) {
454- return parseFloat (item);
455- });
456-
457438var plot = [
458439 {
459440 x: d3 .range (0 , 10 ),
@@ -482,12 +463,8 @@ var layout = {
482463 legend: { x: 1 , xanchor: ' right' , y: 1 },
483464 tracetoggle: false
484465};
485-
486- Plotly .newPlot (' Diagram3' , plot, layout);
487- console .log (" Aus Maus" )
488- ` ` ` @Rextester._eval_(@uid, @Python,` @0 ` ,` @1 ` ,` ` ,` @input (1 )` )
489-
490- <div id="Diagram3"></div>
466+ ```
467+ @eval
491468
492469Unsere Positionsschätzung nähert sich der belief-Verteilung unsere Messung an. Der Einfluß des Anfangswissens geht zurück.
493470
@@ -512,18 +489,6 @@ print(belief)
512489print (perfect_predict(belief, 1 ))
513490```
514491``` js -Visualization
515- var lines = data .Result .split (' \n ' );
516- var line_0 = lines[0 ].slice (1 , lines[0 ].length - 1 ).replace ( / \s\s + / g , ' ' );
517- var line_1 = lines[1 ].slice (1 , lines[1 ].length - 1 ).replace ( / \s\s + / g , ' ' );
518-
519- var outcome_0 = line_0 .split (' ' ).map (function (item ) {
520- return parseFloat (item);
521- });
522-
523- var outcome_1 = line_1 .split (' ' ).map (function (item ) {
524- return parseFloat (item);
525- });
526-
527492var plot = [
528493 {
529494 x: d3 .range (0 , 10 ),
@@ -559,12 +524,8 @@ var layout = {
559524 legend: { x: 1 , xanchor: ' right' , y: 1 },
560525 tracetoggle: false
561526};
562-
563- Plotly .newPlot (' Diagram4' , plot, layout);
564- console .log (" Aus Maus" )
565- ` ` ` @Rextester._eval_(@uid, @Python,` @0 ` ,` @1 ` ,` ` ,` @input (1 )` )
566-
567- <div id="Diagram4"></div>
527+ ```
528+ @eval2
568529
569530Welche Probleme sehen Sie?
570531
@@ -591,18 +552,6 @@ print(belief)
591552print ( predict_move(belief, 1 , .1 , .7 , .2 ))
592553```
593554``` js -Visualization
594- var lines = data .Result .split (' \n ' );
595- var line_0 = lines[0 ].slice (1 , lines[0 ].length - 1 ).replace ( / \s\s + / g , ' ' );
596- var line_1 = lines[1 ].slice (1 , lines[1 ].length - 1 ).replace ( / \s\s + / g , ' ' );
597-
598- var outcome_0 = line_0 .split (' ' ).map (function (item ) {
599- return parseFloat (item);
600- });
601-
602- var outcome_1 = line_1 .split (' ' ).map (function (item ) {
603- return parseFloat (item);
604- });
605-
606555var plot = [
607556 {
608557 x: d3 .range (0 , 10 ),
@@ -638,12 +587,8 @@ var layout = {
638587 legend: { x: 1 , xanchor: ' right' , y: 1 },
639588 tracetoggle: false
640589};
641-
642- Plotly .newPlot (' Diagram5' , plot, layout);
643- console .log (" Aus Maus" )
644- ` ` ` @Rextester._eval_(@uid, @Python,` @0 ` ,` @1 ` ,` ` ,` @input (1 )` )
645-
646- <div id="Diagram5"></div>
590+ ```
591+ @eval2
647592
648593Was aber geschieht, wenn wir von einem unsicheren priori Wissen ausgehen?
649594
@@ -805,6 +750,8 @@ style="width: 100%; min-width: 380px; max-width: 720px; display: block; margin-l
805750
806751Das folgende Codefragment bildet zwei Iterationen für unser Beispiel ab. Im ersten Durchlauf ändert die Prediktionsphase den Intertialen Wissenstand nicht. Die Faltung des Kernels ändert die Aufenthaltwahrscheinlichkeit nicht. Eine Präzisierung erfährt diese mit der ersten Messung durch den Schildersensor.
807752
753+ # asdfasöl
754+
808755```python BayesFilter.py
809756import numpy as np
810757from scipy import ndimage
@@ -831,38 +778,18 @@ posteriori = posteriori * belief / sum(posteriori * belief )
831778print(posteriori)
832779```
833780```js -Visualization
834- var lines = data.Result.split(' \n' );
835- var line_0 = lines[0].slice(1, lines[0].length-1).replace( /\s\s +/g, ' ' );
836- var line_1 = lines[1].slice(1, lines[1].length-1).replace( /\s\s +/g, ' ' );
837- var line_2 = lines[2].slice(1, lines[2].length-1).replace( /\s\s +/g, ' ' );
838- var line_3 = lines[3].slice(1, lines[3].length-1).replace( /\s\s +/g, ' ' );
839-
840- var outcome_0 = line_0.split(' ' ).map(function(item) {
841- return parseFloat(item);
842- });
843-
844- var outcome_1 = line_1.split(' ' ).map(function(item) {
845- return parseFloat(item);
846- });
847781
848- var outcome_2 = line_2.split(' ' ).map(function(item) {
849- return parseFloat(item);
850- });
851-
852- var outcome_3 = line_3.split(' ' ).map(function(item) {
853- return parseFloat(item);
854- });
855782
856783var plot1 = [
857784 {
858785 x: d3.range(0, 10),
859- y: outcome_0 ,
786+ y: outcome[0] ,
860787 type: ' bar' ,
861788 name: ' Apriori Knowledge'
862789 },
863790 {
864791 x: d3.range(0, 10),
865- y: outcome_1 ,
792+ y: outcome[1] ,
866793 type: ' bar' ,
867794 name: ' After measurement'
868795 },
@@ -871,13 +798,13 @@ var plot1 = [
871798var plot2 = [
872799 {
873800 x: d3.range(0, 10),
874- y: outcome_2 ,
801+ y: outcome[2] ,
875802 type: ' bar' ,
876803 name: ' After prediction'
877804 },
878805 {
879806 x: d3.range(0, 10),
880- y: outcome_3 ,
807+ y: outcome[3] ,
881808 type: ' bar' ,
882809 name: ' After measurement'
883810 },
0 commit comments